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STUDIA MATHEMATICA, T. LXV. (1979)

On projections in spaces of bounded analytic functions
with applications
,by
P. WOJTASZCZYK (Warszawa)

Abstract. Projections in spaces 4 and H,, are investigated. It is shown that H.
is isomorphic t0 its l-sum and has a contractible linear group. Certain generalizations
to spaces of bounded analytic functions of several complex variables are presented.
Norm-one finite rank projections in 4 ‘and H, are described. The description shows

. in particular that 4 and I,/H, are not m;-spaces. We also investigate isometric and

isomorphic preduals of H,.

Introduction. In the present paper we consider projections in spaces
of bounded analytic functions. Our main interest lies in the space H_,(U),
the space of bounded analytic functions in the unit dise U, but generaliz-
ativns to H(U™) and H_,(B,) (the spaces of bounded analytic functions
in n-polydise and n-dimensjonal ball) are also presented. First we exhibit
a class of elementary projections which play the crucial role in our paper.
Those are projections given by linear extension operators from certain

. subsets of the fibres of MM (H ). Using those projections, we show that H,

is isomorphic to its direct sum in the sense of I,. Applying the result of
Bodkariov [2], we infer that H, is isomorphic to a second conjugate space,
thus answering the question of Rickart, asked in [22]. We show the iso-
morphic character of this result, proving that isomefrically H , has a unique
predual space (this result answers the question of Porcelli [24] problem 59)
and is not isometric to the second conjugate space of any Banach space.
This is done in Section 1.

Section 2 containg the proof that the group of linear isomorphisms
of H,(U) is contractible. This is done by using the general scheme el-
aborated by B. S. Mitiagin [17]. We show that this scheme is applicable
by a detailed analysis of certain elementary projections, used also in
Section 1.

In Section 3 we consider spaces of bounded analytic functions in
polydises U" < O™ and balls B, = (™ We are able to generalize our main
results to polydiscs. The space H,(U") is isomorphic fo ifs direct sum
in the sense of I, and has a contractible linear group. As regards the space
H,,(B,), we show that it is isomorphic to its I-sum.
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In Section 4 we consider finite dimensional norm-one projections
in 4 and H,. It follows from our results that A is not a =;-space and
that every norm-one finite dimensional projection in the space I,/H) is
one-dimensional.

Section 5, the last, contains some open problems and certain easy
observations about the fibre algebra, i.e. the restriction of H , to a fibre.

Definitions and notation. If V < (" is an open bounded set, then H_ (V)
is the Banach space of all bounded analytic functions in ¥V considered
With the supremum norm. By A(V) we will mean the space of functions
continnons on ¥ (the closure of V), and analytic in V, equipped with the
supremum norm. In our paper the set ¥ will be either the polydise

T" = {(#1, 22y ++-
or the ball

y ) €0 lgl<lfori=1,2,...,n}

N n
B, = {(zn Zagaey 2) € 07 2 E/lziiz < 1}-
. =

The set U* = B, will be denoted by U. H.,(U) will often be denoted by H_,
and A(U) will often be denoted by A. It is well known (cf. [11], [20])
that H_(TU™)canbe momemeaﬂly lden'tnﬁed with a subalgebra of L, (8", 1*)
where' 8 ={ze0: 2| =1}, S*is the Cartesian product of n eopies of 8
and 1" denctes the normahzed Lebesgue measure on 8™ In the same way
A{U™) can be identified with a suba-lgebra, of C(8™). The set of all h_near
multiplieative functionals on H, (V) will be denoted by MM{H.(V)). I
follows from the Gelfand representation theorem that H (V) is 1sometnc
0 a subalgebra of € (MM H,(V)). This isometry will be denoted by “ A”
ie.if fe H (V), then f denotes the same function considered as a function
on MH (V). Since V can be embedded into MH (V) (the point te V
corresponds to the linear multiplicative functional “value at t”), one
can think of f as a certain extension of f to MH (V).

&= (,%,...,1,) € V— 7V, then the fibre M, over ¢ is defined as

My = fpe MAL(V): p(z) =14 for i =1,2,...,n}.

The continuouns map &: MH (V) MH (V) is said to be analytic
if for every f ¢ H,, (V) the composition fo & is in H_ (V).

In this paper we will frequently use the following Rudin—Carleson
theorem (cf. [5], [11]): Let 4 = 8 be a closed set of Lebsegue measure 0 and
let f € C(4). Then there exists an feA such that fl4 = = and 171 = 1171
Moreover, f ean be chosen in such & way that Jor every 2z e U, 2 ¢ A, we have
1)< 17t

Our general reference about analytic functions of one complex variable
is Hoffman [11]. For functions of several complex variables the reader can

e __ ®
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consult Rudin [20]. The reference about Banach spaces is Lindenstraiuss—
Tzafrivi [14].

1. In this section we prove the existence of linear extension operators
from certain subsets of the fibre of H,. Our main results are based on

the analysis of the conformal map L: U -» U defined by
I(e) = 2EiHE=D)
1+i(z—1)

We will consider iterations of this map, L"(?) forn =0, +1, +2, 13,
It is easily checked that

") =z+m"(z—1).
14-ni(z—1)
The following lemma is known (cf. [11], [21]) and easy to prove.
Levma 1.0, (a) L(1) =1;

(b) for every 2 €U, I"(2) -1 as n-> oo and L"(z) >1 as n— —oo;
(¢) for every compact K = U there exisis a constant O such that
sup{|L*(#) —1|: 2e K} <0 0™ for m=0,%1,42,...
We begin our considerations with the following
LeMMA 1.1, Let (ng)5; be a lacunary sequence of integers, i.6. Ny
A> 1. Let us define h(z) =2 [ L™™(2). Then he H,, |h] =1 and
5=0
(1) |p(I(2) —2 >0 as k— co uniformly om each compact subset
of the disc U.
“Proof. By Lemma 1.0 (¢) we infer that the product defining h is
almost uniformly convergent, and so % is not identically zero, belongs
to H,, and [|h]| < 1. Let us fix a compact subset K < U.Forze K we have

[B(L"(2) — 2| = | T2 nL"k‘”s )2 H L"k‘"a(z)-—zl

8=k-1
k-1
= [o| | Z(2) [ [ L% ™ (2) ” L"k—“a(z)—ll
8=0 s=k+1
k—~1 )
< B[P E —11+ 3 I =1+ ) 1) 1)

§=0 8=k+1
k=1
< el Oxlmad ™+ ) Oxcl—mel ™+ Z Ol —l7")
§=0 s=k+1
S (T T N e N R W Y B

8=k+1


GUEST


150 P. Wojtaszezyk

Since. g —my_| = Amg_y—my_y| = Ime_y|(A—1) and ngfny = 2%, we
have for ze K

(%) 2 < Cof el + B (1myld—1) gl ™0 Y (27F—1)7).
s=k+1

Bub |ng,| > 2" and 1>1, and so we see that the right-hand side
of the inequality tends to zero as % tends to infinity; thus (1) is proved.
It is easily seen that (1) implies A > 1; hence [[k|| = 1 and the lemma
is proved.

PROPOSITION 1.2. Let (ny) be a lacunary sequence of integers and lot
k(2) be defined as in Lemma 1.1 Then

(2) A: H,— H,, defined by A(f) =foh is a multiplicative isometry
of H, into itself;

(b) There exrists an operator T: Hy,— H, such that T is multipli-
cative and onto and for every feH, T(f) is the almost uniform Timit of
some subsequence of the sequence (fo L") ;s

(¢) P = AT is a mulliplicative projection from H,, onio the image of A.

(@) P*\R(H,,) is an analytical retraction from IM(H,) into the fibre
W (H,,) and P*(IM(H,,)) is homeomorphic to M(Hy,).

Proof. Part (a) is elear since h(U) = U. Sinee for every feH,,
the sequence (fo L") is a uniformly bounded sequence, it contains (by
Montel’s theorem) an almost uniformly convergent subsequence. Hence,
using the standard technique of generalized limits (¢f. for example [16]),
we infer that there exists a linear and multiplicative operator T': H — H
such that, for every f e H,, Tf is the limit of an almost uniformly conver-
gent subsequence of (foL™). To prove that T is onto let us consider the
operator TA. For an f & H,, we have To 4(f) = T(foh) = limfoho L™ ={.
The last equality follows from Lemma 1.F. Hence Tod —id and T is
onto, which proves (b).

To see (e) let us observe that P® = ATAT = AT since TA — id.
Clearly ImP = ImAd.

Since P is multiplicative, P*(M(H,)) = M(H,,) and since P = P?,
PM(H,) is & retraction, and obviously an analytic one. The image
of P*|IR(H,) can be identified with I(ImP), but the algebra ImP
= A(H,) is homomorphically isometric with H,,; hence P* (M(H,)) is ho-
meomorphic to M(H ;). Now we show that P* (MUH)) = My(H,). Let us
take ¢ e M(H,). Then P*(p)(2) = T*A*(p)(3) = T*(4*(p)) () = 4*(¢) x
X (T(2)) = A*(@)(1) = 1 since T(z) = HmI"* — 1.

This completes the prootf.

Since the rotations of U induce homeoniorphisms of M(H,,) onto

M(H ) which transform fibres onto fibres, and for every « e § there exists
a rotation which transforms M, (H,) onto M, (H ), we have

icm
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COROLLARY 1.3. For every ac8 there is an analytic retraction r,:
WM(H ) —> M(H,,) such that Imr, = M, (H,) and Imr, is homeomorphic
to M(H,)- .

Remark 1.4. (a) Since for g € M(H,,) and f e H., P(]f)(fp) =_f(l3i ®)
and P*|MM(H,) is a retraction on M(H,), P is & .mult_lphcahvg 1mee‘\m
extension operator from P*(M(H,,)) to M(H,). This point of view will
be employed in the rest of the present paper.

(b) Proposition 1.2 is an improvement of the :Fesult of Scha’m-k [21]
(ef. also [11], pp. 167—168). Our proof is & modjﬁ_eatlon of Schark’s proof.

Suppose that we have an analytic retraction #: M(H ) - ED%(H(,?)
such that Imr < M (H,) for a certain ¢ € § and such that H,|[Imr is
isometric to H,. Suppose also that we have a funetion g eH,, Hgll = 1,
such that §|Imr = 1. Then we can define & projection P by P(f) = g- for.
Such projections will be called elementary projections. If we want to e}npl_m.~
sise how the projection is built, we say that it is an elementary 13:0]6@131011
over a point « or an elementary projection given by the retraction r and

. the function g.

PrOPOSITION 1.53. The space H., contains a complemented subspace
isomorphic to Y Hy)oo- .

Proof. Let us choose a sequence of points (a,) = 8 with a,—>1.
Let 4, = {zeU: |g—a,| < ¢,} where s, are chosen in such 2 way that
the 4,’s are pairwise disjoint. Let us take a sequence of functions (faed
such that

1 if n=m,
(2) Fulom) = 0 it nm,
(3) Ifull =1,
(4) ifu@) <2 ™t for =z¢d4d,.

The possibility of such choice follows from the Rudin—Oa}:rleson
theorem. Let r, be the retraction given by Oorollary 1.?; for tht? point a,.
Our projection will be the sum of elementary projections defined by 7,
and f,, i.e. for f e H,, we define

Pf = f}fn-(forn).

Sinece any compact set K = U intersects only a finite number of 4,’s,

condition (4) implies that the series S fu:(fory,) is almost uniformly con-
vergent. Moreover, n=1

() Prat< S @lFor) @ <151 X @I <2171,

1 n=1
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and 50 P(f) e H, and P is a linear operator of norm less than or equal
to 2. We claim that P is a projection and TmP ~ (Z‘Hw)m.

We know by Corollary 1.3 that, for every =, H |Imr is isometric
with H,, and so it ig enough to prove that ImPN(ZH [Im'r plos We

define an operator i: (JH, |Imr,),—~H, by i((g2)) = Zf,, (gnOTa)

As in (5), we show that {i|] <2. Moreover, Im P < Imji, because P(f)

= %( fIms 7)) for every feH Our claim will be proved if we show that
P(z (o) )} =73 ((ga)-

P(i (@) = P( 3 fu-(gaor)) = ka(an (gu07a))or
n=1 k=1 n=1
=gfk'(fk'(g:'p?k)+ ilf»'(gno"”u))o"'k
= 5

R Z\fk fk (gko"'k)f”'k)‘l" ka(zfn (gno"’u))o"k

n;&k
Forz e Ak we haNe

| > @on) (z)j 2 I (@1l < 50 g 2 ful@)l-

n#tkn=1 netk,n=1 k#tn=1

Conditions (2) and (4) imply that v(z) = 2, )£ ()] is a continuous function
FH=1
on A,c and v(a;) = 0. Hence for an a;rbltrary sequence z; — q;, we have

lim 2 Ial2)(8207,) () = 0
I ktn=1
But by [11], p. 162, it implies that

—T T —

D fa(gu0r) My, = 0

k#En=1

T ~
On the other hand, g,or,|Imr, = g, and Sl =1, and so

P(i((gn)) = D fulgrore) =i ((g)-
k=1

This completes the proof of the proposition.
The standard decomposition method gives us (ef. [15])
COROLLARY 1.6. The space H2 is isomorphic to (SHy)o-
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In [2] 8. V. Botkariov constructed an orthonormal system (b,) on §
which is a Schauder basis for A. The orthogonality implies that (3,) is
also a basis for the space I, (1)/Hj(4). It is well known (¢f. [10]) that
[L{2)/H}(A)]" = H,. Let us define the space B = (}X,),, where X,
= gpan{by, ..., b} in L(A) [H}{1). Now we ean define the operator T: B

—=> Ly(1) [H}(4) by the formula T ( } Z’a: Let us define for every n

onto

an operator 7, which isometrically tra.nsforms X, considered as a sub-
spaee of L,(1)/H}{A) onto X, naturally embedded into B, and satisfies the
condition Tz, (%) =« for every # e X, < L,(A1)/H3(1). In this situation
Proposition 1 of [12] (cf. also [23]) implies that T™([L,(A)/HNTY) is
norm 1-complemented in B*. But T is an isometric embedding, and hence
we infer that B* = (Y Xj), contains a I-complemented copy of H.,.
On the other hand, X, are uniformly complemented in H,, because (b,)
is a bagsis for the predual of H,,. This implies that () X;),, is complemented
in (}'H,)., by coordinatewise projection. Corollary ‘1.6 and the decompo-
sition method give us H,, ~ {3 X;],. But X are uniformly isomorphie
to Hy, = span.{by, by, ..., b,} considered as a subspace of 4. We can summar-
ise our observations in

THEOREM 1.7. The space Hy, is isomorphic to (X H), and io (3 H™),,
where Hy, is the span of the first n elements of the Bolkariov basis for the
disc algebra A.

Remark 1.8. The proof of Proposition 1 of [12] is a compactness
argument. If we neglect the good estimates for the norm of the projec-
tion, we can make R a cluster point of the sequence 7 in the topology
of w*-pointwise convergence of operators from B* into H,, (here we con-
sider 7, as an operator from I,(%)/H3(4)) and T*R is the required pro-
jection.

CoroLLARY 1.9. H, is isomorphic to the second dual of the Banach
space (3 Hy),, -

This corollary answers the question of Rickart asked in [22].

Now we want to show that isometrically H, is not a second dual
space. We will consider H,, as a subalgebra of L, and we will identify I,
with € (M (L,)}, and so H., is a closed subalgebra of ¢ (M(L,,)) separating
points. We will identify the Lebesgue measure 4 with the measure it induces
on M(L).

A subset K = M(L,,) is called a peak set for H ,, if there exists a function
feH, sueh that f(f) =1 for t e K and {f(t)| < 1 for t ¢ K. A point which
is the intersection of a family of peak sets is called a p-point. The following
three known facts will be used in the proof of Theorem 1.11.

ProposITioN 1.10. (a) If t € M(L,,) is a p-point for H,, and V is an

5 — Studia Mathematica LXV, 2
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open neighbourhood of 1, then there exists a function f € Hy, such that f(t) =1
= |If}| and |f(s)| <1 for s ¢ V.

) If K is & dlosed subset of M(L,) with AMXE) = 0, then there emists
a peak set for Hy, K, such that K > K and ME) = 0.

() If fe H,, and f(t) = 0 for all p-points t, then f = 0.

Part (a) is a special case of Theorem IL11.1 of [5] (ib is explained
in [5], IT, § 12, that this theorem is valid also for p-points), part (b) is
a result of Amar—Lederer [1]and part (c)is a special case of Theorem IT.12.10
of [5].

TaeorEM 1.11. The predual of H,, unique up to isometry is Ly (1) JHY(2).

This theorem answers the question of P. Porcelli, Studia Mathematica
38, problem 59.

Proof. If X* is isometric to H,, then we can identify X with a cer-
tain subspace of HY. Let us take an arbitrary u e X, jjull = 1 and by the
Hahn-Banach and the Riesz representation theorems let us extend it
to a measure i on M(L,), liFll = 1. Let us consider the Lebesgue decompo-
sition 5 = fdAd+fi,, where i, is singular with respect to the Lebesgue
measure and

(6) 1= [l = [ 1f1aA+ 1@l

Let us suppose ji, 7 0. Since X* = H,, there exists a g € H,,, llgll =1
such that u(g) = 1. By the regularity of j, we can find a compact set
K < 9L, with A(K) = 0 such that {ii,| K| > |ji,]/2. In view of Prop-
osition 1.10(b) we may assume that K is a peak set for H,. Let ¢ e Hy
be a function peaking on K and let r be a natural number such that

M | [ 90" disa| > 13al2,
®) | f sorar|< a0z

Such choice is possible because [gp?fdi—0 and
[ 90" i, ~ [ gai,— i, | K|l
K

The last equality follows from (6).
The sequence g™g is contained in the unit ball of H,, and so it has
a o(H,,, X)-cluster point f, { e H,, and I < 1. Observe that

hilg"g) = [o"gfdr+ [ g"gafi,— i | KN > I1/2  as

This implies that = 0.
Let ¢ be a p-point, 1 ¢ K. We claim that () = 0. Suppose {(¢) 0.
Then there exist an open neighbourhood V of ¢, VNE =@ and a function

”n—> 0.

e _®

icm

221 155

On projections in spaces of bounded lytic fi

peH, such that jp]l =p(#) =1 and |p(s)] < G,l/2 for all s ¢V (by
Proposition 1.10(a)). Sinee the unit ball of X is o(Hy, H,,) dense in the
unit ball of HE, for an arbitrarily small #> 0 we can find y e X with
lpl<1 sueh that

(% 18, (1) —y(1) = L—p{AN< B,
19 18:(p)—y(®)] = L—2 (D)< B,
(1) 18:(0) — (O] = 180@) — (D) < B.

Tet us extend y to a measure # with [[F]| = Jiy}. Then we have

| 23|

1-8<y(p)l ”':lfpd)‘;‘glf!‘pd&l +|§’01(L°°)\V

P17+ 3N 17 1TV

<
<1 — 7 1 DU L) N VI W 3 17 10U L) NV

80
71 (L) N VIS B (L~ I1/2) 77

Now observe that since y e X, the sequence y(¢"g) = Jo"gd7 has
a subsequence convergent to y(£) = [{d7. On the other hand,

f«p“gd&—>fgd5? as  n—> 0,
£

s0
[9d5 = [La7.
K
But
| [ogi|< [ 161a5 < IFIMETINTI< BQ—1l12)7
K WL\
and so

(@1 =|ftap| <pa—lan2)

For small § this contradiets (11). This contradiction shows that
(t) = 0 for an arbitrary p-point outside K.

Now the function (p—1) is zero at all p-points, and so {{p—1) =0
by Proposition 1.10(c). Since p—1 =0, we infer that { = 0. This contra-
diction shows that i, = 0; hence €very norm-preserving extension of
s € X is a measure that is absolutely continuous with respect to the Lebes-
gue measure, This implies that X is a subspace of L, (A)/H}(4), but obvi-
ously it has to be equal to the whole L, (2)/H3(4). ’
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COROILARY 1.12. H,, is not isometric to the second dual of any Banach
space. )
Proof. The corollary follows from the fact that L,(4)/H}(A) is not

isomorphie to a conjugate space. The argument for this fact runs as follows:

Since H?(4).is a separable dual, it does not contain a subspace isomorphic
to L, by Gelfand’s theorem (cf. [8]). Corollary 4 of [25] shows that
L, (A)/H2(1) does not have the Radon-Nikodym property, and so it is
not a subspace of a separable conjugate space.

Remark 1.13. The results of this section show the analogy between H,,
and L. It is well known (ef. [13]) that L, has isometrically a unique
predual I, which is not & subspace of a separable conjugate space. On the
other hand, I, is isomorphic to I,, which is the second dual of the space ¢,.
This indicates that the space (3 Hw), should play in the linear theory

of spaces of analytic functions an analogous role to that played by ¢

in the theory of classical Banach spaces. Recently F. Delbaen has proved
that the disc algebra A contains & complemented subspace isomorphic
to (Z H‘?")ﬁo *

Remark 1.14, Using the fact that there exists an uncountable number
of non-isomorphic separable spaces of the form C(«), o being a countable
ordinal .mumber, ((a)* =1,, one can easily construet an uncountable
family of non-isomorphic spaces whose second duals are isomorphic to H,,.

2. In this section we will prove that the general linear group of H,,
GL{H,), is contractible. The general scheme for proving the contracti-
bility of the general linear group of a given Banach space was developed
by B. 8. Mitiagin in [17]. He proved that GL(X) is contractible if X has
two properties called by him ID and- SOB. The property ID is satisfied,
in partieular, if X ~ (ZX)W; 8o the space H, satisfies the ID by Theorem
1.7. This section will be devoted to the proof that H,, satisfies the SOB.

DrrFinrTioN 2.1. The Banach space X safisfies the property SOB
it for every eompact A" < L(X, X), where L(X, X) is the space of all
linear bounded operators on X, and for an arbitrary s> 0 there exist
projections Q,, @;: X — X such that

(1) Gy = Qle =0,
@) Im@Q, ~ImQ, ~X,
3) - Q. BQsll<<e for every Be % .

Let us introduce the following property SOB’:

 Dmrmrron 2.2. The Banach space X satisfies the property SOB’
if for every compact £~ < L(X, X) there exists a constant ¢ such that

e ©
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for every s> 0 there exist projections @y, @yt X — X such that

(€] m@, ~ImQ, ~X,

(5) 104<C and Q<O
(6) 0.9, =0 and - (@@l <e,
(7) 10, BQyjl <& for every Be Aq.

LEMma 9.3. The property SOB' implies the property SOB. .
Proof. We may assume that &< 1. Then let us introduce the projec-
tion
Ql = (I+Q1Q2>Q1(I'Q1Qz) = Qi“‘Qle'
We show that the projections §; and @, satisfy (1)(3).

Q1Qz = QlQa—QxQn =0,
Qz@1 = Q2Q1—Q2Q1Qx =0
by (6).

Im ¢, is isomorphic to Im@Q; because I —Q, @, is an lsomorphism of X.
For B € X we have

1§:BQall = (@1 —@:Q2) BE:l < lleBQzH—}*HQ;QzBQaH <e( +03§‘§ 1B -

This eompletes the proof of the lemma.

Tor technical reasons we prefer to cheek that H_, has the property
SOB’ rather than the property SOB. e .

We start with a detailed analysis of the behaviour of the maps L/
restricted to the circle 8. This analysis leads to Theorem 2.14. Then we
use Theorem 2.14 to prove the property SOB'. )

Tt is clear that [L™(e®)| =1 and L"|8 is & homeomorphism of 8
onto itself. We define a function ¢,: [0, 2=] = [0, 9] by the formula

(8) L”(ew) — il
Leyma 2.4, We have .
g,(6) = (1+2n2—Vdn' +4n cos (6 —7,))
where .
1 and  €O8 ",
V241 " Val+1
80 Y, = sgnnarcsin(l/n2+1)_ L
Proof. We write
60 L mi (6 —1)
©® 14ni(e® —1)

siny,, =

= ¢
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and differentiate both sides with respect to 0. We get

_‘}_ W s 100y o)
0 | THni(®—1) ] = in(B)g™ .

If we substitu@ for ¢ the value given by equation (9), differentiate
the left-hand side and solve the equation with respect to #n(0), we get
after standard computations, the required result. ’ ,

CoBOLLARY 2.5. maxg,(6) < 9ns.
]
- Proof. This maximum is clearly equal to

(14202 —Van' 4407 )" = (Vad T —pnl)™* = (Vir £1 + i)’ < o2,

LEMMA 2.6. We have

ST e LT s VU 0
>0 1/”2 M= 00 1/’)112 :- '
Proof. Since y_, = —y,, itis enough to check that lim i L
0. But this limit equals no 1fm?
arcsin 1 1
lim Voltl 2 _
2->00 1/502 -

by the application of de I’Hospital’s rule.

Lemwya 2.7. F it .
such that or every positive constami O there exists a natural number &

Wegnnimisiy —¥al = 002 for big enough.

k_zlér;wf get us ta:ke a na;f;ural number % and a positive ¢ such that

— Oa. 0 simplify $he notation, we will assume that % is a natural

number. Observe that for n big enough we have by Lemma 2.6

—en T <y —nT C en Y

hence
1 —en Ty, < a2,

Using these inequalities, we have

Ware—yul = ¥ — Vaik = ‘nhl'n— et (n B — s To) 2

= el = 2e k
n(nt ) (n N (n+k>2)>§}7£ T (E ‘25)”_2%0?-
' n:
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“h

Lemya 2.8. We have
f ao )
14202 — Vin* - 4nscos (6 —y,)

— 69—
= 2arctan [(1 +2%2+1/4n‘+4n*) tan 2”"].

Proof. We first substitute # = 6 —y, and next ¢ = tan(2/2), and
the integral reduces to
f di
(L1 2n*+ Van'+an) 2+ 1+ 2m2—Van' ant

This integral can easily be calculated.
Let us recall that a point ¢ € § is & point of densiby of a set Ac8it

lim Alf—h, t+h)n4)

=1.

PROPOSITION 2.9. Let A = § be a measurable subset such that 1 is a point
of demsity of A. Then limsupi(L*(4)) =1.
Nn—>o00

Proof. Suppose that our claim is false, i.e. that there exists 2 6> 0
such that A(L"(4)) < 1—26 for all natural n. We can find an &, such that

A(L“(yn_any Yn‘l‘ 8,)) =1-34.
Since
Ynton

HE (s taten)) = 5= | ()36

Yn~%n

we infer by Lemma 2.8 that s, is given by the condition

2aretan [(L +2n2 + VA 4nt) tan(s,/2)] = =(1—6).

1—4
If we denote tan —ﬂ—(——i——) by M, we can write
&, M
tan —— = .
2 1202+ Vin' +4n?

This implies that there exists a constant ¢ such that foralln = 0 &, < C[n?
Lemma 2.7 shows that there exists a natural number % such that for n
big enough the intervals I, = (Ynx— &nks Var T £q) are disjoint. We have
AL™(I,)) =1—dand A(L”"(A)) < 1—28;580 Z(L"k(ln\A)) > 8. Corollary
2.5 shows that A(I,\4)> 6/9%*n2. Observe also that there exists
a constant €y such that y,;+ &, < 10
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Now we are ready to estimate

}.((0; ynk+ Enk) ﬁA) < 1((0’ ynk+8nk)\ ( rL=JI IT\A)}

Vg Enge = Ykt Enr
el 00
Vnk_’_gnk“ 2 A(Ir\A) ZA(Ir\A)
< r=n <l— r=n
= Pk T Eng, = Ciin
n o b né >y 1 [/ n
<1-2 —:1—-——-2—-—<1———~—-—-.
= Glgﬂz 9k Ca9® L 72 =7 0,9k m41

This estimate contradicts the fact that 1 is a point of density of the
set 4.

Remark 2.10. A fully analogous argument shows that under the
assumptions of Proposition 2.9 ]jmsupl(L”(A)) = 1.
Nn—>—oo

Rgmark 2.11. Obviously Proposition 2.9 implies that there exists
a lacunary sequence (n,) such that lim 2(L™%(4)) = 1.
ko0
- Now we use the sequence ( —mny) to get operators 4 and T satisfying
(a), (b) and (e) of Proposition 1.2.

LEMMA 2.12. If T is t]ieopemtor oonstructed above, then for every f e H,
we have |Tf|l < |f]4Y.

Proof. It is known that the to ology of almost uniform convergence
restricted to the unit ball of H,, coincides with the o(H,, , L) topology
restricted to the same ball. Fix a function feH,, |fl<1 and a sub-
sequence (1) of the sequence (n,) such that T (f) =lmfoL .

For every h e I, with' Bl =1 we have e

UT(f)hdz} =,]11m f(foL*lr)hdA[ <1im{f(foL-’r)hdzi

Lir(d)

<1 “ L), ~
Hrg{] J (fo )hdl]—}!s\i[rm(foL )haa|}
<lm{If1A0E1+ [ 1hia2) = p) 4.

>0 SN\ifria)

Sinee |T(f)| = sup{]fT(f)hdA[,h €L; and |hj =1}, we infer that
TN < IIf1 4] This completes the proof.

PROPOSITION 2.13. The operator R 4t Hey > Lo (4) defined by R,f
= f|4 is an-isometry on the image of A7.

Proof. Sinece 4 is an isometry, AT = |Tf) < iifi4] for an arbi-
trary feH,. In particular, for f = ATf we have LI < AT (f) 141
< AT

e ©
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If we take into account the results of Section 1 we can state the results
obtained in the following form:

THEOREM 2.14. Let A be a sei of positive measure in S and let t be g point
of density of A. Then there exists a retraction r: M(H,) = D(H,) such
that Imr < My (H,,) and H,|Imr is isometric to H, and the restriction
operator Bz Hy,— Ly (A) is an isometry on the image of every elementary
projection given by the retraction r and some function g.

Now let X and Y be Banach spaces isometric to H,, . Let us identify X
with H,,(8,) where 8 is a unit circle, and ¥ with H,_(S,) where 8, is some
other unit eircle. Under these assumptions we have

PROPOSITION 2.15. Let T: X — ¥, 4 < 8, with A(4A) > 0 and &> 0.
Let Vy and V, be two disjoint, closed intervals in S;. Then there exist an ele-
mentary projection P in X and a set 4y < A with 2(4,) > 0 such that

(10) By, TP < ¢,

(11) P is given by a retraction r and a function g such that |lg| Vi< e
and Imr < M, (H,(8,)) for a certain o c V,.

Proof. We may assume |T|| = 1. Suppose our claim is false, i.e.
there exists a 4 < 8, with A(4) > 0 such that for every elementary pro-
jeetion in X satisfying (11) and every 4, c A with A(4,) > 0 we have.
Ry, TP| > e. Now let us take k different points in V., £y, %y, ..., , and
let us find ¢y, ¢, ..., g; € A such that

(12) llgsll =1 = lg;(&)] for i=1,2,..,k,
{13) 9:(01<<e forall teV,and i=1,2,...,k,
(14) gi{t) =0 it 43,

&
(1) 2 0 <1+e.

i=1

Let 7; be a retraction given by Corollary 1.3 for the point ;. Let P;
be the elementary projection given by #; and g;. Then we have
P, it i=j,
Pl = {o it i#j
and
. 13
sup{ifl: i = 1,2, ..., B <[ DF|
i1
< (@+e)supflfill: ¢ =1,2,...,k for all f;eImP,.

Since |R,TP,||> e, there exists an f, e ImP,, |If,] =1 such that
1B, TPy (f;)ll > 2¢/3. Multiplying f; by a complex number of absolute

I
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value 1, we can get a positive number o, > /2 and a set 4, = 4, 4(4;) > 0
such that )
TP fi)s) —eyl < e/d  for sed4,.

In this manner we can inductively construct a sequence of sets 4, o 4,
S ... > 4, with A(4;)> 0 and a sequence of functions f; e ImP, with
Ifil =1fori=1,2,...,k and a sequence of positive numbers a; = ¢ef2
such that
‘ (TP} (s) — o)< eld  for sed,.

(0= |maz( $1)

%
Sinee | 3 fill < 1-+e¢, for big k¥ we get a contradiction of our assumption
i=1

- Hence

211.;—7{;6/4 = kel4.

k
|>
i=1

that ﬂTi< 1. This contradiction proves our proposition.
PROPOSITION 2.16. The space H,, has the property SOB'.

Proof. Let us consider an arbitrary compact & < L(H,, H,)-
We may assume that sup{||B|: Be ¥} <L Given £>0, we can find
an e-net Ty, Ty, ..., T, for . Tet us fix two disjoint intervals ¥, and Vo
in the eircle 8. Let us apply Proposition 2.15 with 4 = V1. We get a set
Ay = ¥y, 4(4,) > 0 and an elementary projection P, over some « such
that (10) and (11) are satisfied. Now we apply Proposition 2.15 with
T =T,ImP,, X =TmP,, Y =H,, 4 =4, and ¥V, and-V, chosen
arbitrarily. We get an elementary projection P, in ImP, and a set 4, = 4,
A(4;) > 0 such that B 4, T Py PyJ| < &. Obviously we also have |R 4, T1 Py Py |
< & Observe that P, P, is an elementary projection over o satisfying (11).
Repeating this procedure » times, we get a set A, A(d)>0,4 ¥V,
and an elementary projection Q, over a satistying (11). Let us pick an s,
& point of condensation of 4 and a function foe d with [|fyl] = fo(s) =1
and fy{a) = 0. Let us take a retraction constructed in Theorem 2.14
and let us denote by @, the elementary projection given by this retraction
and the funetion f,. Elementary Projections @, and @, obviously satisfy
(4) and (B). Since Q, satisties (11) and f(a) = 0, (6) is satisfied. Proposi-
tion 2.13 implies that for arbitrary f e H,, we have [|Q.f[| < IR fll; so
1@:T:Q.l <& for i = 1,2,...,n BSince @} =1@s) =1 and {Tifees
is an s-net for o, we infer that sup{1@: TQsl: T e #°} < 2. This eompletes
the proof of the proposition.

THEOREM 2.17. The linear group of H,, is contractible.

This theorem follows from the remarks made at the beginning of
this section, Lemma 2.3 and Proposition 2.16.

3. In this section weé want to describe certain generalizations of
our results to the spaces of bounded analytic functions of several

& ©
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complex variables. We will consider only the polydise U™ and the ball B,.
Let us recall that

U = {(21, %oy ..., 2,) € C™: <1, i=1,2,..., 9},

B, = {(217 Zay ey By) €C™: 2 ]2 < 1}-
=1

We will consider the spaces H,,( U™ and H,(B,) of bounded analytic
functions endowed with the supremum norm.

We start with the easier ease, namely H,(T". In this case we
will use the results of Sections 1 and 2 and we will work coordinatewise.
Let {v}ir, .-, PR, be n lacunary sequences. Using Lemma 1.1, we
can construet # functions ky (2,), ky(2s), ..., h,(2,), and using the conformal
maps .

J o
Dy (21; 22y --5 2,) = (L *(21), vy I k(zn))s

‘we can construct an operator T: H, (U™ — H, (U™ such that for every
J € H (U™ I is the almost uniform limit of a subsequence of the sequence
{fo @y}i_;- Bxactly as in the proof of Proposition 1.2, we get the following

Propostrion 3.1. For every o = (ay, a,, vy ) with o] =1 for
t=1,2,...,n there exists an analytical retraction ro: M{HL(T™)
— M(H,(T™) such that Tmr, < M(Ho(T™) and Imr, is homeomorphic
to M(H(T™).

Now it is clear (cf. [20]) that each point ¢ e 8™ is a peak point for
the algebra 4 (U™). Moreover, one can find a sequence of points (q;) e 8™
and funetions f, e A(T") satisfying (2), (3), (4) of Section 1; hence we
can repeat the proof of Corollary 1.6 to get

THEOREM 3.2. The space H,,(U™) is isomorphic to (P H (TN

The existence of a Botkariov basis for the dise algebra implies the
existence of an orthonormal system {b7}, which is a basis for A(T™).
In fact, (B%) is certain ordering of the functions b; (2) by (2a) ... -bin(zn)
(ef. [3]). .

This observation allows us to get

THEOREM 3.3. The space H, (U™) is isomorphic to (S HZ(T™),, where
dimH (U™ =s.

Our goal now is to show i

THEOREM 3.4. The linear group of the space H,,(U™) is contractible.

The main step in the proof is the following

ProposrTioN 3.5. Let A be a subset of 8™ such that 1,1,1,...,1)
8 a point of density of A. Then there exist lacunary sequences Y gy ey
{1 such that lim AP (4)) = 1.

koo
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Theorem 3.4 follows from Proposition 3.5 exactly as Theorem 2.17
follows from Proposition 2.9: one can repeat the proof verbatim.
Proof of Proposition 3.5. If our claim is false, then there exist

an >0 and a natural number N such that A,y x,..x, (4))<1—7
for l; >N, + =1,2,...,n where

kﬂ
Bty ey (P21 P2y -oes 2) = (BH2), T2 (2a), oy T0(2,)-

By Lemma 2.7 we know that there exists a natural number & such that
I, = (Yop— 8ops Ver+ &) 2re disjoint intervals and A, (L%* (I,)) >1-8
where & satisfies (1—08)">1—n/2. Let us denote 7V, =1, %

812895458,
x I, % .. XI, . We have

Zn(¢kal,ksz,...,ksn(Vsl,sz,...,sn)) > (1 - a)n >1— 77/2;

- hence

ln(¢ksl,ks2, wenskisy ( Vsl,sz,...,sn\ 4 )) =21 2

for all sy, 8, ..., s, greater than or equal to a certain natural number
M > N. Corollary 2.5 implies that

Al Vg is, NA) = (0728883 . -62)H 3
hence for every s> M we have
S _ Al Vs N A)
;’n'((oy 7:k+3nk)n;nA) 91,8358 >8 i i
zn(’(Qy Vsk+esk)n) = ln((oa ?ak+ssk)n)
3 @2k s
< 1— 81500038y 28
= (ysk’!'esk)u
7
KL= e
, TV

This estimate contradicts the fact that (1,1,...,1) is a point of
density of A. This contradiction proves the proposition.

Now we will eoncentrate our attention on the space H(B,). Our
aim is to prove the following

THEOREM 3.6. The space H.,,(B,) is isomorphic to (3 H(B,))w-

Let us define the following map on B,,:

D21y 2y .-y 2,) = (‘Pl(zu

_ (zl'{"i(zl
ERVENTZY

) zn)? oy @ul#ay -+ n))
—1) 2y 2,
—1) 7 1+i(z -1 "1+i(z,—1))‘

The properties of this map are summarised in
Levwma 3.7. (a) ©(1,0,...,0) =(1,0,...,0),

icm°®
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(b) @ is a biholomorphical map of B, onto B,,
() for every integer & the k-th iteration of @ is given by
@) DF (21, 22y very By) = (‘P’f(zu Bay ouny By)y veny P2y, 24, seey zn))
B ( 2+ ki(z;—1) 2 2,
T\ IR -1 1tk —1) 1+k¢(zl~1))’
d) for every compact set K < B, there exists a constant C such thai
NP* (2y, 23, .. (1,0,...,0< 0/ k]
for all (21, %z5 .-y z,) e K.
Proof. Part (a) is immediate and part (d) easily follows from
Lemma 1.0. The proof of part (e) is a straightforward, but somewhat "

tedious caleulation; it is left to the reader. In view of (¢), to prove (b) it

is enough to show that &(B,) = B,, or, what is obviously equivalent,
that @ transforms the unit sphere in (" onto the unit sphere. This last
fact is an. easy calculation and is left to the reader.

Now let us define

i zn) -

hy(2ey 25y o

o0
k
) =2 l'[‘le (215 gy o0y %)y

el
Biy(og, 20y ey @) =1— Hl ‘Ps (21 22y -0y 2,))  fOr 5 =2,3,..,n.
k=

The above products converge almost uniformly on B, and define
functions from H(B,). For the function %, this faet is contained in
TLemma 1.1; for the other functions the convergence follows directly from
Lemma 3.7(d).

LemmvaA 3.8. For every s =1,2, ...
almost uniformly on B, to 2.

Proof. For h,, see Lemma 1.1, For s > 1 we have

hs( @“Zk (B1y -+ z.,b))—zs{

—_—l ”( o= (Byy ey

u’ﬁj(l —o (0 (2., 2))) (1 —2,) ﬁ(l—

s Ty hs(di'zk(zx, s 2,)) comverges

zn))) —% |

<

(D (1., 2))) — (1 —2,)

j=lt1
= j I 0'01 7 ke
<iime (X (0 e, o+ Y 1A (0 (s 2]
=0 F=l+1

IE (2y, ..., %,) is in a fixed compact K = B,, the last expression is less
than or equal to |1 —g,|C{k-27%* +27%). This completes the proof of
the lemma.
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Now we will consider the n-tuple of functions (hy, hy,...,H,) as
a map H: M(H,(B,)) > C" defined by

H(p) = (hilp), ba(@); -, Bal9).
It is a continuous mayp.

Lewua 3.9, Let ¥: W (H o (B,)) ~ O" be an analytical map, i.c. the
coordinates of p are Junctions from H,(B,). Let a B,\B, bé given. Suppose
that (‘zmu (Hw(Bn))) < B,,. Then there-evists an analytical map §: M (H,,(B,))
— B, such that o

P 1D (Hoo(B,) = 9| D (Ho(B,,)).
Z.Proof. In this proof we will consider the space O™ with the natural
Euclidean norm. Let us p_iek a function f e 4 (B,) such that f(a) = 1 = |f||
and |f(t)] <1 for all t € B,, ¢ #* a. We inductively construct an inereasing

sequence of indices () and a sequence of open sets U, in Sm(Hw(B,,))
containing M, (H(B,) such that

) oo g .
it "))"f’1 @) p@l<14+275,
3) Uy = {p e MEL(B,): I (e)pial<1+2-5,
©] @) plp)l<1f2 for ¢ U,.
We put

o
§ = D 27"y,
k=1

o It is clear that § is an analytical map. Sinee flm. (2., (B,) =1, we
obtain )

7| M (Hoo(B,)) = | (Hoo(By)-

Xe 7(;1]&1;;}' to ellleek that [[§ ()l <1 for all g e M(H(B,)). If ¢ € U, for
iy is clear, and so th: i
o n, s s < y suppose that, for a certain &, p & Uy Ty, 4.

B@I< 3271/ (g) p()l

k=1
ky 00
= D27 Mm@ v+ 3 27H*e) wig)
= o =leg+1
< (1 +2—k0—1) y2—k+1/2 2 2*7: — 1_2—2150—1.
i=1 k=l +1

Remark 3.10. The proof of this lemma is a trivial modification of
the proof of Theorem IL.12.5 of [5].

e ©
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Now we can apply Lemma 3.9 to the map H to get the map H:
0 (H,(B,)) —~ B,. This allows us to repeat the proof of Proposition 1.2
with the uge of the map H instead of the function % and the conformal
map @ instead of the conformal map L. We get

PROPOSITION 3.11. For every o e O |laf| = 1 there exists an analytical
retraction. 1,2 M(Ho(B,))~ M(H(B,) suck that Imr, < M, (Ho (BL),
Imr, is homeomorphic to M (H(B,)) and H(B,)|Imr, is isomeiric to
H(B,).

Theorem 3.6 follows from this proposition exactly as, in Section 1,
Corollary 1.6 follows from Proposition 1.2. :

Remark 3.12. The author would like to express his gratitude to
Dr E. Ligocka for several useful conversations coneerning this section.

4. In the present section we investigate the finite-dimensional norm-
one projections in spaces 4 and H,. The main result of this section states
that the image of the adjoint projection is orthogonal to the Lebesgue
measure. As an application we find that the dise algebra A4 is not a my-
space. Barlier examples of this phenomenon were given by Gurarii [7]
and a stronger example was given by Enflo [4]. Their examples were
rather artificial while the dise algebra is a “natural” space. Our next
application is the result stating that the space L, (A)[H}(%) does not have
finite-dimensional norm-one-projections other than one-dimensional ones.

If f e L,(4), we denote by M(f) the seb {# e8: |f(£)] = |If|}. This
set is defined modulo sets of Lebesgue measure zero, but we will always be
interested in the measure of this set, so that this will not lead to misun-
derstandings.

TievmA 4.1. Let B be a subspace of H,,, Aim E > 2. Then the set of fe B
such that 1{M(f)) = 0 is dense in B.

Proof. Let fe B, f #0, and let 1> >0 be arbitrary but fized.
Let a functional f* support f, and pick g eker f*nE with |jg|| = 1. Let
us consider f - ag where |a| < e If there exists an o such that 2 (M (f+ ag))
= 0, we have our proof. Suppose to the contrary that for every o with
la] < & we have A(M(f+ag)) > 0. Then for every 5 >0 we can find a
and ay, a; 5 a, such that

(1) A(M(F+ag)nM(f+ayg)>0 and |aul<n and jal <.
Let us denote

_ Jtag _ Jtod
If+agll’ I+ augl

1

and put 4 = hy+Chy where |{| =1 and { is chosen in suc‘h a way that
luf) = 2. It is possible because of (1). For t ¢ M (u) we have Ry (3) = Lha(t),
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and so by the unigueness theorem for H, functions and the fact that h,
is not equal to Lk, we infer that 4 (M (u)) = 0. Now consider

( a a )
Ob 10[1815 ‘L(JM(L)) 0 and

oy Caz

_ .\ . )
v=t +(Uf+algn + uf+aagn)) (nf+alyu i)

From this formula it easily follows that if 5 is close to 0, the coeffi-
cient at g is close to 0, so we have a contradiction of our assumption that
for all o, with |a]<s, A(M(f+ag)) > 0. This contradiction proves the
lemma.

Now we recall some facts about functionals on 4 and H_. We will
consider 4 as a subspace of C(8) and H, as a subspace of L (). From F.
and M. Riesz’s theorem it follows that A* is equal to {u: sl A}®.L,(A)/
JH1(2). This, in particular, means that if we have (f1,fr,...,fn) < 4*
and each fj has a Hahn—Banach extension to a measure u; singular with
respect to the Liebesgue measure, then span {f;}2, is isometric to span{u}?_;.
Tn'the case of the space H, it follows from the Gleason—~Whitney theorem [6]
(ef. also Havin’s [10]) that the space H., admits a direct sum decompo-
sition H}, = X®,R where X is the space of functionals on H,_, such that
every norm-preserving extension to L (4) is singular with respect to
the Lebesgue measure and R is the space of functionals such that every
norm-preserving extension to L_ is absolutely continuous with respect
to the Lebesgue measure. Moreover, the space R can be isometrically
identified with Z,(1)/H3(A).

Remark 4.2. The facts stated above can be proved also by using
the Havin Lemma [9]. ‘

TaEOREM 4.3. (a) If P: A— A is a norm-one finite-dimensional
projection. with AimImP > 1, then ImP* < {u: p ] i}

(b)y If P: H,— H, is a norm-one finite-dimensional projection with
dimImP > 1, then ImP* < X. ‘

Proof. We will only prove part (a). The proof of (b) is almost the
same. .

Let B =ImP, dimZ = n. We construct two sequences, (e, e, ...
ey &) = E and (], &, ..., ) = B*, such that

(2) el = lleflh = ef(e) =1 for i=1,2,...,m,
(3) © O AM(e)) =0 for i=1,2,...,n,
4) . The matrix (¢f(¢;))%—; 15 non-gingular.

e © ‘
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We begin the construction with arbitrary e, Jle,| =1 and A(M(e,)%

= 0. Lemma 4.1 says that we can do it. The next ¢,’s we choose in M kere)
. <k

with Je,ll =1 and 1(M(e,)) = 0; ¢ is & supporting functional to &

Lemma 4.1 makes this possible if %< .- To find e, we take g & Mkere;,

s<n

llgf =1 and take ¢, such that 2(M(e,)) =0 and e, is very close to g;
€, is, as usnal, the supporting functional.

It we take ¢, close enough to g, the matrix (6} (e,))};-, will be non-
singular because ¢ (e;) = 0 for 4<j<un, éy(e,) =1 and for ¢< » the
numbers 6} (¢,) can be made as small as we wish.

Now we extend ¢; to the functionals ff e A* by the formula f*(z)
= 6; (Pz) for © ¢ A. Clearly ff eImP* for i =1,2,...,n. We still have
If3I = fi (e;) = 1. Conditions (2) and (3) imply that fFe {a: s 12} for
#=1,2,...,n OCondition (4) ensures that span{fi}%., = ImP* This
completes the proof.

COROLLARY 4.4. The space Ly (2)/H(A) does not admit any norm-one
projection P with 1 << dimImP < oo.

Proof. The corollary follows from part (b) of Theorem 4.3 and the
fact that (L;(2)/H}(4))* = H,, and in the decomposition H* = Xo.R, R
is the image of I, (1) H}(2) when canonically embedded into (L, () JHY(A)*™.

Levma 4.5. Let P,: A~ A be a sequence of projections such that for

every @ € A we have P, (x) —> . Then span | J PE(A*) is not isomorphic to a
n=1
subspace of an L, (v)-space.

Proof. Let us take a finite-dimensional subspace F = A* Given
&> 0, there exists a finite-dimensional subspace B < 4 such that for
feF

IFl < (L +e)sup{if(e)l: e e B and (o] = 1}.
Hence there exists an » such that for f e
Il < A +e)sup{lf(@)l: © eImP,, [z = 1}.
But this means that for f e F we have
IEL (I = sup{|Pif(@)]: @ e 4, o] <1} = sup{If(P,a)|: @ € 4, Joll <1}
= 1P, 7 sup{|f(2)|: @ e ImP,, o]l <1} > M(1+8) | f)

‘where M = sup ||P,,|.
This shows that F can be isomorphically embedded - into

span () Pj(A4*) with constants independent of . By Proposition 7.1 of [15]

n=1

this shows that if span | J P}(4%) is isomorphic to a subspace of L, (»)-
n=1 .

6 — Studia Mathematica LYV, 2


GUEST


170 . P. Wojtaszezyk

space, then also A* is isomorphic to @ subspace of an I,(v)-space. Thig
is not true by Corollaire 1 of [18]. This completes the proof of the lerma.

THEOREM 4.6. The disc algebra A is not & m-space, i.e. there does not
ewist a sequence of finite-dimensional, norm-one projections Pp: A —~A
such that P, (x) - @ for every @ € A. In particular, 4 does not have a mono-
tone basis.

Proof. The proof is. immediate from part (a) of Theorem 4.3 and
Lemma 4.5.

Theorem 4.3 easily implies

COROLLARY 4.7. A finite-dimensional, norm-one complemented subspace
of 4 is isometric to T,.

Let us remark that it is well known that there exists a sequence of
finite-dimensional, norm-one operators T,: A - A such that T,(2) >«
for every 4’c A. T, can be chosen 50 as to be the Fejér means.

DEFINITION 4.8. Let (f;) be a basic sequence in C(XK). (f;) is called
an énderpolating sequence if there exists a sequenee of different points (#;) c K

such that for everyf = Z a;f; we have f(i;) = 2 a;fi(t,) for all k = 1,2,
omand n =1,2, a
"PROPOSITION 4.9. A < 0(8) is
sequence.
Proof. Let (f;) be an interpolating basic sequence spanning A
and let 8,(f) = f(&). It follows from the defamtlon of an - interpolating

basic sequence that the coefficient functional f = 3‘ B2 8; for some scalars

not spmMed by am interpolating basic

B2. By F. and M. Riesz’s theorem span {f;}, is 1somorphlc to 1y, but this
contradicts Lemmsa 4.5.
The above proposition answers the question of J. Wroniez.

5. Remarks and open problems. We start with a few remarks aboub
the refraction 7, constructed in Section 1 and fhe elementary projection
P(f) = f or,. It is easily seen that ImP is & o(L,, L) closed subalgebra
of H,, generated by the function k. In other words, ImP = {fe H,:

f= Y a,h"}, the series being almost uniformly convergent. There is

n=>y
another natural projection onto ImP, namely the conditional expectation
projection. The behaviour of those projections is very different. In par-
ticular, P is not o{(H,, L;/H}) continnous, while the conditional expee-
tation projection is,

The fact that the prOJeetlons we are working with are not w*-con-
tinuous is the main difficulty in applying our techniguesto the solving
of the following problems:

icm°®
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ProBLEM 5.1. Is the space L. (A)/H3(A) isomorphic fo ils sum in
the sense 1.%

ProBLEM 5.2. Is the space 4 isomorphic to iis sum in the sense 6,%

The image of the retraction , is in the fibre 9,, and so one can ask
if it can happen that Tm7, = 9. The answer is no. To see it, let us consider
the space A, = H|Dt,. It is known (cf. [11]) that A, is & uniform algebra
and M(4,) = M,. The following proposition eontains some easy obser-
vations about this space.

PROPOSITION 5.3. (a) Let R: H,,—~ A, be the resiriction map. Then
R*(AY) is complemented in Hy,.

(b) A, contains a subspace isomorphic to c(I'), cardI’ =c¢ but it
does not contain b,(I"), and so A, is not complemented in a conjugate Banach

space.

(¢) There is no linear extension operaior from A, into H,.

(d) A; contains H,, as a complemented subspace.

() A¥ is isomorphic to Hy,.

Proof. (a) Since the point 1 is a peak point of the disc algebra A,
the fibre IR, is a peak set of the algebra H,. By Glicksberg’s theorem
([8], Th. IL.12.7) if # is a measure on I (H,) annihilating H,,, then ul My
also annihilates H,. This implies that the restriction of a measure on
‘.Ut(Hw) to M, mduees a projection in HY, and its image is B* (47).

) Let f, be the same as in the proof of Proposition 1.5. Let us take
a bounded sequence of complex numbers (a,) and consider the series
S'a,f,. This series i almost uniformly convergent and represents an H,
function Using the ideas of the proof of Proposition 1.5, one can show that

o~
5 af, 190, > limsup|a,| and that, for (a,) €0y, S aufy|Dy = 0. Theso
facts imply that 4, contains a subspace isomorphic to I,[e. It is well
known (cf. [19]) that I/e, contains ¢ (I") where cardl’ = ¢, and hence
the same is true for 4,. 4, does not contain I, (I") with card I' > &,, because
eardl,(I") > ¢ while card 4, < card H,, = ¢. The last claim of (b) follows
from the results of Rosenthal [19].

(¢) The existence of the linear extension operator from A, into H,,
would imply the existence of a projection from H,, onto A,. Since H,
is a conjugate space, it is impossible by (b).

(d) Tt follows immediately from Proposition 1.2.

(e) Let us begin with an observation that Hy ~ (3 Heo)-
this let us consider the natural embedding

DA AR

To see
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Then

(g (3

is the restriction of a functional to the subspace (} H,), . Now define
it (SE—~ (SHJS by i

F) (he) = D'h(hy).

Tt is an isometrical embedding and i*oj =id on (3 Hy)y; hence ji* is
& projection from (S HL)% onto (S HY),. But (3 Hy,)% is, by Theorem 1.7,
isomorphic to Hy,; so, for some V,

s~V (Y E), ~ 7+ (Y8, + (S E), ~ (A,

This proves the observation. .
Since (a) implies that A} -7 ~ H and part (d) implies that A7 ~ V4

+ H7, for some Banach spaces Z and V, our claim follows from the de-
composition method.

The above proposition shows that the fibre algebra A, can be thought
of as an “analytical Calkin algebra”. : .

Many results are proved in the present paper for the space H,, only.
We do not know if they are true for H,(U") and H,(B,). It would be

?nte;fsﬁng to investigate the spaces H (V) for more general regions
in O™

Added in ptonf.‘(a) Theorem 1.11 was inde i ‘
. pendently obtained by T. An do,
{v)‘o; a:gh;g::d;&;;gof Hw?,’ :ﬁimmA Math. Tomus specialis in honorem Ladiglai Orlicz,

] , PP- 0. generaligation of this th i
Chaumat, C. B. Acad. Sci. Paris (1979).  theorem was obtained by J-
(b) Positive solutions of Problems 5.1 and 5.2 ha i

B . .2 have been obtained by the.

author, Decompositions of H, spaces, Duke Math. J. (September 1979). v
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