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On weakly compact operators from some uniform algebras
by
P. WOJTASZCZYK (Warszawa)

Abstract. We prove that weakly compact operators from s class of uniform
algebras, containing many natural algebras of analytic functions on planar compact
sets, behave exactly like weakly compact operators from C (K) spaces. In particular,
a non-weakly compact operator from snch an algebra is an isomorphism on some
subspace isomorphic to ¢q- '

Recently 8. V. Kislakov [15] and F. Delbaen [5], generalizing the
results of A. Grothendieck [9] and A. Pelezyiski [17] and [18], have
proved that the disc algebra has the Pelezyrniski property and the Dun-
ford-Pettis property. Let us recall that the Banach space X has the Dun-
ford-Pettis property if every weakly compact operator defined on X trans-
forms weakly convergent sequences into norm convergent sequences.

This is equivalent to the following: for every (v,) = X, @, 50 and
(#) = X%, o8 5 0 we have limz}(s,) = 0.

The Banach space X has the Pelczyhski property if every non-weakly
compact operator defined on X is an isomorphism when restricted to
some subspace of X, isomorphic to ¢,. We say that the series Y'f,, f,e X
is weakly unconditionally convergent (and abbreviate it to “(f,) is w.u.e.”)
if for every #* e X* we have ), |a*(f,)| < co. With the use of this concept
the Petezynski property can be equivalently defined as follows: A Banach
space X has the Pelezyriski property if every set ¥V = X such that
lifﬂ sup{l@™(f)]: #* € ¥} = 0 for everyw.u. c. (f,) in X is weakly relatively
compact. .

Tt is well known (cf. [5], [9], [17], [18], [20]) that if the Banach space X
has both the Dunford—Pettis property and the Pelezydski property, then

(a) The following are equivalent for an arbitrary Bamnach space K:

(a;) An operator T': X—F is weakly compact.

(a,) Anoperator T: X — F is strictly singular.

(a3) An operator T': X — F is not an isomorphism when restricted

to0 any subspace of X isomorphic to ¢,.

(a,) An operator T: X — % is unconditionally converging.

(b) If T: X X is a weakly compact operator, then 7™ is compach.
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(¢) Every complemented, infinite-dimensional subspace of X con-
tains & subspace isomorphie to ¢,

Our main result is Theorem 2.4 and it is proved in Secfion 2. Section 1
contains two technical results. Lemma 1.3 allows us to use the result
of Chaumat [4] and gives us some information on the isometric structure
of the unit ball of certain abstract H,, spaces. Proposition 1.7 is the main
analytical fool in our proof of Theorem 2.4.

The author would like to express his deep gratitude to Yu. A. Abra-
movi¢ and 8. V. Kislakov for providing the prepublication copy of [15].
The author also thanks F. Delbaen for pointing out an inaccuracy in the
earlier version of the proof of Proposition 1.7. Special thanks are due to
A. Pelezytigki for correcting many grammatical errors in the text of this
paper and for writing the new introduction.

1. In this section we work in the context of H, spaces of a w*-Dirich-
let algebra. The detailed study of w*-Dirichlet algebras is presented in [12]
and [21].

Drrinzrrox 1.1. Let (8, u) be a probability measure space. An algebra
4 < Ly (), containing constants, is called a w*-Dirichlet algebra if [fodu
= [fadp- [ gdu for all f,ged, and A+ is dense in L (u) in the
o (Loo(t), Ly(p)) topology.

By H,(u), 1< p < oo, we denote the Ly, (1) closure of A and H,,(u)
is the o (L, (p), Ly(p)) closure of 4 in L,(u). It was shown in [12] and [21]
that all essential measure-theoretical results valid for classical Hardy
Spaces are also valid for H,(x). In particular, there is a conjugation oper-
ator ~ defined on LZ(u) which has the following properties (cf. [12]):

(1) ~ is of weak 1-1 type; .

(2) ~ is continuous on LF(u), 1< p < oo;

(3) it feLy(p) and fe I7 (), 1<p < oo, then f+if e H,(u);

(4) if fe 4 then Ref+iRefe A and f—(Ref+iRef) is a constant
function.

Throughout this paper LF(u) denotes the L,space of real-valued
functions. Analogously, Cr(K) denotes the space of all real-valued continu-
ous functions on a compact Hausdortf space K.

Our first goal is to generalize the result of Amar—Lederer [1] to the
case of H.(u) spaces.

Levwma 1.2, Let (A,pu) be o w™Dirichlet algebra and let f € H,(u)
for all p < oo and Ref<< —1. Then 1/feH (u).

Proof. We first prove that f-A is dense in Hy,(p). Otherwise, by
the Riesz projection theorem, there would be an h e H,(u), |bll, = 1 such
that [f-a-hdp =0 for all 4 e A. Leb us consider the sequence (a,) < 4
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such that [h—ayly—> 0, lla,ls < lAll,. Then
Ifah—f kPl = [1f(a,—WEldp

<(f[f[2d‘u)"3 (f!an-—hl4dp)u“U]El“d,u)“‘—»0 as  m—> oo,

because feH,yu). So [f-a,hdp — [flR*du # 0, because Ref < —1
and |h| 5= 0. This confradiction proves the claim.

Now let us take the sequence (f-a,), &, € A, such that [f-a,ly; <1
and ||fa,—1lly;— 0. Since |f7* <1, we have

IS 0 — Wllygs < W @ —Lllajs = 05

equivalently, |la,—f "ly; — 0. Hence fleH,(p). Since f7eLg(u)
we infer (of. [21], 2.1 (viil)) that f~ e Ho(p).

Now we wﬂ,l consider H(u) as a subalgebra of O (S.IR(LQQ)),. wh(?re
(L., is the maximal ideal space of the algebra L (u)- We will 1dent1fy
the measure p with the corresponding measure on Ti(L)- ‘

Tmnra 1.3 (Amar-Lederer). Let (4, u) be & w'-Dirichlet algebra.
Every closed set K < M(L,,) with u(K) =0 is contained in & peak set K
for H,(p) with u(K) = 0.

Proof. Since M(L,) is totally disconrected and u(K) =0, their:
exists a sequence of closed and open sets B, = M (L) such that w(B) <277

Ey=M(L,) and K < ﬁ B,. The sets B, can be identified with Borel

n=0

oo 3 B
subsets of S. Consider the function s = 3 —{n-+1)yg, . Sinee s € Ly (u)

n=0
for all p < oo, we infer that f = (s-+i§) e Hy(p) for all p < oo, and obsz;
ously Ref< —1. Hence, by Lemma 1.2, freH (p). Thus b =expf

€ H,,(x). We claim that i peaks on certain set K with K = K and u(K) = 0.
To this end note that

s
{h| = expRef ! = EXP"ST_Fg—z S}y

and

- s i§ :
h:exp(m—m . ’ ‘

From this formula we see that h =1 on the set K =ﬂ{;\1 Va v:ohere
V, = {t €8: s2(8)+8%(t) = n}. It is easily seen that for ¢ € (L), T g&nol Va

we have [h(f)] < 1. Mereover, u(K) = 0. Since -, = V,, we have K < K.
This completes the proof of the lemma. '


GUEST


108 P. Wojtaszezyk

Lemma 1.3 and & result of Chaumat [4] yield

THEEOREM 1.4. If (4, pu) is & w*Dirichlet algebra, then L,{p)/HL
has the Dunford-Pettis property and it is weakly sequentially complete. Here

Hy ={feLiw: [g-fip =0 for all geH,, (1)}

More general results were obtained by Delbaen [6]. Using Lemma, 1.3,
we can extend onto H,(u) the Amar-Lederer [1] characterization of
exposed points of the unit ball of H. «+ Repeating their argument, we obtain
the following (cf. [11], Theorem 13)

TEEOREM 1.5. Let w e H, ( #), ] = 1. Then the following conditions
are equivalent:

(1) @ is an ewposed point of the undt ball of Ho,(u);

(2) @ is reqularily exposed, i.c. there emists an f & Ly (u) such that ||f|] = 1,
Jr-edu="1and |[ f-gaul <1 for all ge B (), gl =1, g # Aa, (3] =1,

(3) pftel: lw(®) =1} > 0.

Now let us recall that if 4 < ¢ (K) is a uniform algebra and U is
4 unique representing meagure for D e W(A), then A < L (x) is a w*
Dirichlet algebra (cf. [3], Theorem 4.2.10). In the proof of the next prop-
osition we shall uge the following :

LeMMA 1.6. If 4 c O(K) is a uniform algebra, then o D e M(A)
admits a unique representing measure u if and only if

sup {ReD(f): fe A and Ref< o) = fadp
Jor every aeCp(K).
The proof of this lemma can be found in [8], Corollary 2.2.4.
The next proposition is a generalization of a result of Havin [10],
who proved it for H,,. Our proot is similar to that of [10]. Kislakov [15]

used an analogous resulf for the dise algebra to prove that it satisfies the
Pelczyniski property.

PROPOSITION 1.7. Zet A < ¢ (K) be a uniform algebra, @ e M(4),
and p o unique representing measure for ®. Then Jor every & > 0 there exists

@ 8> 0 such that for every closed subset ¢ of K with u(e) < 6 there emist k,
and K, e A such that

@) [BO+IE(0)] <1 for all teK;
(b) Sup [, (f) -1 <, JIE jdp <&

(e) Sup ke <& [IL—F,dp<e.
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Proof. Let us pick an a € Og(X) so that
at) = —pley  for tee,
—plo™ <a< —p(e)?,

p{i: a(t) < —pu(e)} < 2u(e).
Y .6
Clearly, [laldp < 2Vu(e), because [u] = p(E) =1 By Le:/n_mf_ ]I.Je;

we ca;1 find an ke A such that Reh< a and f]Reh]d%,u<2 ,u(o_):
us write Relk = o; we may assume without loss of generality th%tl hGI- a)1+
-+ié&. Since Reh < 0, we infer that 3" e 4. We put K, = exph™". Clearly,

K, < 1. For t € ¢ we have .
1 1

1 <
WO = e e~ @

sup lexph~1(f)—1| -0 as pu(e)~0.
iece

=Vpule) -

Hence
. - is of
Let us put U, = {t e K: |&(®)] > p(e)’*}. Since. the ope;‘;‘tgr i o
weak type 1-1, there is an absolute constant O > 0 such tha
p(O) < 0p(e)™" [ lo@®)ldp <20p(".

Nextletusput V = e K: oft) < —2Vu(e)} = {teK: !w(t)] > 2Vu(e)}.
The following easy caleulation shows that w(V) < 2p(e):

2Vu(e)> [ loldp = 7{ loldp+ f loldp + K\fy loldp

> Virlo) + (u(7) — (0))2Va(e) + (L—p(V)V ().

Thus u(V)<2pu(e). .
Lgt us observe that for £ € (K\V)\U, we have

) o)  _ _ le@)
ROl = 1Gmramr ~ o*®+r@™
Va() 1 -

S o S A S = 7y
Z L@ o™~ Wale) L ulet ~ Ba@)

—_

Hence

: 1 h-—l d '
[ & jdp = [ exp(Rel ™ ap< Vf +U{ LN 17)[\%)@@(1’@ Yap

p(V)+p(T,) +exp(—Bpu(e)™)
21(6)+20 (0} +exp(—B (&) ).
ITherefom, JIE Jdpu~>0 a8 p(e) 0. This eompletes the proof of (b).

<
<
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Now we consider the funetion 8 = [log(1— |X,|)| € Og(K). By Lemma
1.6 there is & o, € Op(K) v,-+if, €4 and v,>f and [v,du<2[fdp.
Now we put k, = exp(—uv,—if,). Clearly,
1B O]+ ko (8)] = [E,(t)] +exp(—1v,) < | K,|+exp(—p) =1,
which verifies (a). Moreover, () and (b) imply sup &, ()] < &
lee
To complete the proof we have to show that

[Ike—1ldu—>0 as p(e)—o0.

To this end we shall need the following
SuBLEMMA, There ewists an absolute constans G > 0 such thai for all
y<o0

Hog(1—expy) 2 < O(L+ly[~™).

The existence of such a ¢ for y < —1 is obvious and the existence
for —1 <y <0 follows from the fact that

Lim [y|"*log (1 —expy) = 0.
y0_

Now we shall show that sup {[ |v,?du: ¢ < K, ¢ closed} < co. Indeed,
we have

2
Jrrans frosa—rorans [|ogfi-emp—2 ) a
b s 4/ g

jai®

<C-+ O’f!w]1’4dﬂ+ OIW dp
<O+ [lofau+ Ou(ey [VigTag
< 0+0 [loP*au+ 0,007 [1olaz

SC+160-+20,0p (e <1704+20,0

where O, is an absolute constant whose existence is implied by the 1-1
weak type of the conjugation operator ~. We also use the inequality
Jloldp < ([laldu) < (2/u(6)* < 16.

Since {v,} is bounded in L,( #) and since v, -+ 0 in measure ag u(e) -0,
‘we infer that f]'ue[d,u — 0 as u(e) — 0. Because ~ is of the weak type 1-1,
we infer that if u(e) - 0 then %,— 0 in measure, and so V419, > 0 in
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measure. The last implies that k¥, —1 = exp(—v,—4v,) ~1 —> 0 in measure.
Since [k, <1, we get [|h,—1|@du->0 as u{e)->0. This completes
the proof.

2. We start this section with several known lemmas.

Lpwmea 2.1 (ef. Grothendieck [9], Pelezytiski [18]). Let (1) be & non-
weakly relatively compact sequence of Borel measures on compact Haus-
dorff space K. Then there emist a 0 > 0, a subsequence ( Hy )y and 6 sequence (Gy,)
of mutually disjoint open sets such that |p,, (Gy)| > 8 for k =1, 2, ...

Levua 2.2. Let (u,) be a bounded sequence of Borel measures on & com-
pact Hausdorff space K. Then there ewist disjoint dlosed sets (e,) and a subse-
quence of indices (ny) such that P (ENEy) Es weakly relatively COMPACE.

This lemma was formulated by Kislakov [15]. Its proof is a modi-
fication of the proof of Theorem 6 of [13]. The next lemma goes back
to Orlicz; for a simple proof ¢f. [20], Lemma 7.1.

Lmua 2.3. If (ay) = X* is weakly relatively compact and (z,) < X
18 W..c., then

limsup jo} (2)] = 0.
E n :

Let us mention (cf. [18]) that (f,) = C(K) is wave. if and only if

there exists a constant M such that Y |f,(5)] < M for all te K.
) ne=1

Now we are ready to prove the main result of the present paper.

THEOREM 2.4. Let A be a uniform algebra on a compact Hausdorff
space K. Assume that there exists a sequence (D)2, in M(A) such that each D,
admits a unique representing measure u, on K, the measures u, are pair-
wise singular and there is no measure u + 0 belonging to the annihilator
At = {n e O(E)": plA = 0} and orthogonal to all the p,’s.

Then A* and A have the Dunford—Pettis property, A* is weakly sequen-
tially complete, and A has the Pelezyriski property.

Proof. It follows from [8], Chapter VI, § 2 that each » ¢ AL admits
a decomposition » = } v, v, <p,, v,€Ar. Since A* = O(E)* /AL,

n=1
we infer that

A% = Lyt 3 Za (o) B (1),
n=1
where L, denotes the space of all measures singular with respect to all u,’s.
To see that A* has the Dunford-Pettis property and is weakly sequen-
tially complete we apply Theorem 1.4 and the easy observation that the
above properties are stable under taking I,-sums. 4 has the Dunford-Pettis
property because A* has. '
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Now let us concentrate on the Pelezynski property. Since the support-
ing funectionals are norm dense in A* (ef. [2]), it is enough to prove that
for & given non-weakly relatively compact sequence (ay) = A*, Jlai| =1,
a;, supporting functionals, there exists a w.w.c. ( fa) © A such that

limsup |az(f,)] > 0.
n k

Let o), support g, € 4, lig,l = 1 and Ieb », be the Hahn-Banach extension
of a; to C(K).

Consider the probability measures 7, =.g,,», and let u be their w*-
Hmit point.

Leb a = ) 27" u, and let us consider the decompositions:

n=l1

p<a, p*la,

nn < ay 75 La.

B=p+u,
T = To+1n,
‘We shall consider the following three cases:

I The sequence (1) s not weakly relatively compact. By Lemma 2.1,
Dassing to a subsequence if necessary, we infer that there exists a sequence
of disjoint open sets G, such that 72(@,) > 6. Since 4%, | a, we can find
% closed subsets F, < G, such that #5(F,) > & and a(F,) = 0,n =
1,2,... Hence F, are peak interpolation sets for 4 and this implies that
there are %, € 4 such that h,|F, =1, |[h,dn2l< 27", [R,dnS| > 6 and

2 18, ()] < 2 for all ¢ € K. We put f, = 0n by, Then (f,) is w.u.c. and
n=1

lax ()l = | [ gubudra] = | [, | > | [hndns| | fhudng] > 6 -2,

II. The sequence (1) 4s weakly relatively compact ond u° = 0. Since
# Lo and 4+ < L;(a), we infer that there exists a peak set F such that
e’ — 4°(F) < 477 |u®]l. Liet g be a funetion which peaks on F. Using easy
induction, we define sequences of indices (ng) and (r,) so that

D g —grr() <2 for all te K
k
and
2| foedn,| > 1) and 8| fqmrsans| < .

Finally, we put f = (grkti—gtk)g,  for k=1,2,... Clealy, (f,) is
w.u.c. Using Lemms 2.3 and the conditions of the inductive definition,
one can show that lmsup|ak(f,)] > 0.

kE a .

ITL. The sequence (n3) is weakly relatively compact and u°® = 0. By
Lemma, 2.2 we can pass to a subsequence to ensure the existence of closed,
disjoint sets B, < K such that the restricted meagures 7;|(K\H,) form
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a weakly relatively compact sequence. Thus, by Lemma 2.3, it is enough
to constriet a w.u.c. (f,) such that

h'insupl(nZlE;) (f)l > 0.

Let 4 be the w*-limit point of 72| E,. If 4 is not absolutely continuous
with respect to a, we can apply case II. The only ease to be considered
i 4 < a. Then g = S] opin. Since g # 0, we may assume without loss
of generality that /,zn’::afm enumerated so thab [, -p,) > 6 for some & > 0.

Let ¢ = i h,,,u,,;We can find a closed sets F, such that u,(#,) = 0

n=2
and [lof|—|o|(F,) < 27" for n = 1,2, ... Next, for ¢, = H,uF,, we pick
by, =k, and K, =K, satistying the conditions of Proposition 1.7
applied for p = py,.
Let us observe that

tim [ fh,du, = [fau for all feLy(m),

limsup |[K,(f)—1] = 0,
n ieey,

and [gdp is the limit point of the sequence [ gdnZ, for every g € G(K).
E,

Using the above properties, we construct & sequence of indices (#;)
such that

® U(.ﬁk"i) i i | < ( 31577) o400,

=1

© [J([]e)ti= S ([T) ¥l

E”s +1

(©)  Ihylenl <277 and |E, e, —1] <277

8
Now we put w, = [] ky,; and fo=w, K, .
j=1

f=

Claim 1. (f,) is w.un.c. Indeed,

] n n n
DAL= D w0l 1Ky | < ) 10l (=g, 1) = ) (10)— [105])
&=1 g=1 g=1 8=l

= || — [w, 41| < 2.
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Claim 2. lm|(s3,, |,  )fl> £ Indeed, we have
=00

1072, 1By D) = | [ 0K, s, |
g4l
=| [ owan, + [ w(E, ~Dag,, |
Brg i1 Brgs1
>| [ wang,,| -2 | [w,di| -2 -2t
Mgl

= [wohydus + [ 0,do| —27—27

>| [0 i | —| [w,do| —277 =375
>$6—2.2"5—_2 " 1_97"s,

~ In the last inequality we have used the fact that &, > 0, which yields
Jhi@uy = Jhypql, and the estimate

]kfwsdalglz\i wﬁa'%—}p{ wsda'

g

< |0 (ENF,) +max jw, (3)] o]l < 27" +27°.
teF,,

The proof of Theorem 2.4 is complete.

Remark 2.5. (a) The proof of case II follows the construction of
Kahane [14] and Chaumat [4].

(b) Our proof of the Dunford-Pettis property does not depend on the
separability of the anmihilator (cf. Delbaen [6]). )

(e) The fact that A* is weakly sequentially complete follows directly
from the fact that A satisfies the Pelezyhski property (cf. [17]). We do
not have to use Chaumat’s result.

Now we list some concrete algebras which satisfy the assumptions
of Theorem 2.4. Let K be a compact subset of the complex plane. Let P(K)
be the uniform algebra of complex-~valued functions, which are uniformly
approximated on K by polynomials in 2, A(K) — the algebra of functions
continuous on K and analytic on Int K, and R(K) — the algebra of func-
tions which are uniformly approximated on K by rational functions with
poles off K.

Then we have the following

) TEBOREM 2.6. Let K be a compact subset of a complex plane. The follow-
ing algebras, when considered on sheir Shilov boundaries, satisfy the assump-
tions of Theorem 2.4.

(3) P(E) for every compact K.
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(b) R(K), whenever it is & Dirichlet algebra.

(e) A(K), whenever the complement of K is connected.

Therefore these algebras have the Dunford—Pettis property and the Pel-
czynsks property and their duals are weakly sequentially complete.

Proof. All those facts follow from the theorems contained in Chap-
ter IT of [8]: (a) follows from 3.4, 1.4 and 8.5, (b) follows from 8.5 and (c)
follows from Mergelyan theorem 9.1.

For conditions which ensure that B(K) is a Dirichlet algebra see [16].

Remark 2.7. Let us observe that the conclusion of Theorem 2.4
is invariant under Banach space isomorphisms while the assumptions
are not. For example, the algebra R(K,) where K, = {# e (: 1/2 < |2] <1}
does not satisfy the assumptions of Theorem 2.4. On the other hand, it
is quite easy to see that R(X,) is, as a Banach space, isomorphie to the
disc algebra, and so the coneclusions of Theorem 2.4 hold for B(K,).

It would be interesting to have any non-trivial information on the
linearly-topological classification of the algebras A(XK), P(K), and E(K).

Remark 2.8. If an algebra A satisfies the assumptions of Theorem 2.4,
it behaves exactly like a C(K)-space as far as the characterization of
weakly compact operators from the algebra is concerned. However, the
results of [22] and [19] show that, unless 4 = C(K), 4 is not isomorphic
to any £ -space. In fact the local properties of such algebras are rather
different from the properties of C(K) spaces, cf. [20].

Remark 2.9. F. Delbaen [7] generalized our Proposition 1.7.
Namely, he replaced the assumption that x is a unique representing
measure by the assumption that the set of representing measures is weakly
compact.

Added in proof. A much simpler proof of Proposition 1.7 can be obtained using
the proof of the lemma from the paper J. B. Garnett, Two remarks on inwrpolatibn
by bounded analytic funciions, Banach spaces of analytic functions, Springer Verlag
Lecture Notes in Math. 604 (1977).
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The Pelezynski property for some uniform algebras
by

F. DELBAEN (Brussel)

Abstract. Let A be a separable uniform algebra on its Shilov boundary X.
If there are no singular orthogonal measures and if each element of the spectrum has
a weakly compact set of representing measures, then 4 has the Pelozyiski property.
The theorem can be applied in the case of Banach algebras of analytic functions on
suitable compact sets of the plane.

1. Introduction. In [11] Wojtaszezyk proved that some uniform
algebras have the Pelezyhiski property. For the disc algebra this property
was already known (see Kislakov [9] and Delbaen [2]). The present
baper generalizes the results of [11] in two ways:

(i) the separability of the annihilator is dropped, and

(ii) the uniciby of the representing measure is replaced by an assump-
tion of weak compactness.

For any unexplained notion on uniform algebras werefer to Gamelin [5].

2. Wilken algebras. If 4 is a point separating subalgebra of #(X)
(X a compact space) such that 1 e 4, then we say that 4 is a uniform
algebra. For simplicity we assume that X is the Shilov boundary of 4.
A positive measure m on X is multiplicative it [f-gdm = [fdm-[gdm
for all fand g in 4. From the Hahn-Banach theorem we learn that every
nonzero multiplicative linear functional on A4 can be represented by such
3 measure. If 4 is any measure on X, then g is called orthogonal when
ffdp =0 for all fe A.

DEFINITION. An algebra is called a Wilken algebra if the only orthog-
onal measure which is singular to all multiplicative measures is the zero
measure. (Wilken (see [5]) proved that R(XK) is such an algebra).

Notation. If X is a compact metric space which is the Shilov bound-
ary for the uniform algebra 4 < #(X), then we denote by 9X the set
of peak points for 4. This set is equal to the Choquet boundary of A.

TuEOREM 1. Let 4 be a Wilken algebra on the compact metric space X.


GUEST




