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F-spaces with a basis which is shrinking but not hyper-shrinking
by
L. DREWNOWSKI (Poznat)

Abstract. We provide examples of non-locally convex F-spaces F enjoying the
following three properties: (1) F has an absolute basis. (2) The weak topology of B
is metrizable. (3) Each basis of F is boundedly complete and shrinking, but no basis
of H is hyper-shrinking. The existence of F-spaces satisfying (3) has been conjectured
by N. J. Kalton and J. H. Shapiro in a recent work.

1. Introduction. Following Kalton and Shapiro [7], we call a basis’
for an F-space shrinking (resp., hyper-shrinking) if each of its bounded
block bases tends weakly to zero (resp., tends to zero in the weak topology
of its closed linear spam). It was conjectured in [7] that a shrinking basis
need not be hyper-shrinking (while the converse implication holds tri-
vially). ’

The main purpose of this note is to establish thi§ conjecture. In The-
orem 3.3, which is our main result, we indicate a class of {generalized)
Orlicz sequence spaces I(p, a) in which every basis, in particular the absol-
ute basis of the unit vectors, is boundedly complete and shrinking but
is not hyper-shrinking. We should like to mention that our first example
of a space with such properties was the F-space H used by Bessaga, Pel-
czyfigki and Rolewicz in [8], pp. 50-51 for a different purpose; the spaces
1(p, @) considered in Section 3 are a slight generalization of their example.
These spaces are interesting also in that their weak topology is metri-
zable (although they are not locally convex). We give a few rather simple '
results about such spaces in Section 2. Finally, in Section 4, we collect
some comments and open questions.

Ag regards terminology, we follow, in general, that used by Xalton
and Shapiro. Throughout the paper all topological linear spaces are assumed
to be Hausdorff and infinite-dimensional. If any topologies we are dealing
with are not explicitly specified, we always mean the original topologies
of the spaces under consideration. If (#,) and (y,) are bases of topological
linear spaces X and Y, respectively, then we call them equivalent if there
is a (topological) isomorphism of ¥ onto ¥ sending #, t0 7, for all %, where X
and ¥ are the completions of X and Y. If X and Y are F-spaces,
then this definition is well known to bhe equivalent to the following:
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For any scalar sequence (3,), the series Dt m, converges iff the
series Y'%,Y, converges.

‘We shall say that & sequence (2,) in a topological linear space is ir-
regular if 1, %, — 0 for each scalar sequence (4,).

‘We denote by o the locally convex F-space of all scalar sequences
with the topology of coordinatewise convergence, and by (e¢,) the unit
vector basis of the spaces w, I, ete. It is well known that

(A) All the bases of w are equivalent lo its uwit vector basis. (See [2],
Theorem 7, [3], Theorem 5.)

Let E be a metrizable topological linear space whose (topological) duak
F' is point-separating. Then the ‘weak topology ¢(¥) = o(#, B') of F is
Hausdortf, and the Mackey topology z(E) = 7(H, B’) of H is easily seen
to be the finest locally convex topology on F weaker than the original
topology. The eonvex neighbourhoods of zero in & form a base at zero for
7(¥), and hence if the original topology of F is metrizable, then so is ¢(#).

We shall make an essential use of the following, somewhat simpli<
fied, version of Proposition 3.2 in [6] (see also [9], proof of Theorem 1).

ProrosItioN 1.1. Let (x,) be a basis of an F-space H. Then (v,) is
also a basis of H for the Mackey topology. Moreover, for any scalar sequence
() Tttty — 0-iff 1,2, — 0 for the Mackey topology. Hence (w,) is bounded
(resp., regular, irregular) iff it is bounded (resp., regular, irregular) for the
Mackey topology.

The proof is easy and uses the following two facts: (1) The conti-
nuity and equicontinuity of linear maps are preserved when the original
topologies are replaced by the corresponding Mackey topologies. (2) If
a subsequence of a basis of an F-space is regular, then the coefficient -
functionals corresponding to that subsequence form an equicontinuous
collection. ;

Note that, in Proposition 1.1, the basis (#,) of (B, v(H)) is equicon-
tinuous, i.e., the associated sequence of partial sum operators is equi-
continuous for the Mackey topology. This is clear from the proof, and is
also a consequence of the fact that z(H) is barrelled (see, e.g., the proof

of Proposition 5.6 in [5]). It follows that (2,) is also a basis for the com-
“pletion of (B, ©(H)).

PrOPOSITION 1.2. Let (1,) be an unconditional basis of an F-space H.
Then the following are equivalent:

(2) (w,) s not hyper-shrinking.

(b) There 4s a block basis (y,,)_foo" (w,) such that (y,), considered as

¢ basis of (Y,r(]?)), where ¥ = lin(y,), is equivalent to the unit vector
basis of 1.
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Proof. Suppose (2,) is not hyper-shrinking. Then there is a bounded
block basis (9,,) for (2,) and a continuous kinear functional fon ¥ = lin(y,)
such that f(y,) = 1 for all # ([7], Lemma 4.4). By Proposition 1.1, (¥,)
is & bounded unconditional bagis of the completion ¥ of (¥, z(¥)). It is
now easy to see that }'t,y, converges in Y it (,) ;. This proves that
{a) = (b). The converse implication is obvious.

2. F-spaces with irregular bases. If F is a locally convex space, then
the following conditions are equivalent: (1) B’ is countably-dimensional; (2)
o(H) is metrizable (and hence equals =(E)); (3) F is isomorphie to a sub-
space of w; (4) F has a basis equivalent to the unit vector basis of w; (5)
F has an irregular basis; (6) H contains an irregular sequence with a dense
linear span.

The equivalence of conditions (1) through (6) is well known from the
theory of locally convex spaces, or at least easy to verify. We indicate
only that (3) = (4) holds by a result of Bessaga and Pelezyfiski [1],
Theorem 2 (see also [3], Proposition 2.2), according to which every sub-
space of o has an equicontinuous basis, and this basis must be equivalent
+0 the unit vector basis of w by (A). .

Now, if F is an arbitrary topological linear space with a sepamm.ng
dual and such that the locally convex space (B, «(B)) satisties the equiv-
alent conditions listed above, we shall say that B is an w-space. I, in
addition, ¥ is an F-space, we shall call it an Fow-space. We shall see in
Section 3 that non-loeally convex Fo-spaces do exist. Let us note, however,
+that if F is an F-space such that each closed subspace of # is an Fw-space
(in its relative topology), then B ~ o, i.e., B is minimal ([5], 7). In
fact, if # is non-minimal, then ¥ contains a regular basic sequence. Then
the closed linear span of this sequence admits a eontinuous norm '(see 71,
proof of the implication (iii) = (iv) of Theorem 3.2) and hencel its vivea,k
topology cannot be metrizable. Tt is obvious that if a topological linear
space B with a separating dual contains an irregular sequence th)se
linear span is dense, then  is an o-space. Note, however, that the e:;{st
ence of such a sequence alone does 1ot imply the existence of non-triv-
jal continmous linear functionals. (Consider, for instance, the Haar sys-
tem in the F-space of all measurable functions on [0,1].) Nevertheless,
we have the following

ProposITIoN 2.1. A topologicsl linear space B is isomorphic to ® ?’,ff
@t contains & sequence (w,) with @ dense linear span and such that the series
Y't,@, converges for each (t,) € o ’

Proof. By the Banach-Steinhaus theorem, the_s linear _ina,pping
T: o0 defined by T ((t)) = 2ta®a 18 continuous. Since o/T™(0) o @
{by [3], Theorem 4) and o is a minimal space (see [5], Proposition 4.1),
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the associated map T: w/T~'(B) - E is an isomorphism, and its range

is evidently all of B. Thus # o~ w. The converse is obvious.

The mext resulb is an easy consequence of the preceding consider-
ations combined with 1.1 and (A). ‘

PrOPOSITION 2.2. Let F be an F-space with a basis (z,). Then the Sollow-
ing statements are equivalent: :

(a) (@,) s irregular.

(b) F is an Fo-space.

(e) (=,), as a basis of (E’ , -::(E)), 28 equivalent to the unit vector basis of w.

(d) The weak topology of B coincides with the weak topology defined
by the sequence of coefficient functionals of (w,).

CoROLLARY 2.3. Suppose E is an F-space with an srregular basis.
Then every basis of B is irregular and shrinking. Moreover, if B has
a boundedly complete basis, then every basis of B is boundedly complete.

Proof. The first assertion follows directly from the preceding prop-
osition. To prove the second one, we use also Lemma, 1(b) of [8], which
says that a basis of an F-space is boundedly complete iff every bounded
subset iy relatively compact for the weak topology defined by the coef-
ficient functionals of the basis. It is therefore enough to observe that, by
the above proposition, this topology does not depend on a particular choice
of a basis (in an Fw-space).

" Thus we have also the following

CoROLLARY 2.4. Let B be an F-space with an irregular boundedly com-
Dlete basis. Then every bounded subset of B s weakly relatively compact.

The next corollary will be immediately applicable to the spaces
considered in Section 3. Recall that a basis (z,) of an F-space B = (H, |-])
is said to be absolute (with respect to the F-norm |-]) if o] = |t 2,!
whenever the series Y%, converges to . It is obvious that every block
basis of an absolute basiy is absolute and that every absolute basis is
boundedly complete.

COROLLARY 2.5. Let B = (B, |-|) be va/n K-space with an absolute basie
(), amd let a, = sup ltz,|. Then:
‘

(o]
(@) B = o iff there is an m such that Y q, < co.
B n=m

d) If a,—0 and 2> a, = oo for all my then F is not locally comvew
n=m
and every basis of B is irregular, boundedly complete and shrinking.
‘We close this section with an analogue (in fact, a consequence) of

a result due to Bessaga and Pelezyriski ([1], Lemma 4, [2], Theorem 5)3
we include a proof for completeness.
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PROPOSITION 2.6. Let B be an F-space which admils no continuous norm.
Then if (x,) s @ basis of B, there is a subsequence (Y,) of (=,) such that (¥,)
is irregular.

Proof. In view of Proposition 1.1 it is enough to show that & subse-
quence of (z,) is irregular for the Mackey topology. Leb (p,) be a non-

decreasing sequence of semi-norms defining ©(F). Since the pa,rﬁa,ll‘7 sum

operators are equicontinuous for z(#), we may assume that p,,(Z‘ tim.;)

=1

<p,,(_§’ #,2;) for all scalar sequences (#;) and all # and %, m with k< m.

=1 .
Since none of the semi-norms p,, is 2 norm, there is a sequence (j,) of natural
numbers such that p,(w;,) = 0 for each n. A sh?aple ax:gu_ment shfwvs
that (j,) may be chosen so as to be strictly increasing. It is then obvious
that (¥,) = (#,) is a8 required. - _ )

Remark. Note that the weak topology of F induces on lin(y,) its
proper weak topology.

3. Examrrs. Leb g: [0, o0) — [0, o) be a non-decreasing, subaddi-
tive and continuous function vanishing only at 0, and let & = (a,,.,) be
a sequence of positive numbers. Then we denote by I(g, a) the linear
space of all real (or complex) sequences & = (t,,) such that .

ol = ) 6, (ltal) < oo
n=1

Then |-| is an F-norm on (g, @) and l(g, a) = (}(«p, a), |+]) is an F-spac&;.
If 4, = 1 for all n, then we denote this space simply by 1(p). Note that,
when dealing with the spaces I(p), we may always agsume ¢ to jne boundfad.
In fact, if we define v by 9(¢) = min{l, ¢(#)}, then the identity map1)<1111g
of 1(p) onto I(y) is an isomorphism. Evidently, the spaces 1, 0<p<1,

are of the type l(gp)- ]
Tt is clear that the sequence (e,) of the unit vectors forms an absolute

basis for I(p, a). From Corollary 2.5 we infer that l(p,a) = iff @ is
bounded and )} a, < co.

PropOSITION 3.1. Suppose a = (a,) and b =(b,) are sequences of
positive numbers, and & satisfies

(*) 8,0 and 2 @, = oo,
n=1

Then there is a block basis (fy) for the basis (e,) of g, a) such that (fy) i8
equivalent to the basis (e5) of L(g, b).
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Proof. From (+) it easily follows that there exist sequences (my)
and (ng) such that m; < n, < My <0y < ... and

(+) b<dy = D ;<2

mp<i<ng

for all k. Define a block basis (f,) for (¢,) by

Je = 2 €.

mp<i<ny

Then, given any scalar sequence (%), we have
| Dtfil, = > Aupita)
ker keF

for any finite subset 7' of N. This and (+) imply that (fy) is equivalent
to the unit vector basis of I(g, b). :

COROLLARY 3.2. If a satisfies (x), then a block basis for the basis (e,)
of Up, &) is equivalent to the basis (e,) of I(p). :
We finally come to the main result of the paper.

) THEOREM 3.3. Suppose ¢ is bounded and a satisfies (). Then e, a)
8 a non-locally comvex Fw-space with an absolute basis, and each basis of

U, a} is irregular, boundedly complete and shrinking, but is not hyper-
shrinking.

. Proof. In view of Corollary 2.5 we only have to prove that no basis
i8 hyper-shrinking. Since each basis of I(g, a) is boundedly complete,
.Theorem 4.9 of [7] implies that either all bases of I(p, a) are hyper-shrink-
ing or else none of them enjoys this property. So it is enough to show
that the basis (6,) is not hyper-shrinking. That it is indeed so follows from
Corollary 8.2, Proposition 1.2 and the known fact that the Mackey top-
f)log'y‘ of 1(gp) is simply the relative I,-norm topology. (For a general result
identifying the Mackey topology of Oxrlicz spaces, see [6], Theorem 3.3.
In our case, where the function g is subadditive, the elementary inequality
o(t) > (#2)p(1), 0<<i< 1, (cf. [8], Lemma 4) shows that l(p) embeds
continuously in 7, as a dense subspace. It is then easily seen that the dual
of I{p) may be iQentﬁied with the dual of 1,.)

4. Some commenis and open questions.

(1) In [9] Shapiro proves that the weak basis theorem fails in certain
._F’-spfaoe'zs with bases, and in question (b) on p. 1299 of his paper he asks
if thls is true for all non-locally convex P-spaces with a weak basis. An
examination of the proof of his Theorem 2 reveals that whenever an F-gpace
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has a basis which is not irregular, i.e., & basis with & regular sub-basis,
then there is a weak basis which is not a basis for the original topology.
So his question reduces to this: Does the weak basis theorem fail in every
non-locally convex F-space with an irregular basis?

(2) Does every Fo-space have a basis? The author does mot even
know whether every F-space with a separating dual which is separable
under its weak (or Mackey) topology, in parbicular an Fw-space, must
be separable under the original topology.

(3) Does there exist an Fo-space with a hyper-shrinking basis?
Does there exist a pseudo-reflexive [7] Fow-space? (We mean of course
non-locally convex spaces.)

(4) Proposition 3.1 can be viewed as a result on universality of I(g, a):
If o satisfies (), then I(p, @) contains an isomorphic copy of each I(p, b),
for any b. Is it always true that if both a and b satisty («), then I(p, @)
and (g, b) are isomorphic?

(8) It is not difficult to see that, in an F-space with an absolute
basis, every infinite-dimensional Banach subspace contains a subspace
isomorphie to I; .(cf. [8]). We do not know, however, whether or not every
Banach subspace is then isomorphie to & subspace of I;.

(6) Let (p,) be a sequence of non-decreasing, subadditive and con-
tinuous functions defined on [0, co) and vanishing only at 0. Writing

a, = supg,(t), suppose that a,—0 and 3 a, = oo for each m. Then
t n=m
the F-space 1{(p,)), defined analogously as I(p, a), is an Fo-space with

an absolute basis composed of unit veetors. This class of sequence F-spaces
may be identified with the class of F-spaces considered in Corollary 2.5(b).

Additional note. After this paper was submitted for publication, the author
answered Shapiro’s question in the affirmative, see The weak basis theorem fails in
non-locally comver F-spaces, Canad. J. Math. 29 (1977), pp. 1069-1071.
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On weakly compact operators from some uniform algebras
by
P. WOJTASZCZYK (Warszawa)

Abstract. We prove that weakly compact operators from s class of uniform
algebras, containing many natural algebras of analytic functions on planar compact
sets, behave exactly like weakly compact operators from C (K) spaces. In particular,
a non-weakly compact operator from snch an algebra is an isomorphism on some
subspace isomorphic to ¢q- '

Recently 8. V. Kislakov [15] and F. Delbaen [5], generalizing the
results of A. Grothendieck [9] and A. Pelezyiski [17] and [18], have
proved that the disc algebra has the Pelezyrniski property and the Dun-
ford-Pettis property. Let us recall that the Banach space X has the Dun-
ford-Pettis property if every weakly compact operator defined on X trans-
forms weakly convergent sequences into norm convergent sequences.

This is equivalent to the following: for every (v,) = X, @, 50 and
(#) = X%, o8 5 0 we have limz}(s,) = 0.

The Banach space X has the Pelczyhski property if every non-weakly
compact operator defined on X is an isomorphism when restricted to
some subspace of X, isomorphic to ¢,. We say that the series Y'f,, f,e X
is weakly unconditionally convergent (and abbreviate it to “(f,) is w.u.e.”)
if for every #* e X* we have ), |a*(f,)| < co. With the use of this concept
the Petezynski property can be equivalently defined as follows: A Banach
space X has the Pelezyriski property if every set ¥V = X such that
lifﬂ sup{l@™(f)]: #* € ¥} = 0 for everyw.u. c. (f,) in X is weakly relatively
compact. .

Tt is well known (cf. [5], [9], [17], [18], [20]) that if the Banach space X
has both the Dunford—Pettis property and the Pelezydski property, then

(a) The following are equivalent for an arbitrary Bamnach space K:

(a;) An operator T': X—F is weakly compact.

(a,) Anoperator T: X — F is strictly singular.

(a3) An operator T': X — F is not an isomorphism when restricted

to0 any subspace of X isomorphic to ¢,.

(a,) An operator T: X — % is unconditionally converging.

(b) If T: X X is a weakly compact operator, then 7™ is compach.
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