

On the inversion of pseudo-differential operators

by

JOSEFINA ALVAREZ ALONSO (Buenos Aires)

Abstract. Let A be a properly supported pseudo-differential operator on a manifold X. An important problem is to know when A has a pseudo-differential inverse. If this inverse exists, one deduces immediately that A is elliptic and injective in $C_0^\infty(X)$. When X is a compact manifold, these conditions are nearly sufficient. In fact: Let A be a self-adjoint elliptic pseudo-differential operator on a compact manifold X. Suppose that A is injective in $C^\infty(X)$. Then A has a two-sided self-adjoint pseudo-differential inverse (see [11]).

Here we consider the case of a non-compact manifold. We have a function σ with certain properties, and we ask for the existence of properly supported pseudo-differential operators, A and B, such that $A \circ B$ is the identity operator I and σ is a principal symbol of A. We state the main result in 2. The rest of the paper is devoted to prove it.

I would like to thank Professor A. P. Calderón, who proposed the problem to me, and who made many helpful suggestions.

1. Notation and basic definitions. Let X be a C^{∞} paracompact manifold of dimension N. If ξ is an element in the cotangent bundle $T^*(X)$, the length $|\xi|$ of ξ can be defined in terms of a riemannian metric on X. We shall also assume that there is given a volume element on X, which in any local coordinate system can be expressed as $fdx_1 \ldots dx_n$, with $f \in C^{\infty}$ and f > 0.

A function $a=a(x,\,\xi)\in C^\infty\big(T^*(X)\big)$, is in the class $S^m_{\varrho,\delta}$, or is a symbol of order $m\in \mathbf{R}$ and type $\varrho,\,\delta,\,\,0\leqslant 1-\varrho\leqslant\delta<\varrho\leqslant 1$ if, in local coordinates, it satisfies

$$\left| \left(\frac{\partial}{\partial x} \right)^a \left(\frac{\partial}{\partial \xi} \right)^{\beta} \, a(x, \, \xi) \, \right| \leqslant C_{a, \beta} (1 + |\xi|)^{m - \varrho |\beta| + \delta |a|}$$

for all α , β .

This class is we'l defined on $T^*(X)$.

A linear and continuous operator $A: C_0^\infty(X) \to C^\infty(X)$ belongs to the class $I_{\varrho,\delta}^m$, or is a properly supported pseudo-differential operator of order m and type ϱ , δ if for a given local coordinate system defined in an open set U there exists $a(x, \xi) \in S_{\varrho,\delta}^m$ such that for f with support in U and $x \in U$

$$Af(x) = \int e^{ix\cdot\xi} a(x,\,\xi) \hat{f}(\xi) \,d\xi$$

and the distribution kernel K_A of A vanishes outside a neighborhood of the diagonal. Therefore, we can write

$$Af(x) = \lim_{\epsilon \to 0} \int e^{i(x-y)\cdot\xi} a(x, y, \xi) \, \eta(\varepsilon\xi) \, f(y) \, dy,$$

where $a(x,y,\xi)\in S^n_{a,t},\ a(x,y,\xi)=0$ for |x-y|>M and $\eta\in C^\infty_0$ and equals 1 for $|\xi|\leqslant 1$.

 $a(x, y, \xi)$ is called an amplitude. The class of $a(x, \xi)$ modulo $S_{a,\delta}^{m,\delta-(\delta-\epsilon)}$ is well defined on the cotangent bundle $T^*(X)$. It will be called the principal symbol of A, $\sigma_p(A)$. If a, b belong to $\sigma_p(A)$, we shall write $a \sim b$. A function on $T^*(X)$ which belongs to $\sigma_p(A)$ will also be called a principal symbol of A. We shall say that an operator A in $I_{a,\delta}^m$ is elliptic if it has a principal symbol a such that $|a(x, \xi)| \ge C |\xi|^m$, for $|\xi| \ge R$ and $(x, \xi) \in T^*(X)$. The operator A belongs to $I^{-\infty}$ if it is in $I_{a,\delta}^m$, for all $m \in R$. For the properties of pseudo-differential operators that we shall use, see [1].

2. The main result.

THEOREM 1. Let $\sigma = \sigma(x, \xi)$ be a real function $\in C^{\infty}(T^*(X))$, positively homogeneous of degree $m \in \mathbb{R}$ in ξ for $|\xi| \geqslant 1$ and such that $\sigma(x, \xi) > 0$ for all $(x, \xi) \in T^*(X)$. Then

(i) If m = 0, there exist operators $A, B \in I_{1,0}^0$ with

$$A \circ B = I$$
, $\sigma_p(A) \sim \sigma$.

(ii) If $m \neq 0$, there exist operators A, B satisfying

$$A \in I^m_{1,\delta}, B \in I^{-m}_{1,\delta}, \quad \text{for all } 0 < \delta < 1,$$
 $A \circ B = I, \quad \sigma_n(A) \sim \sigma.$

3. The local version of the main result. We shall first show the existence of an adequate covering of the manifold X.

LEMMA 1. There exists a covering $\{U_n^{\alpha}\}_{n=1}^{a\leq k}$ of X with relatively compact open sets such that, for each fixed a, $U_n^{\alpha} \cap U_h^{\alpha} = \emptyset$ if $n \neq h$.

Proof. When X is a Euclidean space, there exists a family of cubes $\{Q_n^{\alpha}\}$ satisfying those conditions.

Then, let us consider the general case. The Whitney immersion theorem asserts that there exists a differentiable mapping $f\colon X\to R^{2N+1}$ such that X is homeomorphic to f(X), with the topology induced by R^{2N+1} and f(X) is closed in R^{2N+1} (see [2]).

If $\{Q_n^a\}$ is the covering of \mathbf{R}^{2N+1} with cubes as above, the sets $U_n^a = f^{-1}[f(X) \cap Q_n^a]$ yield the desired covering of X.

Let $\{\varphi_n^{\alpha}\}$ now be a partition of unity subordinated to the covering $\{U_n^{\alpha}\}$. Consider, for each α , n,

$$\sigma_n^a = e^{\sigma_n^a \log \sigma} = \sigma^{\sigma_n^a}.$$

It is easy to see that:

- (i) If m = 0, $\sigma_n^{\alpha} \in S_{1,0}^0$.
- (ii) If m > 0, $\sigma_n^{\alpha} \in S_{1,\delta}^m$ for all $0 < \delta < 1$.
- (iii) If m < 0, $\sigma_n^{\alpha} \in S_{1,\delta}^0$ for all $0 < \delta < 1$.

In all three cases, $\sigma_n^a(x,\,\xi)=1,$ when $x\in X\smallsetminus K_n^a,$ for a compact set $K_n^a\subset U_n^a.$

. We shall suppose, without loss of generality, that m is non-negative. In this case, $1/\sigma_n^a \in S_{1,0}^0$ when m = 0, and $1/\sigma_n^a \in S_{1,\delta}^0$ for all $0 < \delta < 1$ when m > 0.

We are now in position to give the localized version of Theorem 1: Theorem 2. There are operators $A = A_n^a$, $B = B_n^a$ such that

(i) If m = 0, then $A, B \in I_{1,0}^0$, and

$$A \circ B = I$$
, $\sigma_p(A) \sim \sigma_n^a$,

 $A = I + \tilde{A}, \ B = I + \tilde{B}, \ with \ \tilde{A}, \ \tilde{B} \in I_{1,0}^0, \ and \ the \ corresponding \ distribution kernels have compact support contained in <math>U_n^a \times U_n^a$.

(ii) If m > 0, then $A \in I_{1,\delta}^m$, $B \in I_{1,\delta}^0$ for all $0 < \delta < 1$.

Furthermore, these operators satisfy the conditions in (i), except that now $\tilde{A} \in I_{1,\delta}^m$ and $\tilde{B} \in I_{1,\delta}^0$, for all $0 < \delta < 1$, instead of $I_{1,0}^0$.

We shall prove this theorem in 5. If we accept it for a moment, we derive from it Theorem 1 in the following way:

For $1 \leqslant \alpha \leqslant k$ fixed, the compositions

$$A^a = \dots \circ A_n^a \circ \dots \circ A_2^a \circ A_1^a,$$

 $B^a = B_1^a \circ B_2^a \circ \dots \circ B_n^a \circ \dots$

have a meaning as operators on $C_0^\infty(X)$ and they define properly supported pseudo-differential operators. In fact, given a compact subset K of X and f with support in K, since the U_n^a are disjoint, there exists N(K) such that

$$A_n^{\alpha} \circ \ldots \circ A_1^{\alpha}(f) = A_N^{\alpha} \circ \ldots \circ A_1^{\alpha}(f)$$
 for $n \geqslant N(K)$.

Furthermore, there exists also $N_1(K)$ such that

$$B_n^{\alpha}(f) = f$$
 for $n \geqslant N_1(K)$.

Then, the operators

$$A = A^k \circ \ldots \circ A^1$$
 $B = B^1 \circ \ldots \circ B^k$

satisfy Theorem 1.

Remark. In general, given two operators $A \in I_{e,\delta}^{m_1}$, $B \in I_{e,\delta}^{m_2}$, $C = A \circ B \in I_{e,\delta}^{m_1+m_2}$. But in certain cases the order of C can be less than m_1+m_2 as happens, for example, in this case.

4. Preliminary results.

LEMMA 2. Let U be a relatively compact open subset of X and let $\sigma = \sigma(x, \xi) \in S^m_{q,\delta}, \ m \geqslant 0$, a real symbol such that, for $0 < c_1 < c_2$ and a compact set $K \subset U$,

$$\begin{split} \sigma(x,\,\xi) > c_1 &\quad \text{for all } (x,\,\xi) \in T^*(X), \\ \sigma(x,\,\xi) &= c_2 &\quad \text{if} &\quad x \in X \smallsetminus K, \\ &\quad \sqrt{\sigma - c_1} \in S_{\varrho,\,\delta}^{m/2} \,. \end{split}$$

Then there exists a self-adjoint operator $A \in I_{o,\delta}^m$ such that

$$\sigma_p(A) \sim \sigma$$
, A is injective in $C_0^{\infty}(X)$,

 $A=c_2\,I+C,\ C\in I_{\varrho,\delta}^m$ and the support of the distribution kernel K_C of C is a compact subset of U imes U.

Proof. It suffices to define

$$A = c_1 I + (\tilde{A} + \sqrt{c_2 - c_1} I)^* \circ (\tilde{A} + \sqrt{c_2 - c_1} I)$$

where the principal symbol of \tilde{A} coincides with $\sqrt{\sigma-c_1}-\sqrt{c_2-c_1}$ and its kernel $K_{\tilde{A}}$ vanishes outside an adequate neighborhood of the diagonal in $X \times X$.

LEMMA 3. Let U be a relatively compact open subset of X and $\sigma = \sigma(x, \xi) \in S^0_{\varrho, \delta}$ a real symbol such that

$$\sigma(x, \xi) > 0$$
 for all $(x, \xi) \in T^*(X)$, $\sqrt{\sigma} \in S_{\varrho, \delta}^0$,

 $1/\sigma \in S_{\varrho,\delta}^{m'}$, for $m' \geqslant 0$ and satisfies the hypothesis of Lemma 2.

Then there exists a self-adjoint operator $B \in I_{\varrho,\delta}^0$ with

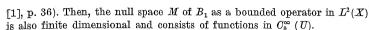
$$\sigma_p(B) \sim \sigma$$
, B is injective in $C_0^{\infty}(X)$,

B=eI+C, for some c>0 and $C\in I_{\varrho,\delta}^0$, such that the support of the distribution kernel K_C is a compact subset of $U\times U$.

Proof. If $\sigma(x, \xi) = c$, c > 0, in the complement of a compact subset K of U, there exists $\tilde{B} \in I_{\varrho,\delta}^0$ such that the principal symbol of \tilde{B} coincides with $\sqrt{\sigma} - \sqrt{c}$ and its kernel $K_{\tilde{B}}$ vanishes outside a neighborhood of the diagonal in $X \times X$. Then the operator $B_1 = (\tilde{B} + \sqrt{c}I)^* \circ (\tilde{B} + \sqrt{c}I)$ satisfies all conditions except, possibly, the injectivity. We shall modify B_1 , in order to obtain also this condition.

There is an operator $A \in I_{\varrho,\sigma}^{m'}$ satisfying Lemma 2 with respect to $1/\sigma$. Since $\sigma_p(A \circ B_1) \sim 1$, we can write $A \circ B_1 = I + D$, where D belongs to $I_{\varrho,\delta}^{-(\varrho-\delta)}$ and the distribution K_D has compact support in $U \times U$.

Now, D is a compact operator in $L^2(X)$ and so the null space of I+D is finite dimensional. Furthermore, it consists of C_0^∞ functions (see



Let $\{f_1, \ldots, f_h\}$ be an orthonormal basis for M and let

$$Bf = B_1 f + \sum_{j=1}^{h} (f, f_j)_{L^2} f_j, \quad f \in L^2(X).$$

The operator $\sum_{j=1}^{h} (f, f_j)_{L^2} f_j$, is the orthogonal projection on M. Since the f_j are in $C_0^{\infty}(U)$, it is an integral operator with C_0^{∞} kernel, of compact support contained in $U \times U$. Thus, B satisfies the same conditions as B_1 . Furthermore, B is injective in $L^2(X)$. For if Bf = 0, since B_1 is self-adjoint, we have

$$0 = (B_1 f, f_k)_{L^2} = -\sum_{j=1}^h (f, f_j)_{L^2} (f_j, f_k)_{L^2} = -(f, f_k)_{L^2}.$$

Then, $B_1f = Bf = 0$. Therefore, f is in M and since f is orthogonal to M, we conclude that f = 0.

It will be necessary to know, in Theorem 2, whether the L^2 -inverse of a certain pseudo-differential operator is also pseudo-differential (see [1]):

THEOREM 3. Let $C \in I_{o,\delta}^m$, m < 0, and suppose that the distribution kernel K_C of C has compact support $\subset K \times K$. Suppose further that I + C is injective in $C_0^{\infty}(X)$. Then I + C has a two-sided inverse of the form I + C', $C' \in I_{o,\delta}^m$.

To prove this, we need the following

Lemma 4. Let $\Phi \colon X \to L^2(X)$ be a strong measurable mapping with compact support $K_1 \subset X$. Then there exists a measurable function $\varphi \colon X \times X \to C$, C the complex field, such that

$$\Phi(x)(y) = \varphi(x, y)$$
 a.e. in X.

Proof of Lemma 4. For each $x \in X$, $\Phi(x)$ is a class of square integrable functions such that any two of them coincide almost everywhere. We want to show that it is possible to select an element h_x in each class such that $\varphi(x, y) = h_x(y)$ is a measurable function on $X \times X$. The strong measurability of Φ , implies that there exists a sequence $\{\Phi_n\}_{n \geq 1}$ such that

(i) $\Phi_n(x,y) = \sum_{j=1}^{H(n)} h_j^{(n)}(y) \, \chi_j^{(n)}(x)$, where $h_j^{(n)} \in L^2(X)$, and for each n, $\chi_j^{(n)}$ are the characteristic functions of measurable disjoint subsets of X.

(ii) $\lim_{n\to\infty}\int\limits_X |\varPhi_n(x,y)-\varPhi(x)(y)|^2\ dy=0$ a.e. in X.

Let $C_n = \{x \in X | \ \| \varPhi_n(x, \quad) \|_{L^2} \leqslant 2 \| \varPhi(x) \|_{L^2} \leqslant 2n \}$. Writing $\varPhi_n = \{x \in X | \ \| \varPhi_n(x, \quad) \|_{L^2} \leqslant 2n \}$

 $=\Phi_n(x,y)\cdot\chi_{C_n}(y),\ \chi_{C_n}$ the characteristic function of C_n , we have

$$\|\tilde{\Phi}_n(x, \cdot)\|_{L^2} \leqslant 2\|\Phi(x)\|_{L^2}, \quad x \in X, \ n \geqslant 1.$$

Let $K_1^{(m)}=\{x\in K_1|\ \|\varPhi(x)\|_{L^2}\leqslant m\},\ m\geqslant 1.$ According to the dominated convergence theorem we have

$$\lim_{n,k\to\infty}\int\limits_{K[m]_{\times X}}|\tilde{\varPhi}_n(x,y)-\tilde{\varPhi}_k(x,y)|^2\ dx\ dy\ =\ 0\ .$$

Since $K_1^{(m)} \subset K_1^{(m+1)}$, we can extract a subsequence $\{\tilde{\Phi}_j(x,y)\}$ converging a.e. in $K_1 \times X$; its limit is the desired function $\varphi(x,y)$.

Proof of Theorem 3. First, observe that I+C is elliptic and is a bounded operator in $L^2(X)$. If f is in the null space of I+C, then $f \in C^{\infty}(X)$ and f has support in K, since f = -Cf and Cf has support in K. Thus, $f \in C^{\infty}_{0}(X)$ and our hypotheses imply that f = 0. Therefore, I+C is injective in $L^2(X)$ and since C is a compact operator in $L^2(X)$, it follows that I+C has a two-sided inverse B_1 as an operator in $L^2(X)$. Since

$$B_1 \circ (I+C) f = f$$
, $(I+C) \circ B_1 f = f$, $f \in L^2(X)$,

given the assumed properties of C, it follows that $B_1f=f$ if $\mathrm{supp}\,(f)$ is disjoint from K, and $B_1f=f$ outside K, for all f. Since I+C is elliptic, it has a two-sided inverse B, modulo $I^{-\infty}$. This inverse has the form B=I+C', with $C'\in I_{\varrho,\delta}^m$. Now, B can actually be taken so that if K_1 is a compact set containing K in its interior, then Bf=f for $\mathrm{supp}\,(f)$ disjoint from K_1 and Bf=f outside K_1 , for all f. For, let φ vanish outside K_1 and let $\varphi=1$ on K. Then $I+\varphi C'\varphi$ has the desired property. (See [1], p. 37.) Furthermore, it is also a two-sided inverse of I+C modulo $I^{-\infty}$.

Now, let

$$B \circ (I+C) = I+R_1, \quad (I+C) \circ B = I+R_2,$$

then R_1 and R_2 belong to $I^{-\infty}$. Setting $S=B-B_1$, we will show that $S\in I^{-\infty}$ which will imply that $B_1\in I^0_{a,b}$ and our assertion will be established. Now, from the preceding identities and the fact that

$$B_1 \circ (I+C) = (I+C) \circ B_1 = I$$
,

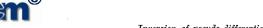
we obtain

$$S \circ (I+C) = R_1, \quad (I+C) \circ S = R_2$$

and multiplying on the right and on the left by B, we obtain, respectively,

$$S+S\circ R_2=R_1\circ B,\quad S+R_1\circ S=B\circ R_2,$$

and multiplying the first equation on the left by R_1 and subtracting



from the second we obtain

$$S = R_1 \circ S \circ R_2 - R_1^2 \circ B + B \circ R_2.$$

Since Bf = f and $B_1f = f$ if $\operatorname{supp}(f)$ is disjoint from K_1 , then Sf = 0 if $\operatorname{supp}(f)$ is disjoint from K_1 . Furthermore, since Bf = f and $B_1f = f$ outside K_1 , it follows that $\operatorname{supp}(Sf) \subset K_1$.

Now, suppose we show that $R_1 \circ S \circ R_2$ is an integral operator with square integrable kernel. Then, since $R_1^2 \circ B$ and $B \circ R_2$ are in $I^{-\infty}$, they are also integral operators with square integrable kernels, and S itself will be an integral operator with a square integrable kernel. Thus, on account of the above properties of S, this kernel will have support in $K_1 \times K_1$. But then, as is readily seen, $R_1 \circ S \circ R_2$ is an integral operator with a compactly supported $C^{\infty}(X \times X)$ kernel and therefore $R_1 \circ S \circ R_2 \in I^{-\infty}$. Thus, we will have that $S \in I^{-\infty}$, and our theorem will be established.

Let $x \in X$. The linear mapping

$$L^2(X) o C,$$
 $f o R_1 \circ S \circ R_2 f(x)$

is continuous and, therefore, there exists $h_x \in L^2(X)$ such that

$$R_1 \circ S \circ R_2 f(x) = (f, h_x)_{r,2}.$$

If we show that the mapping

$$K_1 \stackrel{\varphi}{\to} L^2(X),$$
 $x \to h_x$

is strongly measurable, on account of Lemma 4, we will deduce that there exists φ such that $\varphi(x,y) = \Phi(x)(y)$ a.e. in X.

It is sufficient to prove that Φ is weakly measurable. This is clear, for, given $f \in L^2(X)$, the function

$$K_1 \to C\,,$$

$$x \to R_1 \circ S \circ R_2 f(x) = \int\limits_{\mathbb{X}} h_x(y) \, f(y) \; dy$$

is continuous.

Furthermore, φ is a square integrable function. For, the mapping

$$L^2(X) \to C^0(K_1),$$

$$f \to R_{\mathbf{1}} \circ S \circ R_{\mathbf{2}} f$$

is continuous, where $C^0(K_1)$ indicates the class of continuous functions $f\colon X\to C$ with compact support in K_1 , with the topology of uniform

icm[©]

convergence. Thus, there exists M > 0 such that

$$\|f\|_{L^2} \leqslant 1$$
 implies $\sup_{x \in K_1} \Big| \int\limits_X \varphi(x, y) f(y) \ dy \Big| \leqslant 1/M.$

For a fixed $x \in X$,

$$\begin{split} \left(\int\limits_{\mathcal{X}} |\varphi(x,y)|^2 dy\right)^{1/2} &= \sup_{\|f\|_{L^2} \leqslant 1} |R_1 \circ S \circ R_2 \, f(x)| \\ &= \sup_{\|f\|_{T^2} \leqslant 1} \left|\int\limits_{\mathcal{V}} \varphi(x,y) \, f(y) \, dy \right| \leqslant 1/\mathrm{M} \,. \end{split}$$

Therefore

$$\int\limits_{X\times X} |\varphi(x, y)|^2 \, dy \, dx \leqslant 1/\mathbf{M}^2 \, \operatorname{meas}(K_1).$$

5. Proof of Theorem 2. In order to simplify the notation, U will be a fixed open set of the covering $\{U_n^a\}$ and φ will be the corresponding function in the subordinate partition of unity. Let also $\sigma_1 = \sigma^{\varphi}$.

It is clear that σ_1 satisfies the assumptions of Lemma 2, with $c_2 = \varrho = 1$, and $\delta = 0$ if m = 0 or $0 < \delta < 1$ if m > 0.

On the other hand, $1/\sigma_1$ satisfies the assumptions of Lemma 3 with $\varrho=1,\ m'=m$ and $\delta=0$ if m=0 or $0<\delta<1$ if m>0. Thus, we can obtain operators A and B_1 as in Lemmas 2 and 3, respectively. Therefore $A\circ B_1$ has the properties of Theorem 3 and then its L^2 -inverse \tilde{B} is a pseudo-differential operator.

Therefore the operators A and $B_1 \circ \tilde{B}$ verify Theorem 2 with respect to U.

Remark. When m=0, both symbols σ_1 and $1/\sigma_1$ satisfy the assumptions of Lemma 2.

References

- A. P. Calderón, Lectures notes on pseudo-differential operators and elliptic boundary value problems, I, Cursos de matematica, I. Publicación del Instituto Argentino de Matematica.
- [2] L. Auslander and R. E. Mackenzie, Introduction to differentiable manifolds, McGraw Hill, N. Y. 1963.

DEPARTAMENTO DE MATEMATICA FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES ARGENTINA

Received August 30, 1976

(1197)

Extensions of a Fourier multiplier theorem of Paley, II*

Ъу

JOHN J. F. FOURNIER (Vancouver)

Abstract. Let A (U^N) be the algebra of functions that are analytic in the interior of the unit polydisc U^N and continuous on the closure of U^N . Denote the positive cone in the integer lattice Z^N by Z^N_+ ; then, for each function f in A (U^N) , denote the Taylor coefficients of f by $\{\hat{f}(a)\}_{a\in Z^N_+}$. Call a function p on Z^N_+ a Paley multiplier if

 $\sum_{a \in Z_+^N} |p(a)\hat{f}(a)| < \infty \text{ for all } f \text{ in } A(U^N). \text{ Call a region } W \text{ in } Z_+^N \text{ a proper cone} \text{ if the ratios } a \in Z_+^N \text{ (min } a_n)/|a|, \text{ remain bounded away from 0 as } a \text{ runs through } W. \text{ Every element of } l^2(Z_+^N) \text{ is a Paley multiplier; it is shown in this paper that, if } p \text{ is a Paley multiplier, } then <math display="block">\sum_{a \in W} |p(a)|^2 < \infty \text{ for every proper cone } W. \text{ This is a considerable improvement} \text{ on previous results, but it remains unknown, when } 1 < N < \infty, \text{ whether every Paley multiplier belong to } l^2(Z_+^N).$

The proof is based on a simple construction that also yields partial solutions to some problems about homogenous expansions of functions in $A(U^N)$. Other applications of the constructions are also discussed.

1. Introduction. We use the notation and terminology of Rudin's book [29], except that we denote the Taylor coefficients of a function f in $A(U^N)$ by $\hat{f}(a)$ rather than c(a). Such a function is completely determined by its restriction to the distinguished boundary T^N of U^N , and its Taylor coefficients are just the Fourier coefficients of its restriction to T^N .

Paley's theorem [26] is that, when N=1, every Paley multiplier belongs to $l^2(Z^+)$. Helson [15] found a second proof of Paley's theorem, and generalized it to several variables in the following way. Choose a half-space S in Z^N , and let A be the set of continuous functions on T^N whose Fourier coefficients vanish off S; then a function p, on the set S, has the property that $\sum_{\alpha \in S} |p(\alpha)\hat{f}(\alpha)| < \infty$, for all f in A, if and only if $p \in l^2(S)$. Rudin ([28], p. 222) extended this result to the context of compact abelian groups with totally-ordered dual groups.

^{*} Research partially supported by National Research Council of Canada operating grant number A-4822.

^{3 —} Studia Mathematica LXIV.1