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h+n"" and letting n - co. The continuity of @ and an application of
Fatou’s lemma give the result for A.
Now assuming k> 0 and |lgll, = 1, we introduce a change of variable

£=9) = [Way.

The new variable & has range 0 < £ < a = B dy, and ¢ is locally absol-
; .

utely continuous, striefly increasing, and has a locally absolutely continy~
ous inverse. Define a function f(£) by the formula

flo@) = g@)h@)-2.
Note that

Of f(&7ae = [flp@)e’ (2)do

a
= [ gnt—2a3 g
o

=fqu$
0
=1.

Thus, Theorem 1 implies that

a ¢
ofqi {5_ (Jf(n)dn)p} a5< Oy D)y,

By the changes of variable & — ¢(2) and 9 = p(y), we obtain the theorem.
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A function space 0(X) which is weakly Lindelsf
but not weakly compactly generated

by
ROMAN POL (Warszawa)

Abstract. We givo an example of a Banach function space ¢ (X), which is weakly
Lindelsf but not weakly compactly generated. This solves in the negative an old
problem of Corson and a problem of Benyamini, Rudin and Wage.

1. In this paper we construct the following example (the terminology
will be explain later).

ExavrLE. There is o Banach function space C(X) which is Lindelif
under the wealk topology but mot weakly compactly generated.(*)

The example solves in the negative a problem of Corson [2] (see also
Lindenstranss [9], Problems 6 and 6’) and Problem 7 of Benyamini,
Rudin and Wage [1] (cf. [1], Corollary 2-2). The reader is referred for
the related topics to [2], [9], [13], and [1]. Note that Talagrand [17]
showed that a weakly compactly generated Banach space is weakly Lin-
delof.

Our topological terminology is taken from [3] and the ferminology
related of functional analysis follows [14] and [9].

The symbol 0(X) stands for the Banach space of all continuous real-
valued functions on a compact space § with the sup-norm [14]. The
space C(X) is said to be weakly Lindeldof if it is Lindelof under the weak
topology. A Banach space F is wealkly compactly generated if there exist
a weakly compact set K in & such that F is the closed linear span of & [9];
if B = 0(8), then this is equivalent ([9], Theorem 3.2) to the condition
that § is an Eberlein compact, i.0., § is homeomorphic to a weakly compact
subset of o Banach space. Recall that for a compact scattered space S
the weak topology of O(8) eoincide in the unit ball with the topology

(*) K. Kunen constructod under the Continuum Hypothesis (preprint 1975)
a compact seattorod space K of cardinality N, such that every finite product of K
is hereditarily separable (Kunen showed that the existence of such K is in fact inde-
pendent on tlhe usual axioms for sot theory); one can verify that O'(K) is weakly Lin-
deldf (even hereditarily), but not weakly compactly generated (see [10], Remark 2).
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of pointwise convergence ([14], Corollary 19.7.7); in particular, in this
case the space O(8) is weakly Lindelof iff it is Lindelof in the topology
of pointwise convergence.

We shall use the following notation. The symbol R stands for the
real line, P denote the space of irrationals and N — the space of natural
numbers. D = {0, 1} stands for the two-point discrete group. Given two
topological spaces § and T' we denote by €(8, T) the space of all continu-
ous functions from § to T endowed with the topology of pointwise
convergence; the space C(8, D) will be congidered as the abelian group
with the pointwise group operations. For an abelian group ¢ and 4,
Bc@wepub A+ B = {a+b: acd,beB} and we write A 4 {b} = A4-b.
Finally, we write § = T when S can be embedded in T as & closed subspace

cl
and 4| stands for the cardinality of a set 4.

2. The space C(X). The following simple construction seems belong
to the topological folklor (cf. [12], the proof of Theorem 1, or [5], the
proof of Theorem 4.1, or else [14], 8.5.10 (G))-

Tet Q be the set of all countable ordinals, let I' = £ be the set off
all non-limit ordinals and 4 = @\I"be the set of all limit ordinals from Q.
Attach to each 1 e 4 a sequence s;: NV —I" such that s;(n) <A for nelN
and lims,(n) = 1. We give the set Q a topology as follows: the points
from I" are isolated and the basic neighbourhoods of a point Ae A are
of the form {A}u{s;(n): n>m}. We let X = Qu{w,} to be the one-
point compactification of the locally compact space 2, where w; is the
“point at infinity”.

M. Wage ([16], Example p. 20) observed that the space X is not an
Eberlein compact(?) and thus the space C(X) is not weakly compactly
generated (see Section 1).

3. Auxiliary lemmas. Our goal is to prove that O(X) is weakly Lin-
delot, or —equivalently —that C(X, R) is & Lindelof space (see Section 1).
Tt is reasonable to reduce this problem first to a simpler one (Lemma 1)
and then to give a simple sufficient condition (Lemma 4) which we shall
verify in the next section. Our approach is gsomewhat more general that
it is realy needed, however we think that this shed a proper light on our
situation.

Lewnra 1. Let 8 be a compact zero-dimensional space. The space O(S, R)
is Lindeldf if and only if the product O(8, DY is Lindelof. Moreover, given
a point p € 8, the space O(8, D) can be replaced in ihis equivalence by the
space G, = {feC(8,D): f(p) = 0}

(2) This follows e.a.sily from Rosenthal’s [13] characterization of Eberlein compacts
and the well-known theorem on regressive functions on normal sets of ordinals ([8],
Theorem 8, p. 347).
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Proof. One can restrict ourselves to infinite §; in this case the space
0(8, D) is not countably compact, Le., N < 0(8, D). By the exponential
law [3] we have

1) O(Sy-D)Ntfp O(S;DN)EG(S; R)

which proves the necessity. To prove sufficiency let us take a countable
dense sot @ = DY and let for every g <@ the family {V,,} be an open
bage at g. Put L, = {fe O(8, D"): ¢ ¢f(8)}; we verify that
2) L = N L, is Lindeldf.
[
Tndeed, since L, = \J {fe0(8,D"): f(8)nV,, =@} is an F,seb

neN
in 0(8, DV) and hence it iy a continuous image of a closed gubset of the

product C(8, DY) x N, the product P L, is a continuous image of a closed
qeQ .

subset of the product O(8, DYV x NV < 0(8, DY). Now, (2) follows

from the obgervation that L iy homeomorphic to the “diagonal” of the

space P I,.

(=Y

Wehave L = {f € 0(8,D"): f(8)n@ =0} 0(8,P), as D"\Q = P,
and it remains to prove that the space 0(8, R) is a confinuous image of
the space O(8, P). To this end let us choose an open mapping %: P—-=>R
and put F(f) = wof. Then F: 0(8,P)~0C(8, R) is continuous. For
a ge0(8, R) the set-valued function G(s) = w'og(s) has a continuous
selection f e O(8, P) (ie., f(s) eG(s) for se8); indeed, if U < P is open,
then the set {s: G(s)NT = O} =g~ ou(T) is an open F,-set in zero-
dimensional space § and we can use for example [8], Theorem 1, p. 458.
‘We have g = F(f) and thus I is onto.

The remaik about G, follows from the equality 0(8,D) 3, G, x D.

A space B is said to have the sirong condensation property provided
that for every uncountable subset 4 of H there exists an uncountable
subset O of 4 which is concentrated around a point ¢ e B (cf. [7 1, § 40, VII),
i.e., the set ON\V is at most countable whenever V is a neighbourhood of ¢

LA 2. Let T be a regular space of weight <8, with the strong con-
densation property. Then the countable product BY is Lindelof.

Proof. Since the weight of BY < ¥y, it is enough to verify that each
uncountable subset 4 of Y has a point of condensation in B¥, ie. for
gome # e BV any neighbourhood of the point # contains uncountably many
points of 4. .

Tt A < TN be a set of cardinality 8. Let p,, assign o each » = (@,)
e BV the nth coordinate @, of . We shall choose succesively uncountable
sety dg = A o Ay o ... and points ¢y, ¢ay ... € B guch that for an ne N
either the projection. p,, restricted to the set .4, is one-to-one and the set
p,(4,) is concentrated around the point ¢,, or else p,(4,) = {ca}-
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Assume that the set 4, is chosen and consider the set B =1p,.,(4,).
Tf B is uncountable, then there exist an uncountable set 0 = B and a point
0,41 € T such that 0 is concentrated around e,,; in this case we choose 4,
taking one point from each set p,},(¢)N4, where ¢ runs over O. If the
set B is countable, then there exists a point ¢,., € B such that the set
Ay = Ppii(e,) N A, is tneountable.

We shall verify that the point ¢ = (¢,) is a point of condensation of
the set A. For let V =V, X ... X VpyX EX ... be a basic neighbourhood
of ¢. By our choic3, for every # <k the set p,(4,)\V, = B, is either
non-empty, at most countable and the projection p, restricted to the
set A, is one-to-one, or else B, is empty. Therefore the set U p,*(B,)Nn4,

<k

= H is at most countable and the uncountable set Ak\Hn is contained in
VnA.

LuvmA 3. Let @ be an abelian topological group and let H be a subset
of G such that the product EY is Lindelsf and for every a €@ there emwist
Oy eny O € B suchthat @ = a;+ ... +a,. Then the product G is Lindelif.

Proof. The space BV x NV is Lindelsf (because either F is compact,
or ¥ ¢ E). Let us define a function f: BY x NV — G¥ by the formula
I ((agy @25 +0)y (s Mgy o)) = (B oos 0y G v F Gy gy -2
The function f is continuous and onto.

Let us summarize the result of this section in the form convenient
for the application to O(X, R) (observe, that the weight of C(X, R)
is ®y).

LevmA 4. Let @ = {fe0(X,D): f(o,) = 0}. If there exists a set
E < @ such that

(a) for every f e & there ewist fi, ..., f,, € B such that f = fi+ ... +fu,
(b) the space B has the sirong condensation property,
then the space C(X, R) is Lindelof.

4. The space 0(X) is weakly Lindelof. As was noticed, we have to
prove that O(X, R) is Lindelof. Let us put
3) B ={fe0(X,D): |f(1)nd] < 1}.

By virtue of Lemma 4 it is enough to prove that F < G satisfies the
conditions (a) and (b) of this lemma.

:Flet fe@ and let .f“(l)n./l = {Ays ey X} with 2; 5 4; for © ##j.
For 4 <k let f; e B satisfy fi(4;) =1; then f,., =f—(fi+ ... +f) el
and we have f = f;+ ... +f;,;. This proves (a).

We pass to the proof of (b). Let

(4) E, = {feC0(X,D): (1) = I'} .
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Observe, that 1, is & soubgroup of & consisting exactly of the functions
with finite support contained in I' and B+ E < B. The reasononings
given in the proof of (5) below are taken from TEngelking’s paper [4],
proof of Lemma 2. (%)
(8) The space B, has the strong condensation property. .
TLet 4 < B, be of cardinality ¥, and let §; = f~1(1) for f e A. Since the
sets S, are finite, there exist an uncountable set ¢ = 4 and a finite set
8 < I'such that 8, N 8, = & for distinet f, g € C (cf. [4], [1]). Let c e B,
be the characteristic function of the set §; then for every neighbourhood V
of ¢ the set ON\V s finite.

Let A = B bo o set of cardinaliby Ny and let

(6) 3 = {le: there exists an fe d with f(4) = 1}.
Case 1. The set X is bounded in @2, i.c., £ < [0, a] where a < w;. IE
14N By = ¥, then one can use (5) to choose an uncountable concentrated
subset of A; if this is not the case, then there exist a 1 €[0, o] and an
uncountable set B = 4 such that f(1) = 1 for f € B. Let w ¢ ¥ be @ func-
tion satistying %(4) = 1. Then B—u = H, and by (5) there exists an
uncountable set O, c B—u concentrated around a point ¢, € K. The
et O = C,-+u < A is concentrated around the point ¢ = ¢, +u e X.
Case 2. The set X is unbounded in Q. One can define in this case a trans-
finite sequence {A;: & < w;} = X such that for every &< w, we have
pe = sup{l,: o < £} < Ag. Lot us choose for every < w2 point fre d
with fe(d) =1 (thus f, #f, for £s£17). For every &< o, pub Je
= (pg, Ag]; then Jynd, =@ for & 1. Let

8 =findy, Ty = AN,

The sets T are finite and 8,N§, = @ for distinet & and 7. Let g, be the
characteristic function of 8, and lst kg be the characteristic function
of Ty we have g, eB, hye B, and fy = ge-+e. Observe, that the set
{9:: £< w,} is concentrated around the function identically equal to 0.
Sinco {hy: &< o} < By, there exists by (5) an uncountable set & of
ordinals less than o, and a point ¢ & H, such that for every neighbourhood
V of ¢ the relation ke ¢ V holds for at most countably many £eb. It
follows that the uncountable set ¢ == {fy: £ O} 18 concentrated around
the point ¢ e Hy.
This completes the proof that O(X) is weakly Lindelof.

) One can also prove (5) as follows: the space A = {zeBy: lw‘l.(l)!< 1}
is homeomorphie to the one-point compactification of the discrete space of t}arrhnahty N1
thus the space I' = @ 4™ has thestrong condensation property and. #, is a continu-

neN
ous image of 7.
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5. Remarks.

Remark 1. One can prove ([10], Theorem) that if § is a compact
separable space with the w,-th derived set empty and the space 0(S) is weakly
Lindelsf, then 8 is countable. Thus the space C(X) is, in some sense, the
simplest example of a function space with the properties mentioned in
the. title.

Remark 2. The Banach space B = ((X) can be described algo as
follows. Let m(I') be the Banach space of all bounded real funetiong on
the set of all countable non-limit ordinals I' endowed with the sap-norm
and let B (cf. (8)) be the set consisting of all characteristic functions of
subsets of I' which are finite or equal to s;(¥N) = N, for some A< W,
(see Section 2), Then B is the Banach space generated by & in m(l);
one ¢an say that B is the Banach space associated with the quasi-disjoint
family (4) {¥,: 1 < o,} of subsets of the set I'; cf. Johnson and Lindens-
trauss [6], where some examples of Banach spaces were constructed by
means of a quasi-disjoint family of subsets of N.

Remark 8. The following observation seems to be worth whil
noticing. Given a set of sequences of ordinals & = {s2: 2e 4} = I'V chosen
as in Section 2 one can topologize this choice in a few natural ways obtain-
ing spaces interesting from quite different points of view. First, as was
done by Stone [15], one can consider & with the “firgt difference” metrie,
which yields a striking example in non-separable Borel theory; next,
one can envich this topology by new open sets {s;: &< A} where 1 runs
over 4, obtaining an example in general topology [11]; finally, the Banach
Space generated by the characteristic functions of the sets 8;(N) and the

finite subsets of I’ (see Remark 2) provides an example in functional
analysis.

Added in proof. A solution of the problem of Corson was obtained independently

by M. Talagrand, Espaces de Banach faiblement E-analytiques, C.R.A.S. 284 (1977),
PP. 745-748.
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