STUDIA MATHEMATICA, T. LXIV. (1979)

A note on Hilder’s inequality -

by
B. FRANK JONES, JR.* (Houston, Tex.)

Abstract. Let F be the indefinite integral of a nonnegative function Ffon (0, oo)
whose L2 norm is 1. Let p be the Holder conjugate of ¢, and agsume 1 < ¢ < 0. Jodeit
has shown that the measure of the set on which #— FP < s is bounded by a constant
multiple of &. A new proof of this inequality is given, and during the proof it iy observed
that the set is covered by two intervals whose lengths are proportional to s.

Trudinger [3] has obtained some embeddings of Sobolev type func-
tion spaces. Moser [2] later improved these results using a reduction to
one dimension and a certain inequality for functions of one variable.
Subsequently Jodeit [1] gave a new, simpler proof of this inequality and
extended its applicabilify. The essential step in Jodeit’s proof was still
rather difficuls. In the present paper we present a very simple proof of
the Moser-Jodeit inequality. This proof also sheds some light on the
structure of a certain set which figures in the proof.

1. Alemma of Jodeit. Throughout the discussion we shall assume
that p and g are Holder conjugates (p™ ¢! = 1) and that 1 < ¢ < oo.
We shall assume that f> 0 is a function in L?(0, o), satisfying

wm=ﬁﬁMW<L

0

Let
F(@) = [fly)dy, 0<@< co.
0

Holder’s inequality implies

z

-1

(1) Far<(f fay) ",

0
and therefore, in particular,
(2) Ca—F(®)*>=0.
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The results of Moser and Jodeit assert that in some sense the last re-
lation must actually be a rather strong inequality. There are two equivalent
ways of stating this:

TeEEOREM 1. Let D be any nonnegative nonincreasing function in
IL*0, o). There ewists a constant C, depending only on q such that

[ ®lo—F @) < 0,18
0

Lzvwva. Let m denote Lebesgue measure on the line. Then for 0 < s < oo
m({p] s—F@)P < s} <

The equivalence of these two mequa,hm«es is almost immediate. By
choosing @ to be the characteristic function of the interval [0, ¢] we see

that the theorem implies the lemma. To obtain the converse we intro--

duce an “inverse” of &, the function
(y)

This fonction ¥ is nonicreasing -and

— sup{o| B(2)>y}.

< P(y) »y< Blz) =2 < Py).
Therefore

e g

Ply)dy = [ &(w)da.

If the lemma holds, then we calculate

f@@—

@)?)dw = m({m[ Pz —F(a)) > y})dy

m(fol @—F(a) < P(y)})dy

0%8 9\8

<f%mm@
0

= CylPly,

and we conclude that the theorem also holds.
In his paper Jodeit uses the function &(z) = ¢==.

2. Proof of the lemma. Let B denote the set {2 o — F(x)? < s}. We

first observe that [0, s] < B, trivially. Suppose # > 25 and o & H. Then (1)
implies

[

s Fa)P < (ff“dy)p_lm.‘

icm°
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Therefore, since |fll, <1,

@~~$w \fﬁ@ 1— fﬂ@.

Y(p—1)
jf“dy<1—(1—~—) e

\7)

Therefore,

(3)

@

where @ is a constant depending only on ¢. (This constant can be chosen
to be 2/(p—1).)

Now suppose that 2s < &, < @, and that @, and s, are both in &,
Then

—0 < 2~ Fl@)?  (by (2)

<
< s+ F(w)? —F(3,)® (since 2, € H)
= s+p&~ I(F(wz)-—F(wl)),
where the mean value theorem places & between F(w,) and F(w,).
Therefore,
@y
@y —@;, < s+pP(w)’7" [ fay

%1
Zg

< s+pw@-”’f’ f fay  (by (2))

< s+paj f reay)" (@

1

0
<8 ‘{‘pm%/q( f fqd?/)llq (g _991)]"7_

y

/g
as
< s+pmlt (—m—) (5 — )2
1

— )P

The last inequality used (3) in the case # = x; & 1. So we obtain

(4:) By— 0y K89 (asmn) (mg_wl)llp.

If we assiume in addition that », > 2p%as, then

@, g y
Ly — By < S"|‘( ) (@y— )"

2
_...ml

< 84 ———I—
" »
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Therefore,
Ba
Py — 2 < qs+—2 H

@y < 201+ 208 < 20, + qp~ %0 @y = bay,
where b is a constant depending only on ¢. Now (4) implies
By — By < 8+ (a8h)Ve (2, — )12,
Therefore,

Ly — B, — 1, \ P
_2.8_1<1+01/¢1(_2T}_) ,

where ¢ is a constant depending only on ¢. Finally, the last inequality
implies that .
By — By

s <q+te=4d,

another constant depending only on g¢.

The lemma now follows immediately. If & = [0, 2p%as], then there
is nothing more to be done. If this inclusion does not hold, we let #, be the
smallest number in BN [2p%as, o). We have then shown that if Ty is in B
and is larger than @, then #,—#; < ds. Thus, in any case ¥ is covered
by at most two intervals, each of which has length proportional to s.
Therefore, m(E)< (2p%a-+d)s.

COROLLARY. Under the hypothesis of the theorem,

lim (2 — F()?) = oo.

The proof of the corollary follows simply by noticing that the set F
is bounded.

3. Remarks. We remark that a routine estimation of the constants
shows that 0, <30q. ‘
] Also we remark that the covering of B by two intervals can be seen
in what is perhaps the simplest example. Namely, let f = 2~"2 on [0, 4]
and zero on (4, co). Then ’
o—2"*x” on [0, 1],

©—2 on [4, co].

z—F? =

The maximum of z—F? on [0, A] occurs at o =p-ll(p—-l)/1 and equals
q'p ™ = f1. I > B, then B =[0, A+s]. But if s<pj, then B
equals the union of two intervals [0, r]u[7, A+s)], and a direet egti-
mation yields r, < gs and i—r, << gs(p"?1—1).

&
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Notice that this example shows that we cannot expect to be able
to cover E with a single interval whose length is propdrtional to s. Also, if
we choose § = B, then m(B) = A+s = (§~*-+1)s. Thus,

gq> gpll(ﬂ—!)+1 >q.

Thus, the estimate O, < 30q exhibits the proper qualitative size of the
constant.

The example can also be used to show that if we allow @ to be an
arbitrary nonnegative I' function, then the left side of the imequaliby
of the theorem may be infinite.

4. Generalization. It is very easy to extend these results to include
the cagse of a Holder inequality involving two “arbitrary” functions,
rather than the pair f and 1 which were treated before. Thus, suppose g
and h are nonnegative functions on an interval (0, @) = (0, oo), and suppose
that g € L% and h e I*(0, b) for all b < a. Of course, p and ¢ are Holder
conjugates and 1< g< oo.

THEOREM 2. Under the above assumplions there ewists a constani O
depending only on g such that for any nonnegative nonincreasing function 0]
in L' (0, o), ‘

a z x
[@{igt [ way— ([ ghay)} (@) do < O,lglz® Il
0 0 0
Notice that the connection with Hplder’s inequality arises because

f ghay < lgl ([ w7 ay)"™,
0 0

which. shows that the argument of @ in the theorem is indeed nonnegative.

Now we give the proof. First note that it sufficies to give the proof
in case (g, = 1. If the theorem is known to hold in that case, then it
can be applied to the functions g/lgll, and D (|lglf») to obbain the more

general result.
Second, it will be convenient for the next remark to be able to assume ]

is continuous. This can be achieved by constructing a sequence @, > P, 2> ...
of continuous nondecreasing functions in I} (0, oo) such that

lim®,(z) = P@—)> O») for all &,

‘and applying the theorem to each @,. In the limit as % — oo, Fatou’s
lemms and Lebesgne’s dominated convergence theorem show that the
theorem holds for @. .

Tt will also be convenient to assume in the proof that h > 0. The
gufficiency of this case is seen by simply writing down the theorem for
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h+n"" and letting n - co. The continuity of @ and an application of
Fatou’s lemma give the result for A.
Now assuming k> 0 and |lgll, = 1, we introduce a change of variable

£=9) = [Way.

The new variable & has range 0 < £ < a = B dy, and ¢ is locally absol-
; .

utely continuous, striefly increasing, and has a locally absolutely continy~
ous inverse. Define a function f(£) by the formula

flo@) = g@)h@)-2.
Note that

Of f(&7ae = [flp@)e’ (2)do

a
= [ gnt—2a3 g
o

=fqu$
0
=1.

Thus, Theorem 1 implies that

a ¢
ofqi {5_ (Jf(n)dn)p} a5< Oy D)y,

By the changes of variable & — ¢(2) and 9 = p(y), we obtain the theorem.
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A function space 0(X) which is weakly Lindelsf
but not weakly compactly generated

by
ROMAN POL (Warszawa)

Abstract. We givo an example of a Banach function space ¢ (X), which is weakly
Lindelsf but not weakly compactly generated. This solves in the negative an old
problem of Corson and a problem of Benyamini, Rudin and Wage.

1. In this paper we construct the following example (the terminology
will be explain later).

ExavrLE. There is o Banach function space C(X) which is Lindelif
under the wealk topology but mot weakly compactly generated.(*)

The example solves in the negative a problem of Corson [2] (see also
Lindenstranss [9], Problems 6 and 6’) and Problem 7 of Benyamini,
Rudin and Wage [1] (cf. [1], Corollary 2-2). The reader is referred for
the related topics to [2], [9], [13], and [1]. Note that Talagrand [17]
showed that a weakly compactly generated Banach space is weakly Lin-
delof.

Our topological terminology is taken from [3] and the ferminology
related of functional analysis follows [14] and [9].

The symbol 0(X) stands for the Banach space of all continuous real-
valued functions on a compact space § with the sup-norm [14]. The
space C(X) is said to be weakly Lindeldof if it is Lindelof under the weak
topology. A Banach space F is wealkly compactly generated if there exist
a weakly compact set K in & such that F is the closed linear span of & [9];
if B = 0(8), then this is equivalent ([9], Theorem 3.2) to the condition
that § is an Eberlein compact, i.0., § is homeomorphic to a weakly compact
subset of o Banach space. Recall that for a compact scattered space S
the weak topology of O(8) eoincide in the unit ball with the topology

(*) K. Kunen constructod under the Continuum Hypothesis (preprint 1975)
a compact seattorod space K of cardinality N, such that every finite product of K
is hereditarily separable (Kunen showed that the existence of such K is in fact inde-
pendent on tlhe usual axioms for sot theory); one can verify that O'(K) is weakly Lin-
deldf (even hereditarily), but not weakly compactly generated (see [10], Remark 2).
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