

A note on Hölder's inequality

by

B. FRANK JONES, JR.* (Houston, Tex.)

Abstract. Let F be the indefinite integral of a nonnegative function f on $(0, \infty)$ whose L^q norm is 1. Let p be the Hölder conjugate of q, and assume $1 < q < \infty$. Jodeit has shown that the measure of the set on which $x - F^p < s$ is bounded by a constant multiple of s. A new proof of this inequality is given, and during the proof it is observed that the set is covered by two intervals whose lengths are proportional to s.

Trudinger [3] has obtained some embeddings of Sobolev type function spaces. Moser [2] later improved these results using a reduction to one dimension and a certain inequality for functions of one variable. Subsequently Jodeit [1] gave a new, simpler proof of this inequality and extended its applicability. The essential step in Jodeit's proof was still rather difficult. In the present paper we present a very simple proof of the Moser-Jodeit inequality. This proof also sheds some light on the structure of a certain set which figures in the proof.

1. A lemma of Jodeit. Throughout the discussion we shall assume that p and q are Hölder conjugates $(p^{-1}+q^{-1}=1)$ and that $1 < q < \infty$. We shall assume that $f \ge 0$ is a function in $L^q(0,\infty)$, satisfying

$$\|f\|_q = \left[\int\limits_0^\infty f^q dx
ight]^{1/q} \leqslant \mathbf{1}.$$

Let

$$F(x) = \int_0^x f(y) \, dy, \quad 0 \leqslant x < \infty.$$

Hölder's inequality implies

(1)
$$F(x)^{p} \leqslant \left(\int_{0}^{x} f^{\alpha} dy\right)^{p-1} x,$$

and therefore, in particular,

$$(2) x - F(x)^p \geqslant 0.$$

^{*} Partially supported by the National Science Foundation under NSF grant GP MPS75-08010.

The results of Moser and Jodeit assert that in some sense the last relation must actually be a rather strong inequality. There are two equivalent ways of stating this:

THEOREM 1. Let Φ be any nonnegative nonincreasing function in $L^1(0,\infty)$. There exists a constant C_a depending only on q such that

$$\int\limits_{0}^{\infty}\varPhi\left(x-F\left(x\right)^{p}\right)dx\leqslant C_{q}\left\Vert \varPhi\right\Vert _{1}.$$

LEMMA. Let m denote Lebesgue measure on the line. Then for $0 \leqslant s < \infty$

$$m(\{x \mid x - F(x)^p \leqslant s\}) \leqslant C_q s$$
.

The equivalence of these two inequalities is almost immediate. By choosing Φ to be the characteristic function of the interval [0,s] we see that the theorem implies the lemma. To obtain the converse we introduce an "inverse" of Φ , the function

$$\Psi(y) = \sup\{x \mid \Phi(x) \geqslant y\}.$$

This function Ψ is nonicreasing and

$$x < \Psi(y) \Rightarrow y \leqslant \Phi(x) \Rightarrow x \leqslant \Psi(y)$$

Therefore

$$\int_{0}^{\infty} \Psi(y) dy = \int_{0}^{\infty} \Phi(x) dx.$$

If the lemma holds, then we calculate

$$\begin{split} \int\limits_0^\infty \varPhi \left(x - F(x)^p \right) dx &= \int\limits_0^\infty m \left(\left\{ x \mid \varPhi \left(x - F(x)^p \right) \geqslant y \right\} \right) dy \\ &\leqslant \int\limits_0^\infty m \left(\left\{ x \mid x - F(x)^p \leqslant \varPsi(y) \right\} \right) dy \\ &\leqslant \int\limits_0^\infty C_q \varPsi(y) \, dy \\ &= C_q \|\varPhi\|_1, \end{split}$$

and we conclude that the theorem also holds.

In his paper Jodeit uses the function $\Phi(x) = e^{-x}$.

2. Proof of the lemma. Let E denote the set $\{x | x - F(x)^p \le s\}$. We first observe that $[0, s] \subset E$, trivially. Suppose x > 2s and $x \in E$. Then (1) implies

$$x-s \leqslant F(x)^p \leqslant \left(\int\limits_0^x f^q dy\right)^{p-1} x$$
.

Therefore, since $||f||_a \leq 1$,

$$\left(1-\frac{s}{x}\right)^{1/(p-1)}\leqslant \int\limits_0^x f^qdy\leqslant 1-\int\limits_x^\infty f^qdy\,.$$

Therefore,

(3)
$$\int_{x}^{\infty} f^{2} dy \leqslant 1 - \left(1 - \frac{s}{x}\right)^{1/(p-1)} \leqslant \frac{as}{x},$$

where a is a constant depending only on q. (This constant can be chosen to be 2/(p-1).)

Now suppose that $2s < x_1 < x_2$ and that x_1 and x_2 are both in E. Then

$$x_2 - x_1 \le x_2 - F(x_1)^p$$
 (by (2))
 $\le s + F(x_2)^p - F(x_1)^p$ (since $x_2 \in E$)
 $= s + p \xi^{p-1} \{ F(x_2) - F(x_1) \},$

where the mean value theorem places ξ between $F(x_1)$ and $F(x_2)$. Therefore,

$$\begin{split} x_2 - x_1 &\leqslant s + pF(x_2)^{p-1} \int\limits_{x_1}^{x_2} f dy \\ &\leqslant s + px_2^{(p-1)/p} \int\limits_{x_1}^{x_2} f dy \quad \text{(by (2))} \\ &\leqslant s + px_2^{1/q} \Big(\int\limits_{x_1}^{x_2} f^2 dy\Big)^{1/q} \; (x_2 - x_1)^{1/p} \\ &\leqslant s + px_2^{1/q} \Big(\int\limits_{x_1}^{\infty} f^2 dy\Big)^{1/q} \; (x_2 - x_1)^{1/p} \\ &\leqslant s + px_2^{1/q} \Big(\frac{as}{x_1}\Big)^{1/q} \; (x_2 - x_1)^{1/p} \; . \end{split}$$

The last inequality used (3) in the case $x = x_1 \in E$. So we obtain

(4)
$$x_2 - x_1 \leqslant s + p \left(\frac{as x_2}{x_1} \right)^{1/p} (x_2 - x_1)^{1/p}.$$

If we assume in addition that $x_1 \ge 2p^q as$, then

$$\begin{split} x_2 - x_1 &\leqslant s + \left(\frac{x_2}{2}\right)^{1/q} (x_2 - x_1)^{1/p} \\ &\leqslant s + \frac{x_2}{2q} + \frac{x_2 - x_1}{p}. \end{split}$$

Therefore,

$$x_2-x_1\leqslant qs+\frac{x_2}{2};$$

$$x_2 \leq 2x_1 + 2qs \leq 2x_1 + qp^{-q}a^{-1}x_1 = bx_1$$

where b is a constant depending only on q. Now (4) implies

$$x_2 - x_1 \leqslant s + p(asb)^{1/q}(x_2 - x_1)^{1/p}$$
.

Therefore,

$$\frac{x_2 - x_1}{s} \leqslant 1 + c^{1/q} \left(\frac{x_2 - x_1}{s} \right)^{1/p},$$

where c is a constant depending only on q. Finally, the last inequality implies that

$$\frac{x_2-x_1}{s}\leqslant q+c=d,$$

another constant depending only on q.

The lemma now follows immediately. If $E \subset [0, 2p^a as]$, then there is nothing more to be done. If this inclusion does not hold, we let x_1 be the smallest number in $E \cap [2p^a as, \infty)$. We have then shown that if x_2 is in E and is larger than x_1 , then $x_2 - x_1 \leq ds$. Thus, in any case E is covered by at most two intervals, each of which has length proportional to s. Therefore, $m(E) \leq (2p^a a + d)s$.

COROLLARY. Under the hypothesis of the theorem,

$$\lim_{x\to\infty} (x - F(x)^p) = \infty.$$

The proof of the corollary follows simply by noticing that the set ${\cal E}$ is bounded.

3. Remarks. We remark that a routine estimation of the constants shows that $C_q \leqslant 30q$.

Also we remark that the covering of E by two intervals can be seen in what is perhaps the simplest example. Namely, let $f = \lambda^{-1/q}$ on $[0, \lambda]$ and zero on (λ, ∞) . Then

$$x - F^p = egin{cases} x - \lambda^{1-p} x^p & ext{on} & [0, \lambda], \ x - \lambda & ext{on} & [\lambda, \infty]. \end{cases}$$

The maximum of $x-F^p$ on $[0,\lambda]$ occurs at $x=p^{-1/(p-1)}\lambda$ and equals $q^{-1}p^{-1/p-1}=\beta\lambda$. If $s\geqslant\beta\lambda$, then $E=[0,\lambda+s]$. But if $s<\beta\lambda$, then E equals the union of two intervals $[0,r_1]\cup[r_2,\lambda+s]$, and a direct estimation yields $r_1\leqslant qs$ and $\lambda-r_2\leqslant qs(p^{1/p-1}-1)$.

Notice that this example shows that we cannot expect to be able to cover E with a single interval whose length is proportional to s. Also, if we choose $s = \beta \lambda$, then $m(E) = \lambda + s = (\beta^{-1} + 1)s$. Thus,

$$C_q \geqslant q p^{1/(p-1)} + 1 > q$$
.

Thus, the estimate $C_q \leqslant 30q$ exhibits the proper qualitative size of the constant.

The example can also be used to show that if we allow Φ to be an arbitrary nonnegative L^1 function, then the left side of the inequality of the theorem may be infinite.

4. Generalization. It is very easy to extend these results to include the case of a Hölder inequality involving two "arbitrary" functions, rather than the pair f and 1 which were treated before. Thus, suppose g and h are nonnegative functions on an interval $(0, a) \subset (0, \infty)$, and suppose that $g \in L^q$ and $h \in L^p(0, b)$ for all b < a. Of course, p and q are Hölder conjugates and $1 < q < \infty$.

THEOREM 2. Under the above assumptions there exists a constant C_q depending only on q such that for any nonnegative nonincreasing function Φ in $L^1(0, \infty)$,

$$\int\limits_0^a \varPhi\left\{\|g\|_q^p\int\limits_0^x h^p\,dy - \Bigl(\int\limits_0^x gh\,dy\Bigr)^p\right\}h(x)^p\,dx \leqslant C_q\,\|g\|_q^{-p}\,\|\varPhi\|_1.$$

Notice that the connection with Hölder's inequality arises because

$$\int\limits_0^x gh\,dy\leqslant \|g\|_q\Big(\int\limits_0^x h^p\,dy\Big)^{1/p},$$

which shows that the argument of Φ in the theorem is indeed nonnegative.

Now we give the proof. First note that it sufficies to give the proof in case $\|g\|_q = 1$. If the theorem is known to hold in that case, then it can be applied to the functions $g/\|g\|_q$ and $\Phi(\|g\|_q^p x)$ to obtain the more general result.

Second, it will be convenient for the next remark to be able to assume Φ is continuous. This can be achieved by constructing a sequence $\Phi_1 \geqslant \Phi_2 \geqslant \ldots$ of continuous nondecreasing functions in $L^1(0, \infty)$ such that

$$\lim_{n\to\infty} \Phi_n(x) = \Phi(x-) \geqslant \Phi(x) \quad \text{ for all } x,$$

and applying the theorem to each Φ_n . In the limit as $n \to \infty$, Fatou's lemma and Lebesgue's dominated convergence theorem show that the theorem holds for Φ .

It will also be convenient to assume in the proof that h > 0. The sufficiency of this case is seen by simply writing down the theorem for

 $h+n^{-1}$ and letting $n\to\infty$. The continuity of Φ and an application of Fatou's lemma give the result for h.

Now assuming h > 0 and $||g||_q = 1$, we introduce a change of variable

$$\xi = \varphi(x) \equiv \int_0^x h^p dy.$$

The new variable ξ has range $0 < \xi < \alpha = \int_0^a h^p dy$, and φ is locally absolutely continuous, strictly increasing, and has a locally absolutely continuous inverse. Define a function $f(\xi)$ by the formula

$$f(\varphi(x)) = g(x)h(x)^{1-p}.$$

Note that

$$\int_{0}^{a} f(\xi)^{p} d\xi = \int_{0}^{a} f(\varphi(x))^{q} \varphi'(x) dx$$

$$= \int_{0}^{a} g^{q} h^{(1-p)q} h^{p} dx$$

$$= \int_{0}^{a} g^{q} dx$$

$$= 1.$$

Thus, Theorem 1 implies that

$$\int\limits_0^a \varPhi\left\{\xi-\left(\int\limits_0^\xi f(\eta)\,d\,\eta\right)^p\right\}\,d\,\xi\leqslant C_q\,\|\varPhi\|_1.$$

By the changes of variable $\xi = \varphi(x)$ and $\eta = \varphi(y)$, we obtain the theorem.

References

- M. Jodeit, An inequality for the indefinite integral of a function in L^q, Studia Math. 44 (1972), pp. 545-554.
- [2] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana J. 20 (1971), pp. 1077-1092.
- [3] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), pp. 473-484.

A function space C(X) which is weakly Lindelöf but not weakly compactly generated

by

ROMAN POL (Warszawa)

Abstract. We give an example of a Banach function space $\mathcal{C}(X)$, which is weakly Lindelöf but not weakly compactly generated. This solves in the negative an old problem of Corson and a problem of Benyamini, Rudin and Wage.

1. In this paper we construct the following example (the terminology will be explain later).

EXAMPLE. There is a Banach function space C(X) which is Lindelöf under the weak topology but not weakly compactly generated. (1)

The example solves in the negative a problem of Corson [2] (see also Lindenstrauss [9], Problems 6 and 6') and Problem 7 of Benyamini, Rudin and Wage [1] (cf. [1], Corollary 2-2). The reader is referred for the related topics to [2], [9], [13], and [1]. Note that Talagrand [17] showed that a weakly compactly generated Banach space is weakly Lindelöf.

Our topological terminology is taken from [3] and the terminology related of functional analysis follows [14] and [9].

The symbol C(X) stands for the Banach space of all continuous real-valued functions on a compact space S with the sup-norm [14]. The space C(X) is said to be weakly Lindelöf if it is Lindelöf under the weak topology. A Banach space E is weakly compactly generated if there exist a weakly compact set K in E such that E is the closed linear span of K [9]; if E = C(S), then this is equivalent ([9], Theorem 3.2) to the condition that S is an Eberlein compact, i.e., S is homeomorphic to a weakly compact subset of a Banach space. Recall that for a compact scattered space S the weak topology of C(S) coincide in the unit ball with the topology

⁽¹⁾ K. Kunen constructed under the Continuum Hypothesis (preprint 1975) a compact scattered space K of cardinality \aleph_1 such that every finite product of K is hereditarily separable (Kunen showed that the existence of such K is in fact independent on the usual axioms for set theory); one can verify that C(K) is weakly Lindelöf (even hereditarily), but not weakly compactly generated (see [10], Remark 2).