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An axiomatic approach to joint spectra I
by
W. ZELAZKO (Warszawa)

Abstract. We introduce and study axioms for joint spectra and related concepts
in Banach algebras. In particular, we prove the existence of the largest spectrum
and the minimal speetra and give some of their properties.

1. Introduction. Let . be a commutative complex unital Banach
algebra with the unit ¢. For any subset ®, = &, a, = {#o}eee its joint
spectrum (or shortly spectrum) in & is defined as

(1) cd(ma) = {(f(ma))aeu e C": fE SUE(M)}’

where M () is the set of all multiplicative-linear functionals of the al-
gebra 7. The spectrum o, (x,) is always a non-void compact subset of C®.
The joint spectrum is a basic concept for one of the most important chap-
ters in the theory of commutative Banach algebras, namely for the fune-
tional caleulus in these algebras. However, the concept of a joint spectrum
is not so clear in the non-commutative case, even if we reduce our atten-
tion to commuting families of elements of the algebra in question. Thus
different writers have adopted different concepts of a joint spectrum.
Bonsall and Duncan propose in [2] to define a spectrum as the union
of the left and the right spectrum. The same concept is adopted in the
papers of Harte [6], [7]. Dash in [5] considers the bicommutant spectrum
while Taylor in [11], before introducing his very interesting concept,
starts with the commutant spectrum. All these concepts concide in the
case of a single element of the algebra in question. Some special subsets
of joint spectra have also been studied, such as the left spectrum, the
right spectrum, the defect spectrum, and, in particular, the approximate
point spectram. (ef. [37], [4], [5], [6], [7], [10]). In Section 3 of this paper
we propose axioms for the joint spectra and some of their subsets, exten-
ding our previous concept, called a spectral system ([10], Definition 2.1).
As the main axiom we assume here the spectral mapping property for
polynomial maps. Since not all spectra considered before obey this axiom,
Wwe propose here the term “spectroid”. So, in particular, the commutant
and bicommutant spectra are not spectra but spectroids in the sense
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of this paper. After the examples of Section 4 we give in Section 5 the
functional representation of subspectra. We also obtain in this section
the spectral mapping theorem for spectra under rational maps and give a
description of some situations with a mmique spectrum. In Section 6 we
prove the existence of the largest spectrum and the minimal spectra and
subspectra. In Section 7 we consider the maps of spectra induced by homo-
morphisms; in particular, we show thatb the largest spectrum is invariant
under automorphisms of the algebra in question.

In this paper we do not consider questions connected with the func-
tional caleuli.

2. Notation. Let 4 be a complex unital Banach algebra with the
unit e. The set of all invertible elements of A will be denoted by G(4).
The family of all non-void subsets of A consisting of pairwise commuting
elements will be designated by c(4). The elements of ¢(4) will be denoted
by boldfaced characters a,, where a is 2 (non-void) set of indexes. So
®, = {#}ecq- The set c(A) is partially ordered by inclusion, its maximal
elements coincide with the maximal commutative subalgebras of A.
The set of all maximal commutative subalgebras of 4 will be denoted
by m(4), and so m(4) = ¢(4). We shall write ¢ (4) for the family of all
finite elements of ¢(4). As usual, C* = []C,, where all C, are equal to

aca
the field C of all complex numbers. C° is then a topological linear space
(with the usual product topology). If a and f are non-void sets of indexes,
then p4(t,) will stand for a family of polynomials {Dp()}sep, With complex
coefficients, in indeterminates &, = {f,},, (each p, depends only upon
a finite number of indeterminates ¥, ,%,, ..., %,).

Each such system of polynomials induces a map, denoted by the
same symbol py: C°— C?, given by #,—> (0s(2.))sepe C’, where 2,
= (8)aeq € €% Such a map will be called a polynomial map. Also, if @, e c(4),
then taking it instead of %, in py(%,), we again abtain an element p,(a,)
e c(4d).

Similarly, r,(t,) will stand for a family of rational functions in vari-

t
ables {iluce. S0 75(8) = {rs(E)lsey BDA 7,(E) = 1;"(( t")),
B\Ya
and ¢, are complex polynomials. We shall assume that p; and ¢, have
no common roots. As before, the system »; defines a map from () {z,
B

where Ds

ef
e 0% g4(2,) # 0} into C%, which will be called a rational map. Also, if

i
x, e c(4d) and 1,(1,) = {—M“—)} is a family of rational functions,
26(ta) } pep

then »g(x,) € c(4), provided g,(x,) € G(4) for all f e p.
Occasionally, we shall omit the index set when it is clear from the
context; e.g., we shall sometimes write 2 instead of z,, etc.
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3. Axioms and definitions. Suppose that to each family @, & c(4)
there corresponds & non-void compact subset of C*

(@)

x,—G(x,) < C*.
We shall formulate several conditions (axioms) for such a map

3(a,) = [ [ o),

where %, = {®o}een € €(4), and o {z,} is the usual spectrum of an element
x, €A, defined as o(®,) = {Ae0: 2—1e ¢ G(4)}.
From this condition it follows, in particular, that

@

(3)

for every ¢ A. Here, for simplicity, we write ¢ («) instead of & ({x}).
Assume as the second axiom the following stronger version of for-
mula (3)
(Im) (@) = o(w)
forallw e 4.
The most essential will be the following axiom:

o(z) < (@)

(III) F(ppls) = Pyd (@)

here @, € c(4) and p, is a system of complex polynomials in indeterminates
£,, or a polynomial map. The property of the map (2) given by axiom (IIT)
will be called the spectral mapping property of .

3.1. DEFINITION. A map (2)is called a subspectrum on A if axioms (I)
and (III) are satisfied. It is called a spectrum, if, moreover, axiom (IT)
is satistied (it is sufficient to assume only axiom (IT) and (ILL) here since
axiom (I) is their consequence). The set of all spectra on 4 will be denoted
by Sp (4), and the set of all subspectra by Sp, (4), so that Sp(4) = Spi(4).

Let us formulate some consequences of the spectral mapping property.
Suppose first that g < « and put p,(f,) =1, for all fep. Axiom (IIT)
then implies
(Iv)

where x, € ¢(4), f is 2 non-void subset of , and = is the projection of C*
onto CF given by =(z,) = 2.

The property of & given by formula (IV) will be called the projection
property of o. ‘

Now put f = a and p,(f,) = t,-+ A, Where 4, € C. Axiom (III) then
implies
V)

& () = m6 (@),

(@t ar6) = (o) ey
where @, € c(4), A4 = (A)aea € 0% XaT 26 = {ma'*"lue}aéu‘
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3.2. DEFINITION. A speciroid on A is & map (2) satisfying axioms (I)
and (V). If, moreover, axiom (IV) is also satistied, a spectroid will be
called @ semispectrum. The set of all spectroids on A will be denoted by
Sps(A4), and the set of all semispectra by Sp,(4). Thus we have Sp(4)
= 8p,(4) = 8p,(4) = Spa(4).

Axiom (V) can be used for defining a spectroid by means of regu-
larity. So we give the following

3.3. DEFINITION. Let & € Spy(4). An element x, € ¢{4) will be called
G-regular if 0 ¢ G(x,), where 0 is the zero element of the linear space C*
The set of all G-regular elements will be denoted by Reg (). From axiom (V)
it follows that each spectroid can be defined by means of G-regular ele-
ments:

a(x,) = {A, € C*: ®,—1, ¢ ¢ Reg(d)}.

Let us remark that in order to define a semispectrum on c(4) it is
sufficient to define it only on maximal subalgebras of 4. In fact, for every
@, € ¢(4) there is an element & € m(4) with 2, = &. If o = x; then
a < p and axiom (IV) implies that &(x,) = n&(x;) if & eSp,y(4). So all
values of ¢ are obtained by projecting the values ¢(&), & e m(4).

Let us also remark that in many concrete situations we have a semi-
spectrum defined only on elements of ¢,(4). In this case we can extend
it to ¢(4), using the following result of [10], which in our términology
reads as follows:

3.4. PROPOSITION. Let & be a semispectrum defined.on elements of cy(A).
There exists a unique semispectrum on ¢(A) which, restriced 1o co(4), equals &.
If ¢ is a subspectrum or a spectrum, then a,ts extension 18 also o subspectrum,
or & spectrum, respectively.

‘We have assumed here a Banach algebm convention, i.e. all concepts
are related to a Banach algebra 4. However, many important spectroids
are defined in the so called spatial convention, i.e. they are defined on the
algebra L(X) of all continuous endomorphisms of a complex Banach
space X, and in the definition elements of X are involved. If such a defi-
nition does not depend upon a particular choice of the space X, we can have
this spectroid also in the Banach algebra convention. For a given Banach
algebra A we simply put X = 4 and interpret elements of 4 ag-endo-
morphisms of X. We can do it in two ways; interpreting elements of A
ag operators either of left multiplications or of right multiplication. Thus
we embed 4 in L(X) in two ways, and so a speetroid on L(X) gives rise
to two spectroids defined on A4, namely the left one and the right one
(we are not interested in the iteration of this procedure, since we can embed
L(X) in L(L(X)) again in two ways, ete).

In the next section, recailing the known and important examples

e ©
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of spectroids, we shall exploit both conventions, though the general
convention accepted in this paper is the Banach algebra one.

4. Examples of spectroids.

4.0. The usual joint spectrum (1) in a commutative Banach algebra A.
Tt is an element of Sp(4).

4.1. The left spectrum o; and the right spectrum o,. An element @,
is oyregular (o-regular) if the left (right) ideal in A4 generated by the set x,
is improper and coineides with the whole of A. Both the left and the right
gpectra are in Sp,(4), but not, in general, in Sp(4) (cf. [6], [10]).

4.2. The spectrum o. It is defined by o(@,) = oj(2,)va.(x,), @, € c(4).
It belongs to Sp(4) (ef. [2], [T]).

4.3. The product &, — [[o(%,) is 2 semispectrum but not a spectrum
(cf. [10]). aca

4.4. Thebicommutant spectrum ¢”. For any , € ¢(4) its bicommutant
()" is the intersection [{# em(4): ®, = #}.- It is a commutative
subalgebra of A and ¢’/ (=,) is defined as the usual joint spectrum 4.0 in
this subalgebra. We have o'’ e Spy(4), but, in‘geneml, it is not a semi-
spectrum  (cf. [10]).

4.5. The commutbant spectrum ¢’. For any &, € ¢(4) its commutant (x,)’
is the union | J {# e m(4): @, = o7}. An element @, is o’-regular if there
are elements oy, Ty, ..., T, €®, 204 Y1, Y2y ..o, Yp€(®,) such that

n
Ymy; = e. The commutant spectrum is a spectroid but not, in general,
i=1

a semispectrum (cf. [10]).
4.6. The defect spectrum o;. We exploit here the spatial convention.
An element x, € c( (X)) i8 o -regular if there are elements &, Lz, ..., By € Lo

such that {Z%E &LeX } = X. In the Banach algebra convention we

then have two spectra: the left defect spectrum o}, and the right defect
spectrum of. The defect spectrum is & subspectrum (cf. [10], where it
was denoted by o, (Definition 2.9)).

4.7. The approximate point spectrum o,. Here we again apply the
spatial convention. An element ®, € ¢(L(X)) is o,regular if it is N0t o,
singular, and it is o,-singular if there is a net (£;) of elements of X, with
&l =1, such that lmlm £, =0 for all aea Passing to the Banach

algebra convention, We obtain two concepts of a left and right approxi-
mate point spectrum, both being subspectra (ct. [63, [10]).

4.8. The Taylor spectrum op. Let X be a complex Banach space
and consider the linear spaces X,, Xy, ..., X, of homogeneous exterior

forms of degrees, respectively, 0,1, ..., 7, in indeterminates ey, sy -« fn,


GUEST


254 W. Zelazko

with coefficients from X. Thus

X, = 2 iy @iy A By A oer N OyT £ipiy € X}
iy <dge..<ig
and X, may be identified with X. Leb (2, %,, ..., ®,) be a fixed n-tuple
of pairwise commuting operators in L(X). This #-tuple gives rise to linear
maps
0y X~ X35 (kF=0,1,..,n, with X, = {0})

defined by

n
Op(€ey, A €y Ao A &) = Zﬂ%(f)% A G A A G,
=1
exploiting the usual convention e; A ¢; = —¢; A ¢;. The n-tuple (2, ..., z,)
is og-regular if the sequence

O_QXG_JL;XI-—;-—-),_,-—>in>Xk+]——~—>...——~>Xﬂ—>0

is exact. This defines a spectrum on ¢ (L (X)), which, by Proposition 3.4
can be extended to a spectrum on ¢(L(X)). If we want to have oy defined
on ¢(4), we proceed as at the end of Section 3, obtaining the left and right
Taylor speetra (ef. [11], [127]).

For more examples cf. [9], where some families of subspectra conta-
ined in the Taylor spectrum are considered.

~ 5. The functional representation of a subspectrum. If we have a semi-

specttum on A4, then from the projection property (axiom (IV)) it follows
that we know it on the whole of c(A) if we know it on m(A4). For this
reason we want to know how subspectra behave on the maximal commu-
tative subalgebras of A. In thiy section we study the subspectra on A4
restricted to the elements of m(4).

5.1. THEOREM. Let 5 be a subspectrum on A. Then
(4) F(x,) = oy,

Jor every x, e c(A) and every o e m(A) with x, < . (Here o (2,) is the
usual joint spectrum in the commutative Banach algebra s7.)
Proof. We first show that for any < e m(4) we have

(5) F(t) < oy t).

In fact, let o = x; and suppose that there is in C? an element 2
such that 4 e 7( )\ o (). Since o, () is a polynomially convex subset
of C” (cf. [14]), it follows that there exists a polynomial p (ts) such that

(6) [p(A)|> sup {lp(2)]: 2 eoy(L)}.
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Applying this polynomial to s, we obtain an element  — p(H) e o,
and, by axiom (IIT), we have

) P(2) ep(3(s2)) = &(p(#)) = &(w).

On the other hand, we also have
Oy (@) = O'M(P(&{)) =P(0'.<ar(&{))y

which in v'iew of (6), shows that p(2) ¢ o, (x) = o (o). Together with rela-
tion (7) this s]%ows that (@) ¢ o (), which contradicts formula (3). Thus
we have established formula (5). Formula (4) now follows by projectiong C*
onto C* and using axiom (IV).

5.2. Remark. From Theorem 3 of [10] it immediately follows, that
if & is & semispectrum on 4 and the relation (4) holds true for each x, sc(d)
and each o e m(4A) satisfying ®, < o, then & is a subspectrum.

We- can now give the functional representation of a subspectrum,

5.3. THEOREM. Let & be a subspectrum on A. For each < m(A) there
exisis & compact subset A(G, o) = M (L) such that

(8) (%) = {(f(#))uce € C*: f e 4(3, o))}
for all ¢, € c(4) with ®, = <. ‘

Proof. Fix an element « em(4). By formula (5) for each 2 e & (),
4 = ()pesr, there exists a unique functional f € () such that flz) =4,
for all # e /. The correspondence i+ f is a homeomorphism between
d(&7) treated, by (5), as a subset of ¢, () and a subset of I (o) (which,
in turn, is homeomorphic to o, (.)). Denote this subset by 4(5, ).
Since () is compact 4 (5, /) is also compact: We have

(9 H(A) = {(f(@))oewr € C°: f 4(5, )},

where 85 2 suitable set of indexes. Formula (8) now follows from formula (9)
and the projection property of 5.

From this result we obtain the following spectral mapping theorem
for elements of Sp 4, which also gives a characterization of spectra among
the subspectra:

5.4. TumorREM. Let & be o subspectrum on A. Then & is a specirum on A
if and only for each @, & c(4) and each system of rational functions 75(E,)
= 24(t) 145(t,), B < B, such that

(10) 5‘(@',;) < {7, € C": gp(=,) # 0 for all g f}
we have
(11) ‘ g(ac,) € G(4)

5 — Studia Mathematica LXIV.3
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for all B €p and
(12) r3(®,) = & (rp(e.).

& ; i lement # € A such
Proof. If & eSp(4)\Sp(4), thenﬁthere is an e @ s
that o(@)\G(2) is non-void. If 1 € o (%) \& (), then r(f) = (t—A)"" satisfies,
together with @, = {#}, relation (10) but not relation (11).

) On the other hand, suppose that & is & speotrun} on A. Let ?z:u ec(d)
and let ,(f,) be 2 family of rational functions satisfying relation (10).
TFor any fefp it is o(g(a,) = &(g(®) = (F(.), and so, by~ (10),
0 ¢ o (gy(2e,))- This implies relation (11). Using formula (8), we have for
any o em(d), with @, < o,

rgi(ay) = [ ([7(@o)aea) € €% £ € 4(5, )}
= {(rﬁ ((f(wa))aea))ﬂeﬁ € Cﬂ: f e (&7 d)}
= {(Flrp())pes € €": F 2 A(E, S} = {rp(®a),

and formula (12) holds true. ,
5.5. DEFINITION. Let « be a commutative unital Banach algebra.
A compact subset 4 € M(+) is called a spectral set for & if

(13) o@) = {f(z)eC: fed}

for all » e . o .
Every commutative Banach algebra possesses & minimal spectral

set (with respect to inclusion), though usually such a set is not determined
in a unique way (cf. Example 6.7). It is easy to see that a spectral set
for «f must contain its Shilov boundary I'(«/). If & is & speetrgm on 4,
then A(&, &) must be a spectral set for each o e m(4). This remark
immediately implies the following corollary to Theorem 5.3.

5.6. COROILARY. If for each o em(A) we have I'() = I(H),
then A has a unique specirum given by

(14) o(@,) = 04 (%)

for all @, € c(A) and o em(4) with ¢, <= .

Such 3 situation holds e.g. for ES-algebras (for the definition cf. [13];
an ES-algebra is characterized by the property that all its elements have
totally disconnected spectra), in particular for 4 = L(C"), or for a group
algebra of a compact group (cf. [13]).

In the next theorem we shall use the theorem of Fuglede-Putnam
(cf. [81) which states that if @ is & normal operator on a Hilbert space H
such that sy = y= for an operator y, then z*y = yw*.
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5.7. THROREM. Let H be a complex Hilbert space andlet 4 = L(H). Then
all spectra on A coincide on elements of c(4) consisitng of normal operators.

Proof. Take any element @, in ¢(4) consisting of normal operators.
Let o be a maximal subset of 4 consisting of pairwise commuting normal
operators and containing the set x,. By the Fuglede—Putnam theorem
we have &% = o, and by the maximality .o is a commutative C*-algebra.
We claim that o em(4). In fact, if # commutes with all elements of L,
then, by the Fuglede—Putnam theorem z* also commubes and so do the
elements (s-+2*)/2 and (w—*)[2i. The latter element, being hermitian,
belongs. to 3/, and so z e .. Hence & em(4), and M() = I'(2),
since o is a C*-algebra. Thus M(.7) is the unique spectral set for o,
and so A(6, ) = M(.Z)forall 5 € Sp(4). This means that () = o, ()
and so, by the projection property, &(x,) = o, (x,) for each & eS8p(4),
which gives the desired result.

6. The largest spectrum and the minimal spectra and subspectra.

61 DzrinirioN. For two subspectra &, &, defined on a Bamnach
algebra 4 we shall write 5, < 6, if oy(2,) < oy(a,) for all x, ec(4).

In- this section we shall show that every Banach algebra possesses
a largest spectrum o, i.e. a spectrum such that &< o, for all 5 e Sp,(4).
We shall show also that there exist minimal spectra and subspectra.

The proof of the following lemma is an easy exercise on compact
sets and continuous maps.

6.2. LeMMA. Let p be a continuous map from C* into C*, and let Q be
o subset of C* with compact dosure Q. Then p(R2) = p(R).

This lemma will be used in the proof of the following

6.3. TEEOREM. There exists a largest spectrum o, on A.

Proof. For a fixed x, e c(4) define
(1) om(@o) = Uf5(@,): G  8p, (4)}
i is & compact subset of C* satistying axiom (D. :

Take any family of complex polynomials Pp(t,). Since it defines

& continuous map from C* into C?, we can apply Lemma 6.2, taking as Q

the union (J{3(x,): & 8p,;(4)} and as p the map defined by the family
ps(t,). Thus

Pyfom(a) = 2y {o(x.): & €S, (4))]
=25(U {F(@.): & «8p:(4)}) = Ulp,(6(®,): 5 eSp,(a)}
= Ul (py(@): & eSpy(d)} = o (pylae,)),

and so o, satisfies axiom (IIT). Axiom (II) is satisfied as well, since oy,
is larger than some spectrum, e.g. the spectrum of Example 4.2.

¥
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By Theorem 5.1 we obtain the following corollary:
6.4. COROLLARY. For all x, € c(A) we have
on(®) = N{oLlm,): o em(d), 2, = L} = o (2,).

Remark. For the algebra 4 in which o, (2,) does not depend upon
the subalgebra < e m(A) containing the set @, € ¢(4), the largest spec-
trum is given by oy, (®,). = oy (2,). Such a situation holds e.g. for the
situation described in Corollary 5.6. In the general case, however, the
value of o,,(%,) depends upon 7, as shown in paper [1]. Thus the prob-
lem arises of a more efective description of the largest specfrum. In the
commutative cage the largest spectrum equals o, but in the non-com-
mutative we know it only in situations described by Corollary 5.6.

We now prove a theorem concerning the existence of minimal spectra
and subspectra. )

6.5. THEOREM. Sp(4) and Sp,(4) contain the minimal elements.

Proof. Suppose that we have a linearly ordered subset {o,} = Sp,(4),
We shail show that there exists an element o, e Sp,;(4) such that o, < ¢
for all ¢« To this end put oo(®,) = (Mo.(%,) for each x, € c(4). By the

finite intersection property o,(®,) is a non-void compact subset of C
which clearly satisfies axiom (I). If {0} = Sp(4), then o, satisfies also
axiom (II). In fact, let us fix an index a € a. For each 4 € o(x,) and each ¢
there is a point 4, € o,(2,) such that =(i) = A, where m is the projection
of C® onto the ath coordinate plane. The net {i} contains a subset con-
vergent to a point 1 e C* Since A € ¢,(a,) for all x> (the ordering of
indexes ¢ is the same as the ordering of the corresponding spectra and we
write % > ¢ if 0, > 0,), it follows that 2 is in the intersection o,(e,). We have
(1) = Hm() = 4, and $0 wo,(x,) contains the spectrum o(w,). Together

with the relation given by (I), this implies that o, satisfies axiom (II).
Axiom (IIT) is also satisfied since for any element @, € ¢(4) and any
system of complex polynomials p,(f,) we have

PN (@) = Npilen(@) = (ofpslan) = olpy(@).

Applying the Kuratowski-Zorn lemma, we see that there are minimal
elements both in Sp(A) and Sp,(4).

If o is a commutative Banach algebra, then the largest spectrum
coincides with the usual joint speetrum, while the minimal spectra are
of the form ¢(e,) = {(f(#,))se; € C*: f € 4}, where 4 is a minimal spectial
set. Of course, each minimal subspectrum of a commutative algebra consists
of a single point for each x, e ¢( 7). (})

Pyloo(,)) =

(*) In paper [15] there is described the situation when there exist single point
subspecira on a Banach algebra A.
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We now give two examples of minimal spectra for a commutative
algebra.

6.6. Bxawpre. Let Q = {(2;,2,) € C*: |g;|®+2,' < 1}, and let .=
be the algebra of all functions holomorphic in @ and continuous on O
provided with the supremum norm. The set 90Q = {(2,, 2,) € C% [2,)> +
-+ [2,|* = 1} is aspectral set for «7, which coincides with its Shilov bound-
ary. Thus o Ppossesses a unique minimal spectral set, and so a unique
minimal spectrum.

6.7. BExampre. Let Q = {(2;,2,) € C*: I3y] <1, |2y) <1}, and let o
be the algebra of all functions holomorphic on 2 and continuous on 2,
provided with the supremum norm The algebra o7 possesses two minimal
spectral sets,

={(z1,2) € C°t 2, = 0, |2,] SLIU{(ry, 2) € C* |2y <1, |zg] = 1}.

and

4y = {(71,22) € C*: |&)| < 1,2, = 03U {(z, 2) € €1 Joy] =1, |za] <1}

consequently there are two different minimal spectra.

7. Maps of subspectra defined by homomorphisms.

7.1. PROPOSITION. Leéf A, and A, be unital Banach algebras. Let o,
be a spectroid (semispectrum, subspectrum) on A,. Let h be a unital homomor-
phism of A, into A,. Define o, = h*s, by setting

(16) o (®,) = oy(hee,)

where a, € c(Al) and hx, = (hoya,),,e‘z Then oy is @ speatrmd (semispectrum,
subspectrum) on A, .

Proof. Clearly, we have ha, € ¢(4,), whenever @, € c(4,), and s0 o,
is well defined, and for any x, € c(Al) the set oy (2,) is & non-void compact
subset of C”. Moreover,

oi(@,) = as(ha,) = [ [ oha,) < []oa,),

since, clearly, o(hx) = o(z) for each # e 4,. Thus o, satisties axiom (I).
Suppose now that o, is a subspectrum. Let @, € ¢(4,) and let p;(t,) be
a family of complex polynomials in indeterminates #,. Clearly, we have
hpy(x,) = py(ha,) and so ’

Gl(]’ﬁ(wu)) = 0’2(7"1’/;(37';)) = Gz(pp(h%))= Pﬁ(dz(hma)) = pﬂ(gl(wu))7

which means that ¢, is a subspectrum too. The same reasoning shows
also that o, is & spectroid (semispectrum), provided o, is a spectroid (semi-
spectrum) too.


GUEST


260 W. Zelazko

Remarks. It can oceur that o, fails to be a spectrum on A4, while o,
is & spectrum on 4, and one can easily create a situation is which ¢, is the
largest spectrum and ¢, is a minimal subspectrum. Even if  is a homomor-
phism onto, or an isomorphism into, A*c may fail to be a spectrum for a
speetrum o. Only when k is an isomorphism onto and o is a spectrum, h*o
is also a spectrum. This is because o(x) = o(ha) for any » € 4; and so
axiom (XI) is satisfied for A*c. The last remark we formulate as

9. COROLLARY. Let T be an automorphism of a Banach algebra A and
let & be a spectrum on A. Then 1o is also a spectrum on A.

From Proposition 7.1 we shall obtain the following

7.3. THEOREM. The maximal spectrum o,, on & Banach algebra A is
invariant under automorphisms of A, i.e.

17) Om = h*o'm

for each automorphism h of A.
Proof. By Proposition 7.1 h*c,, is a subspectrum (a spectrum by
Corollary 7.2), and so from the definition of o,, we see that

(18) (1 o) () = O (8,)

for all &, e c(4). Taking 1" instead of &, we have, by (18),
(19) (7 0) (#0) = o laes)

for all @, e c(4). Relation (19) implies

(20) on(®) = [B* (A" 0, ]1(2,) < (B 0,,)(2,).

Relations (18) and (20) imply (17).

7.4. DEFINITION. A spectroid & on the Banach algebra A is called
regular if it is invariant under automorphisms of 4, i.e. if #*¢ = & for each
automorphism & of A.

The spectroids o', ¢’’, 0, 0,, o and o, are regular (we do not know
whether spatially defined spectroids o,, 0z, op are regular; we only know
that they are invariant under inner automorphism, or inner-regular).
However, we have not added the requirement of regularity, or inner regu-
larity, because we do not see any consequences of this property. Moreover,
the minimal spectra, in general, fail to be regulaxr.

7:5. BXAWPLE. Let 4 be the bicylinder algebra of Example 6.7 and
let o; be the minimal spectrum defined by the spectral set 4, ¢ =1, 2.
Let h be the antomorphism of A given by (hx) (2, 2,) = @(2,, #,). Then
W*oy = o 5 oy,

7.6. PROPOSITION. For each & € Sp,(A) there emists a smallest regular
subspectrum @, larger than &.
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Proof. We define

&i(2) = U {(2*&)(x,): h e Aut(4)},

for all @, € ¢(4), where Aut(4) is the set of all automorphisms of A.
Then 'we proceed as in proofs of Theorem 6.3 and Proposition 7.1.
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