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STUDIA MATHEMATICA, T, LXIV.1(979)

Heat kernels for class 2 nilpotent groups
by
JACEK CYGAN (Wroctaw)

Abstract, The formulas for the heat kernels for simply connected nilpotent
Lie groups of class 2 are obtained by the use of the non-Euclidean Fourier transform
and the Plancherel formula.

Introduction. Let ¢ be a Lie group with its Lie algebra generated
by the left-invariant vector fields X,,..., X, on @. We consider the
heat equation

L %h = (X34 ... +X)h on R*x@.
In the case of G being the Heisenberg group, the fundamental solution of (1)
has been explicitly calculated by Gaveau [4] by use of the stochastic
integral and by Hulanicki [8] by calculations with the representations of G.
For the N, , group, i.e. the simply connected nilpotent Lie group whose
Lie algebra is the free nilpotent Lie algebra of class 2 with » generators,
such a formula was given by Gavean [6], [13], see Added in proof.

The aim of this note is to describe the procedure giving the formulas
for the heat kernels for all simply connected nilpotent Lie groups of class 2.
This is done as follows. Using the non-Euclidean Fourier transform on
the N, , group, we transform equation (1) into the operator equations
on the spaces of representations of the group. Then instead of X3+ ...+ X7,
there appear harmonic oscillators. We solve the operator equations and
retransform the solutions via the Plancherel formula. The calculations
of the trace for the Plancherel formula are based on the formula of Mehler.
The general case is dedueed from the resulting formulas for the ¥, , groups
by the method of descent. The formulas thus obtained are given by (5.5).

The author would like to thank B. Gaveau for bringing the problem
to his attention. ‘

1. Detailed procedure. Let us recall (cf. e.g. [1], [9]) that for alocally
compact unimodular group @ and its irreducible unitary representation T'
acting on the Hilbert space H the non-Bucidean Fourier iransform of
the function ¢ e I}(@) at the “point” T is an operator (F¢)(T) on H
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given by the weak integral
(®) (FolT) =

fqﬂ

and for ¢ € A(§) (the Fourier algebra of @) for a wide class of groups,
in particular for nilpotent Lie groups, there is a feciprocal formula (or the
Plancherel formula)

(R)

9)dg,

plg) = [tr[T(g7)NFo)(T)1du([T])

G
where @ is the set of the equivalence classes of the irreducible unitary
representations of @, [T'] denotes the equivalence class of the represen-
tation T, and g is called the Plancherel measure for G.

If @ is a Lie group, we denote by dT the corresponding representation
of its Tie algebra g on the Gérding space V™ < H of (®-vectors for the
representation 7. Representation @7 prolongs to the representation of
the enveloping algebra 1 (g) of g. We observe that the operator X; + ... +X;
is an element of W(g).

Following Folland {3], we call a Lie group ¢ st atified if it is nilpotent
and simply connected and its Lie algebra g admits a vector space decom-
position g =V, @...®V,, such that [V,, V] =V, for 1<k<m
and [V, V,,] = {0}, and we eall the operator ¥ = X;+ ... +X; a sub-
Laplacian for @ if X, ..., X, is a basis for V,. .

From now on we shall be interested in the heat equation (1) for the
stratified group G and its sub-Laplacian &. We proceed as follows. Let
P(s,9) = ps(g) be the 0% ((0, co) x G) solution of (1) with the property

(2) psp,—~¢@ in L'(@) as s—>0F

for every ¢ e L'(@); cf. [3] (3.1), (3.8); [7].
Putting the non-Eueclidean Four]er transform with respect to the
space variable g € &, we transform (1) into the operator equation

() [(8/0s)P, —PAT(Z)]E, m) = 0, A
P, = (..%‘ps)(T) being the Fourier transform of p, &,7n e V™, the inters
chgngu.:lg of the orders of integration and differentiation in this procedure
heing justified by Corollary (3.6) of [3]. Property (2) gives rise to the
boundary condition
(FePEymy > Fok,n) a8

or every fixed £ 5 eH and ¢ e I}G); here Fp = (F¢)(T). Moreover,
P: R" +B(H) is a 0™-function.

Now, for every fixed T we find a 0*(R¥, B(H)) solution P of (1)

and (27) (see Section 3). Since the solution is wnique, it coincides with
our transform (#p,)(T) of p,. In Section 4 we reconstruet from Fp, the

(27) s—=0F

e ©
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solution p of (1) and (2) by the reciprocal formula (R), since the funda-
mental solution p of (1) is in A (@) for every s > 0. In fact, P, = Dy * Dop2
and p,p € L3(@) as a rapidly decreasing function, ef. [3] (3.1), (3.8); [7]-
Note that we need to work only with the representations T' supporting
the Plancherel measure for G. All the above-mentioned ealculations in
Sections 3 and 4 are done for the case of N, , groups, sinece this is sui-
ficient for passing to the case of an arbitrary simple connected nilpotent
Lie group of class 2, which is described in Seetion 5. The neoessary formu-
las for the NV, , groups have been collected in Section 2.

2. Harmonic analysis on N, ,. Following Gaveau [6], we recall
some facts about the N, , groups (all the formulas were obtained by
Kirillov’s method). Let 4, , be the free nilpotent Lie algebra of order

2 with n generators Xi, ..., X, and put X = [Xy, ), k<. Ny, is
the corresponding Lie group With the exponential map

n
ep( YuT+ 3

j=1 I<k<i<n

'“lekz) = (%, Up)

(as & rule we will write (u;, u;;) instead of u = (ul, ..
points of N, ,) and the group law

oy Uony (Yra)e<q) for the

w0 = (U5, g+ Vg +3 (00— O 20))

with % = (a;, %), ¥ = (v;, V). The bi-invariant measure on N,,is the

Lebesgue measure on R’ m(3) N . We normalize it in such a way
that the volume of the unit cube is 1. We denote by 4,,, the sub-Laplacian
X .. +X,2 on N, ,.

Let N 5 be the dual vector space t0 Ay, With the coordinates (g, az)
in the basis dual 0 Xqy ooy Xpy Xpy k<l The coadjoint representation

of N, , is then given by
Ad* () (g, ) = (g +271(4 D), o)

where U = (U, -.., %y), (AU); denotes the jth component of the vector

AU and

(2.0) A = (ay) is the skew-symmefric nXn matrix with @ = ay
for k<1, ay = —ay, for 1<k, =0 for &k =1.

There is an orthogonal maftrix Q = (wy) such that (QAQ is a skew-
symmetric matrix formed from [n/2] diagonal blocks

0 Py ’
[ P, OJ‘ 1], 1< h< 2]
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and supplemented by the row and column composed of zeros if « is an
odd number.

Now we shall still use the above notations but treat separately the
two cases depending on the parity of n. We put » for [n/2].

(a) n = 2. The set (of the equivalence classes) of the representations
supporting the Plancherel measure for ¥, , may be identified with the
set of orbits of maximal dimension in 47, under the action of Ad*, and
this set in turn may be parametrized by the functionals fe 47, , of the
form

(2.12) F=(0,a)
so this is R? with d = (n) up to & set of Lebesgue measure null. The

Plancherel measure is the ordinary Lebesgue measure on R? with the
density function equal to (cf. [9] p. 281)

(2.22) - [(@m)%(2m)"]~" [Py] 1Py ...

in the coordinates ay, k <1
The representation corresponding to the orbit of f as in (2.1a) acts
on L*(R’) and is given by

(232)  (Ty(w)p)((£x)rmn)

~exp 2 o) exp (— i 3 Pony (61— F2m) s 9 (81— 20)i)
< h=1

with  det 4 %0, (cf. (2.0))

N !Pn—ll

g e IP(R), (&)1 € B and 2y = 27 [(QTU)g,— ({2 TV)an],
Bop—1 = g [(tQ U)L’h—l -+ (tQ U)zh]v
({QU); denoting the jth component of the vector 2 T/ e R™ Consequently

@a) ar )= —27% (s o) g+ 6P (a0

h=1
i=1,...,n

and
g
n,z) - ("6_5%‘

h=1

(2.5a) ary(4 — Py 5;%) .

Remark. The representation 7 in (2.3a) is induced from the charac-
ter x; of the subgroup H of N, , (cf. e.g. [1], p. 155) where

H = {(U7 Uit U = 2-112_QZ’ Z = (2, Ryy Ray Rgy.ney

Zpa €R, B =1,...

Zn_1y Bno)y
y Y U e R, B <},

ie. its Lie algebra J is spanned by » vectors, each taken from a different

e ®
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9-dimensional eigenspace of A corresponding to the hth diagonal block
in {04 Q, and by X’s.

21U, uy) = exp (?' Z aklukl)
I<k<igsn
for (U, ug) = (%, uy) in H. N,,/H is identified with the orthogonal
complement h* of h in A", ,, ie. Wwith -

AU,0): T =077, 7 = (2, —#ay %s —%u, ceey By — n) s

2R, b =1,..,7}
(b). n = 2v-+1. Or'bits of maximal dimension are parameterized by
the functionals of the form
f= (o,
so the Plancherel measure lives on R*! with d = (g), and its density

function with respect to the Lebesgue measure on R in the coordinates
a, oy, k<1, is equal to

(2.1b) ag) With o = awj,, a—real and rank 4 =n—1;

(2.2b) [(@m)(2m) IR P [Py ... [Py sl

Acéording to the notations of (2.3a) the representation T;acting on IA{R)
is given by

(2.80)  (Ty(w) o) ((Ea)ims) =

v

GXP[ t{a(QU),+ yakz’“kz]eXP[—"' Z—ch—1(5h—§zzn)zzh—1]9"((51;—221;)2-1)

k<l h=1
and we have
(2.4b) AT (X;)
v 8 . )
= —2‘”22 [(wﬁh—l'— O G +7'§h-P2h—1(,wiih~1+wﬂh)] +130jns
hml B
* . .
2. AT (A,.) = (——Z — Py Eh) -
(2.5b) ' An,2) Z 9E 2h—1

Remark. As before, T; = indgy, with

H = {(U> ug): U = 2—11292’

Z = (13 %1y %5y @3y =3 P2y Zn—2> %) Ru—1s % Ry B =1,..., v},

ATy ) —exp[ (a(‘QU +2aklu,d)] for (U, uy) eH,
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N, o JH ={(U,0: U =277,

Z' = (8yy —%ay.e- Zye1y 0), 2 €Ry ho=1,...,9}.

3 fn—-19 —

3. Solution of the operator equation. To solve (1) and (2,) we note
that the functions (cf. e.g. [11], pp. 77-79)

- -1z A2 —
pi(@) = [l/—/{ 2’”75!] exp ( - —zm-) H,(Vaa)

where Hj, is the kth Hermite polynomial, >0, & =0,1,...,zeR, form
the total orthonormal system in L*(R) and are the eigenfunctions of the
2

dm?

Now we fix f, i.e. the representation I' == Tf, and perform all the
calculations for this 7. The funections

harmonic oscillator

~— 223? with eigenvalues A(2k--1).

(3.1) Vm(€) = ik (£1) ... w:,;,(g,) ;
with & =(&y,.., &) R, & = [Py, 1<h<w, m=(my,...,m) N,

form the total mthonormal system in L (R") and are the elgeni-uncmons
of dT(4,,) with eigenvalues

0,5 = Mfg Popsl (2my+1)  for m =2,

= ) [Pyl (2my, +1) — a2

h=1

(3.2Db) O = for n =2v41,
of. (2.52) and (2.5b). Moreover, v, € V°. Therefore from (1) we obtain

(3.3) <—Ps Yy Prp = Cin,»€XD (s em)

with 0, and v, v, a8 in (3.2) and (3.1), m, r e N.

Since the operator P, is supposed to be bounded, to determine it
completely it suffices to find the constants e, ,, which is done by the use
of (27) as follows:

exP (8 0u) < F @ CPny ¥r) = {F PPy Y1
a8 §— 0%, where Oy, = Zompzpp, the series being convergent in L*(R”).

So (FCuypn, vy = <?9wm, ¥, ¢ € L'(N,,5), henee Oy ¥ = Ymr Ve
and congequently

'(3.4) ‘m 18 equal to 1 if m = and to 0 otherwise.
The operator P, is plainly characterized by (3.3) and (3.4).

4. Retransformation of the solution. In order to apply the reciprocal
formula (R) one has to eompute the trace of the operator T/ —u)P,.
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Heat kernels for class 2 nilpotent groups 233

The following form of Mehler’s formula (the heat kernel for the har-
monic oscillator)

(=<}
2,
i=0 -

= [A(2rsh(252)) 77 exp [—- %—lcth(sl) — (7; -% A)2 }.th(sl)]

(4.1) SHEEFD (0 — ) g ()

(cf. e.g. [11], p. 79, (3.7.3
the integral

) with pi(@) = |A]" 9 (jA]""2)) combined with

o0

~ . 1 2
(492) | e*%exp [— (m - A) ;.th(sz)] an

= (ﬂ“%th(sl))‘”'"exp (—z—g— 04— %izeth (sZ))
gives the main formmula for our calculations of the trace:
(4.3) v g sMEk+Y f exp [H ( 641 —w@)] phe—A)yi(v)ds
L
4s

We observe that (Tp( — ) v} {(€a)31) I8 equal to some function yx = x{w
multiplied by the product of » funetions of the iorm

§2
= (2sh(s]2))” W)

(4.4) exp [i4(304 —20) ]y (o — 4)
with 2 = |P2h_-11; O = —2yy, d = —oy, &= Enh=1,..,v
Thus
(4.5) (T (—w)Py) = ) Tl =) Pyt P>
ma‘W

{(we recall that P, is given by (3.3) and (3.4)) and, distingnishing again
two cases, we get the following formulas for the trace (4.5):
(a) For n = 2», according to (2. 3a) and (3.2a),

(4.6a) exp ( —1i Z akz’“kz) X

k<t

+o0

v oo
% H { Z o S1Pan—1l(2my+1) f exp [a,;P2h_,l( Zon—1%on + EnPan— )] x

h=1 "m =0

X 2l ( Byt 2) v~ 1 (52) 4 Eh}
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and in virtue of (4.3) and (4.4) this is equal to
(4.7Ta)

N . _ PR
exp(—iz ak,uk,)n[(%h(slpzh—ll)) ‘exp(— k ;g *
£ .

<i h=1

§Pap_y

th{(sPy-1) )] '
(b) For n = 2v-+1, according to (2.3b) and (3.2b), similar calculations

give
@) (T~ )P = exp[—i(aC RVt Mo ] ...
k<l h=1

where the dots mean that the remaining part of the formula is the same
ag in (4.7a).
(4.8) We denote by B, (b =1, ...,v) the orthogonal projection on the
eigenspace of 4 in R corresponding to the hth diagonal block in ‘Q.4 Q,
see (2.0), and by E, the projection corresponding to the 1-dimensional
zero block in 12 A Q if » is an odd number.
We note that 22, -+25 = ((QU)%4_,+(Q U, = |B,U% see the no-

tations in (2.3a). || is the Euclidean norm on R™.

= Using the formula (R) with z as in (2.2a) and (2.2b), and integrating
over a in case (b), we obtain
(4.9) ProposmmioN (cf. Gaveau [6], and [13], p. 125). The heat kernel for
the N, , group is given by

Dty ) = fexp(—'i 2 alclukl)Kn(s; U,f) Hd%z

(n} k<l k<l
r'2
with
> sP,, |B,TU> 8Py
K e U — 2h—1 _ h 2h—1
(0T =[] () (-5 s ]
for m =2,
and
K"(S, U:f)
anmz) . [( Py, \B, U2 sPy,_,
—exp| — il S — it e S
XI’( e ,,U sh(st_a)“P( 78 th(Sch—l))]
for  mo=2¢+1,

Gl = (27")(;!)(47"3)”/21 U = %1y eeey )y [ = (0, aipa

and By, = B (f), Py = Py1(f) are as in (4.8) and (2.0).

e © .
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(410) Remark. The function K, (s, U, -) is well defined almost every-
where on R%, d = (g), cf. (2.12), (2.1b). However, since eigenvalues iPy,_;

and eigenprojections H, depend continuously on the skew-symmetric
operator A (this is due to Rellich [10], Satz 5, modulo reduetion of the
skew-symmetric case to Hermitian one), the function K,(s, U, -) may
be extended to the continuous function on R?. We shall denote this exten-

sion by A ,(s, U, ).
o)

In fact, it is not difficult to see that
sd
where T = (U, - .- Uyp), 4 is a5 in (2.0), -, -> denotes the ordinary scalar

tg(sd)

sA 1
— det}? _
H (s, U, f) = det (sin(s ))exp( =

X .
——— and —— are given
smx ¢ gx e

by the usual power series. Hence we may rewrite (4.9) in the following
form:

product in R"™ and the (matrix) functions

(4:'91) pg(uj’ ukl) — (4,‘13)-—1'/2 fexp (—‘LZ (297 "L;l_k;’) X

R(azz) k<t

314 1734
: 12 —= U
*det (sinlg-A P\~ \tg3d

U>) l:l[ day

with 7 = n+2(’2”).

5. General case. Let g be the nilpotent Lie algebra of class 2 with
vector space decomposition g = V,+V, such that [V.,,‘Vl] =V, and
[Vy, Vol = {0}. Let Xy, ...; Xy Xyt veey X, be a basis in g s_uch ‘f}hat
Xy .oy X, span Vi and X, oaey X, span. V,, the product being given

m
by [X;, Xi] = 2+1 X
r=n P .
Let G be the associated Lie group with the exponential map
m
exp ( 2 ’L%Xi) = (%, )
i=1
(we shall write (u;, %) instead of g = (tUyy .evy Uny Uny1s -++s %uy,) for the

points of @) and the group law

(145 %) - (Vg5 0) = (’"'j'l'”j: U0t} 2 Cha(y— 'Uk'"’l)) .

k<l
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We denote by & the sub-Laplacian X3--... +X; on G. The ordinary
TLebesgue measure on R™ ~ @ is a bi-invariant measure. We normalize
it as in the N, case (cf. Section 2). The mapping @~ from X, , onto G
given by

(5.1) Q7 (uy, uyg) = (“j; 2 G2z“kz)
234

is a Lie group homomorphism as well as a linear map of 4, , ~ R",

7,2

d=1{") onto g ~ R™ We denote by @ the canonical extension of this
9 g

map to the linear isomorphism of the spaces R™% ~ N, , and R™xR*
~ @ X Rk, b =n4+d—m.
‘We note that @ may differ from the identity mapping only on the
“orthogonal complement of

Aluz, 0): (0,0) eker@”,u;eR, j=1,...,n}
in R*C,
Now, using @, we read off the equation
(00— du)p =8 on  RXN,,

in the coordinates of R x @ x R¥, where we have extended p to R x N,
by setibing p(s, w) = 0 fors < 0, cf. [3]. Proposition (3.3). Namely we obtain
the equation ’

[(0/0s—%)+2]g =8 on RXGXRF
with
(5.2) 4(s, 9, &) = (po@){s, g, &) |det @™

where (s, g, £) e RX G X R* and &, is the differential operator containing
the derivatives in the directions transversal to R x@. By the method

of descent (cf. e.g. [12], p. 195) we conclude that the function kb given
by

(5.3) hs,9) = [ s, g, &)
BE

is the fundémental solution for 9/ds—2.
Using (5.1), (5.2), (4.9) and Remark (4.10), we can state (5.3) as follows,

(5.4) PmoPOSITION. The heat kernel h for the simply connected nilpoten k

Lig group G of class 2, parameterized as at the beginning of this section
18 given by

his, ) =cals) [ XA (s, T, f)af
(kkerg@~)-L

where v =Q7g), U = (Ugyeeey )y (ker@ )t denotes the Sfunctionals

icm°
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f=1(0, o) e Ny, which annihilate kerQ”, df stands for the mormalized

Tebesque measure on (kexQ” - —the linear subspace of R(Z), or for (50( i)
if (RerQ )t = {0}, cg(s)™ = (4ms)"* (2m)¥9" |detQl, A y(s, U, ) is as
in (4.10).

(5.5) COROLLARY. According to the notations above and those of (4.10)
we have

. m
Mo, o) = mor e [ e (=i(7, 50 )

(keré”)l

14 1/ 34 >)
el 2 =l 2= g . o\a
x det (si 1 )exp( P <_13g% , if

with B = n-+2(dimG—n).

ExAMPLE (cf. Gaveau [5] and Hulanicki [8]). Let b, be the Lie algebra
spanned as a vector space by m = 2d41 elements X, Y1§ X,, Ysy ...
voey Xz, ¥y, T with the bracket produet [X;, ¥;] = —4T .for i =1, ) d,
all other commutators being equal to 0. The corregpondmg group is thfa
Heisenberg group H, (ef. e.g. [2]). The mapping @ from N,q, to Hy is
then given by

s .
Q" (g, Uzg) = (uj: —42‘“21'—1,21') (= (5, 1) € Hy)
i=1
and det @ = —4, (ker@" )t = {f = (0, a): a1 = 34 = e = Gog-1,2d) the
other ay,’s being 0}. This may be shown as follows: (1) it is obvious that
05’8 with %, | other than 1, 2;3, 4;...;2d~1, 2d are zero. (2) Suppgse that
a -
Fruy = D ag s 00 Ugi1z 804 <y u) =0 for all % € Ny, With 2 Ugi—1,2¢
i=1

i=1
=03 then (2) has the unique solution f (up to 2 con.stant fa.ctor) and
we may simply pubt ay_, . =4 for i=1,...,d, 2 being the arbitrary
constant.
For such an f all the coxresponding Pap_y, b =1, ... d are equal
to A and we get

h(s, (uﬁi))
a

= c(s)“f (_s-lf(_‘};-ﬁ)dﬁp [—'M( Z

i=1

U? sl
S, I )
uzi—l,Zi)] eXp( 43 th(sl))

d 24
Wit 3ty = — i, TF = Do, o) = (4rf @)
=1 =
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Added in proof. It seems that in the case of odd » our formula (4.9) on p. 234
differs form that in [6] and [13] p. 125, (Théoréme 1) by the additional factor

2
(—' E;—U]—) under the integral sing. However, in the particular case n = 8, these
5

% 2
formulas agree up to the sign before LSL in the argument of the exp funetion,

cf. [13] p. 126.
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Quelques propriétés de Pespace des opérateurs compacts
par

HICHAM FAKHOURY (Villeurbanne)

Résumé. Soient K(W, V) (resp. F(W,¥)) I'espace des opérateurs compacts
(resp. faiblement compacts) d'un espace de Banach W dans V. On donne des condi-
tions suffisantes pour que K (W, V) ne contienne pas de sous-espace isomorphe & I (N)
ou bien soit faiblement séquentiellement complet. Le bidual de K(W, V) est cano-
niquement isométrique & un sous-espace de L{W*, 7*/) I’espace des opérateurs bornés
de W dans 7*. 8i V est un espace O (X) ou bien si W est un espace I'(u), on montre
que F(W, V) est canoniquement isométrique & un sous-espace du bidual de K (W, ).
8i X est le support d'une mesure ou bien si la mesure p est o-finie, l'espace F(W, 7)
g’injecte dans K (W, V) l'adhérence séquentielle de K (W, V) dans son bidual.

Introduction et notations. Soient W et V deux espaces de Banach;
on se propose d’établir les résultats annoncés plus haut en se basant sur
un résultat assez simple qui permet de représenter les opérateurs compacts
ou fajblement compacts de W dans ¥V comme des fonctions continues
sur des compacts adéquats. L'isométrie de K''(W, V) dans L(W”, V")
en résultera de fagon mnaturelle. L'injection de F(W, V) dans K" (W, V)
ouméme K;' (W, V) quand W ou bien V vérifient les hypotheéses citées plus
haut provient de cette représentation et de ’6tude des fonctions séparé-
ment continues sur le produit de deux compacts. En particulier, on. re-
trouve que I’image d'un espace I'(u) relatif & une mesure o-finie par un
opérateur faiblement compact est un espace séparable.

Soit ¥ un espace de Banach; on note B(V) sa boule unité fermée
€t son dual V’ sera, sauf mention du contraire muni de o(V’, V). 8i 4 est
une partie de ¥ on mnote conv(4) son enveloppe convexe et on désigne
par B(X) ’ensemble des points extrémaux d*un convexe X. Rappelons
qu’un espace vérifie la propriété de Radon-Nikodym si pour tout espace
mesuré (X, X, u) ol 4 est une mesure positive et toute mesure o-additive m
définie sur (X, Z) & valeurs dans V, & variation bornée et qui est absolu-
ment continue par rapport & u, il existe une fonetion f, intégrable au
sens de Bochner de X dans V, telle que m = f- u. Il résulte des travaux
de Stegall [8] qu'un espace dual V' posséde cette propriété si est seule-
ment si tout sous-espace séparable de V a un dual séparable.

8i W et V sont deux espaces de Banach on note K(W,V) (resp.
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