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Outside By,
If(#)—0] < &/4.
Therefore,
sup |f(@) =3 (@)] < e,
zeRd
ie.,
If = Brlle < &.

Hence, {p;: pe, jeZ,} is a d
ence, | . enumerable dense subset of
(OB, [I*llns)- Thus, (O (BY, || |10} is separable as claimed. m
THEOREM 7.2. (I, ||*||) 48 separable.

i Proof. I' c [TC(R? and O, (R is separable by Lemma 7.1. A coun-
i ae product of sepamble r.uetrie Spaces is separable metric. A subspace
separable metric space is separable. (I', [I-Il) is therefore separable. m
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Generalized conjugate Vsystems on local fields

by

JIA-ARNG CHAO (Austin Tex.)
and
MITCHELL H. TAIBLESON (St. Louis, Miss.)*

Abstract. The notion of a conjugate system of regular functions over K" xZ,
where K7 is the n-dimensional vector space over a local field and Z is a set of rational
integers, is extended to that of a generalized conjugate system (GCS). Such systems
are analogues of generalized Cauchy—Riemann systems of harmonic functions on
Euclidean half-spaces. Examples of such GCS’s are constructed by means of a system
of operators, {Bj}f.;, that are analogues of the Riesz transforms. An F. and M. Riesz
theorem is proved. (If x and By, 1 = 1,2, ..., mare all finite Borel measures, then x
5 absolutely continuous.) A conjugate system definition of the Hardy space, H'(K™),
is proposed (f e H' iff fe I* and Bif € It for all 1) and it is shown that this definition
is equivalent to other proposed definitions; namely, maximal funetion, Lusin area
junetion, and atomie definitions.

§ 1. Introduction. Chao [1] and Chao and Taibleson [4] have given
a definition of conjugate systems of functions on K xZ, K a local field
and Z the rational integers, which gives rise to an F. and M. Riesz theorem:
Suppose the local class fidd of K is odd. Then there i3 a singular integral
operator T on K with the property that if u and Tp are both finite Borel
measures then p is absolutely comtinwous. This operator is the local field
version of the conjugate operator (Hilbert transform) on R. In this paper
we will extend the notion of conjugate system to generalized conjugale
system (GCS) and we will econstruct examples which arise from systems
of “Riesz” transforms, {E;}}, on K", the n-dimensional vector space
over K. )

For such & Riesz system we will establish an F. and M. Riesz theorem:
If u and Ryp, 1 =1,2,...,n are all finite Borel measures then p is absol-
utely comtinuous. It will also be shown that a range of definitions for
the Hardy space H'(E™ are all equivalent. Thus, if H' is defined by the
property: f € H iff f and Byf, 1 =1,2,..., n are all integrable, then that

* Research supported in part by the National Science Foundation under Grant
No. MPS75-02411.
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conjugate system characterization is equivalent to maximal function
characterizations, Lusin function characterizations, as well as atomic
and molecular charaecterizations.

§ 2. Preliminaries and an example of a Riesz system. A convenient
general reference for this paper is [7]. Let K be a local field, which is to
say, a locally compact, non-discrete field that is not connected. Then K
is totally discomnected. An example of such a field is a p-adic number
field. The ring of integers, D, in K is the unique maximal compact subring of
K. The prime ideal B, in D is the unique maximal ideal in . If is principal
and is generated by an element b. D/B = GF(q), a finite field of order q.
This field is called the local class field of K and we assume throughout
that ¢ is odd. For the p-adic field D/B = GF(p). There is a norm on K,
[-]: £~ [0, o), such that |#+y|<< max[lz], |y|]. An easy consequence
of this “ultrametric” inequality is that if |z] # |y| then |#+y| = max
Uzl, ly]]. In terms of this norm, D = {ls}<1} and B = {lo| < 1}
= {lol <q™'}. D" = {ju| = 1} is the group of units in K*, the multipli-
cative group of K. Note that dxz/[z| is a Haar measure on K*, where dz
is Haar measure on K+, the additive group of K. We note also that if
@ €K and 4 # 0 then |#| = g* for some % & Z. The generator p of the prime
ideal B can be any element p B such that [p| = ¢~

We now let K* be the n-dimensional vector space over K. Then for
2elK" v = (v,,...,2,), 5, K, K* is endowed with an ultrametric norm,
[#] = max |m|. (The use of identical notation for different norms should

il

cause no difficulty.) Haar measure on K™, dz, is the product measure and
for a measurable set B we write [H|= f1dw. Note that dz/|z|" is invariant
E

 with respect to scalar multiplication by elements of K. Let P* = {|z| < ¢~%}.
The collection {P*},.; is a neighborhood system of 0 in K™ and each P*
is & subgroup of K" By convention P = P, R = P° and we let B* .= B ~
~P = {lg] =1}, We normalize Haar measure on K+ so D] = 1. As
a consequence |P¥| = g7%», ;

In [7], VIX §2 the examples of operators giving use to conjugate
systems were singular integral operators on K of the Calderén—Zygmund
type. They had kernels of the form 7 (®)/|zl, where = is an odd multipli-
cative character on K, ramified of degree 1 and homogeneous of degree
zero. We will consider here, singular ‘integral operators T' on K™ where
If = (P.V. Q(#)/ls|)+f, 2 is homogeneous of degree zero (Q(p*z) = 0Q(z),
@ e E*, k € Z), i constant on cosets of PF+! jn Pk ~ pr+l (2(z4y) = Q(x),

whenever |y| < [#]) and 2 has mean value zero on B [Q(z)dw = 0).
E*
The main facts about these operators parallel those of the operators

described in [7], VIL § 2, and the proofs are essentially the same. We will
outline those main facts, mostly without proof. The details can be filled
in easily.
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The distribution P.V. Q(z)/|z|* has a Fourier transform  that is
homogeneous of degree zero, constant on cosets of P*+ in P* ~ P gng
has mean value zero on R*. Conversely, every such function arises as
a Fourier transform of a distribution P.V. Q(z)/lz]", as above. (For the
most elementary facts about Fourier analysis on K™ see [7], TIL §§ 1-3.)

Recall the notion of a regular funetion on K”X 2, (which is the
local field analogue of a harmonic function on a REuclidean half-space).
(See [7], IV for details.) f(x, k) is regular on K" X Z if (i) f(=, k) is constant
on cosets of P~* ag a function of » and (ii)

J fo, o= [ j@,0ae, yeXm k<l
y+p~! y+pt
If f satisfies (i) is real-valued and
[ fo, ~Wae> [ fo,his, yeX, k<1,
v+~ y+p—t
then f is said to be subregular.
Let
~—kn @ EP—-k
. Rz, k) = g, ’
0, 2 ¢ PE,

The regularization of a distribution f is f(z, k) = (f«B(-, k))(») and is,
indeed, a regular function. In fact, every regular function arises as the
regularization of a distribution.

Consider the distribution @ = P.V. Q(x)/|s|". Then

Q@) [lol*, ®¢P7F,
Q. B = {0, zeP*,

For “nice” functions on K™ we can define a singular integral operator T
and a multiplier 7' as follows:

Tf = lim Q(-, hufs (I'f)" = GF.

Since ¢ = £ it follows that T = T” in the sense that they agree on &
(the class of test functions on K™) and so have identical “extensions” on
spaces such as ILP, 1< p < o and the space of finite Borel meagures.

Let us now suppose that a distribution is “nice enough” in that
STf(+y k) = Tf+(-, k) = f+Q (-, k)" makes sense.

Let {#/}{_7* be representatives of the ¢"—1 cosets of P in R* and
seb & = 0. & = {/}3" can be treated as an addifive group that is the
direct product of n groups of order ¢ (each a copy of the additive group
of GF(g)). (It turns out that & can be given the field structure of GF(g"),
but we do not need that fact here. Details may be found in [8].)

Leb &, =p~ ™). Then {¢f}¢"5" are coset representatives of P—™

in P, 0 is completely defined by the ¢"—1 values {Q(s/)}2"7!
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and we set 2(0)= 2(e ) 0. Similarly, Ois defmed by the values {Q(s’)}q'_'“1
and we set 9(0) = 2(e) = 0. Note that Q(ef) = (&%), (eh,) = Q)
for j =0,1,...,4" " and meZ.

The trlck is to observe that if we normalize Haar measure on & so
that the mass of each point is ¢~™, then the dual group of @G with Plancherel
meagure is @ again but with each point having mass 1. It is easy to check

that the mapping 2 — Qis given precisely by the Fourier transform on &.
We continue as in [7], p. 245 We have

q—1
Z ) o
k1), then T (dkf) = d,Tf, which is fo say,
g1
—k y .Q
Note that regularity and subregularity can be defined in terms of
the behaviour of dkf Specmcaﬂly, if f(», k) is constant on cosets of pE
then f is regular iff 2 dflw—el) = 0 for all # and k and is subregular
£ f is real-valued and def(m——sk) 0 for all # and %.

- Consider operators .Tl, associated functions £;, and their transforms

flw, k) = @ — gy m).
It we let df =f(-, B)—f(,

T{dif) (= ) dpf (@ — ).

G, 1=1,2,...,m. Fix a coset y—l—l’“("“) Let ay =f(y, k+1),
’“dkf?/‘l'sk a = Tif(y, b+1), o = Tzdkf?/+8k l=1,...,m ]
=0,1,...,¢"—1. Then for © ey +&,-+P~* we have

-1 -1

o, = T(df)@) = ¢ 2 Qe — ) f(y + k) = €

Z (e —8)0{0
[

t=

Thus, the map from d,f to d,T;f is realized on G as a convolution
operator. Specifically, if @ = {ai}, o = {af}, and @, = {Q;(s)} we have
= go* ;. Using the fact that the Fourier transform of 2, is Q iwe

see that & = {af O(s"). The following results are then simple conse-
quences of Fourier analysis on G.

2.1) 0=g" D dy+e) =g D ol =aj,
i

2.2) " D =& = a0 =0,
1

(2.3)

lagli = g7 > lafi2 = D) 1312,
i i

iom®
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I = 3 il = 1adP 19,
J
3 def = X i = 3 ot e,
7 2
where, by convention, we arrange the {¢/} in such a way that &7 = — .
It Tf(», k) is defined it follows from (2.2) that it is regular. If 2,

is 0dd, then so is £, and it follows from (2.5) that g‘“Z‘aoa, = 0. Suppose
there are constants, 0 << M, < 1< M, 'such that i

M, < 1< M,
]

217

(2.4)

(2.5)

j=1,...,¢—1.

Then if we set B = min [1/(1+3,), M,/(1+M,)] we see that 1/2 < B < 1,

and
max [llool?, Y] < B 3 el
i=

i=1
Furthermore, ([|ayf|2 = 0) iff (2 lgll* = 0). These last observa,tlons follow
from (2.3) and (2.4).

If, for instance, }Q,(e’)] < 1 and for each j 5% 0 there is an I so that
.Qz(a’) is not zero we have the conditions above where

M, = min{m,(s")[zz Q,(¢) #£0} and M, —m.

Examples of such systems abound. We will describe one such system
which is an analogue of the Riesz system on R™ For I =1,2,...,n
write # e K™ as @ = (v, #'), ;; € K, @' e K™% Let Qy(@) = (¢* () (@)’
when |ay| > |2'| and is zero otherwise; where = is a unitary multiplicative
character on K that is odd, homogeneous of degree zero, and ramified
of degree 1;I'(s )ls the gamma function ([7], II § 5). With some calculation
we find that .Q,(ac:) & Yay) if |2] > |#'] and is zero otherwise. While
there are many such possible analogues of the Riesz system, in the sequel
we refer to this system as the Riesz sysiem and the operators RBf
= (P.V.Q/|n|")xf, 1 =1,2,...,n will be called the Riesz operators.

=3

§ 3. Generalized conjugate systems, F. and M. Riesz theorems. Let
{el, 1 =0,1,...,m;§ =1, ...,k Then set

oy Il = [2

]1/2
J=1

~[ 3] g

1=0

& =(ajy +ee, 0f) € C%; 1=0,...,m.

=(d, ..., af) e C™Yy ||l ||| =1,...,k
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m
For any a = (G, -y Gy) € C"F we seb [llalll = [ 3 |’ Note that
15

the definition of ||e|| differs from the definition given in § 2 by a constant.

We saw above how such systems arise. Somewhat more generally we
congider a vector valued function F(a, k) = ( fol@, B)y ooey @, k)) on
E"x Z, which is constant on cosets of P%, as a function of s, for each
% eZ. Then, as above, for each coset g+ P~E leb @ = fily, k+1),
o = dufi(y + &)

DurrNITION. Let F be as above with each f; regulax. Fis a generalized
conjugate system it there is & non-trivial partition of {0,1, ..., m} = DUE,
and constants 4 and B, 12<B <1, 0<A <], B(L+A4)< 1 such
that for every coset y P~ ®,

(81) max [ 3 lal?, 3 lalf] < B > lleals
eD se. =0

(32) Sl =0 i el =0,
1eD SeE
g"—1

(3.3) > dd <Alalllal, leD,sel.
j=0

We emphasize that if f is a regular function and {R;} is the Riesz
system and {R,f(a, %)} is defined (if fis a finite Borel measure, it is), then
F = (f, Ryf, ..., B,f) is a generalized conjugate system with D = {0},
BE={l,...,n} m=mn A=0, and B = nf(n+1).

TrrorEM 1. If F is a generalized conjugate system with A and B as
above, then there is a Py, independent of T, 2—(1 /B(1+A)) < Py <1 such

m
that whenever p > po, 1P (@, BP = [ 3 1file, HIF? is subregular.
=0

The theorem is 2 direct corollary of the following elementary arith-
metic lemma.

Tmva 2. Tet {af}, 1 =0, ...,m;§ =1,..., k5 and a & C™*" be given-
Suppose we are given a mon-irivial partition of {0,1,...,m} =DUE
and constants A and B, as in the definition of generalized conjugate systems
and that (3.1), (3.2), and (3.3) are satisfied. Suppose further that

k
(3.4) Md=0, 1=01,...,m.
o

J
Then there is & Do, 2 — (L/B(1+ 4)) < po < 1 such thai

k
(8.5) Mall? < (L/k) 3 llle+allP, 2> 2o
SR 2

icm°®
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Proof. We borrow from [1], 4.6 which is also [7], VII (2.3). We
assume ||lal]] %0, 0 <p <1. Note that

3| walfr< S llalif e 1F = lalll 3 NI = Mafl > fleall®.
i [3 3 i [
‘Write

Zum-!—a"lll”
3
2Re Y d] e
fl1ed]]*)?"
— ¥ 1 ! ) ¥ 9} )
ol 2{ AT TR

<atiialt | Y o]+ ) el
1 H

Hence, if [ TolP]™* << (1/3) llalll, we may apply the binomial theorem
:

2Re Y @ el +III€II]
1

and obtain: B
ReYaa] e
U dP = D 1 T g”]a |1 _
Zmaﬂm el Z{ T
r2-1) o) hoe et
ST [4(3«;2 a,a%) +4]Ha][l_(ReZZala’l)+]1|u’|]|]+ge3]}_
Using (3.4) we see that

: ;‘a,ag'
JZ ? aF
From the definition of ||-|| and ||]- ||| we see that
;:Ilaz]rZ
Hlali*

p lll]I?

2 el

2
2
If we observe that

S (Re Yad) < 3| Ymel+ 3 asif
T we. - 3 IeD seE

7
= 3| Sadf+ 3| 3 wat] +2Re 353 dldl]
Fi leD j seE iED i
(which, affer some caleulation, and a judicious use of (3.1) and (3.3),
leads to)

- SB(1+A)IHang$ Negli®.
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Consequently,

2(2—p)

— A2 )
Sl 2 4(Re2aza%) <@RE-2)BA+4) (D] ol el
: ;
An easy caleulation shows that the remaining terms in the curly

l;l;ffets are bounded by C[( 3 lloyl*)*/Hlall|]* with C > 0, independent of p.
bl

@m D lla+d e
L

2lel?

) p{Hi__“g ~ 20 (Sl
llall ”M”z(z(z P)B<1+A)+‘p‘%")}

We may then obtain the following inte: i i
g intermediate result: Fix
2—-1/B(L+4) <p, <1, and require that P

(2 1) 11al11 < min [1/3, (1~ (2 —p2) B(L+4)) /20].

i

In this case we have that [|jall|” < (1/k)Ylla-+ of[||?, whenever p > p,.
5

Since we assume that |||al|| > 0 and it is trivial that
> [llal]l, we assume ; at (L&) X llle+o']]|

@6 @m) Y lla+dil =1; (X lIal}”>Dlali>0, D>o0
i

where D depenqs on p,, but is otherwise independent of p.
Note that if ;‘ lloglf* = 0, then of = 0 so that |||al|] = (1/k) X ||la+ o]

;;Li;}h]zm then, (B) = dlal? >D|2|[am > 0, acontradiction. Note also that
T 15217 ez = 0 or é‘El[aS]] = 0 then (by (3.2)) both are equal to

zero 80 we get the same contradiction. 4
Consider the set B = {b = {a+af}} = C™+V% consisting of vectors

satisfying (3.1), (3.2), (3.3), (3.4) and (3.6). Bis co
It will suffice to show7 e mpnc:

(8.7) llalll< 6, some d, 0< 6<1 and all {a+c'} eB.
An eagy argument shows that (8.7) impli J
y . plies that (3.5) holds for {a-- o}

€B with p > p, = (1—1og, 8)"%. Then (3.5) ki i i y
> . . olds in general

= max[p;, p,]- sl v 2>
. Sinee [|lall] <1, for all {a+a’} € B we see that if (3.7) does fail then
Halll =1 = (1/k) Y lla+o’]||, and so there exists {¥}, real, such that

e ©

icm
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a+d = Ha, and s0 (1—V)a = o, of = (1—#)a;. From (3.3) we get
allagl 3 (=17 = | eded| < Alanllall = Alallag] X (317

for an A, 0< A <1, whenever €D, seH. Thus, a3 H¥—1 =0
whenever 1 e D, s € . There are three possibilities:

I 3(#—1) = 0.Then 4'=1and so of = 0 which implies that Sl
= 0, & contradiction.

IL. @, =0, leD. Then of = 0, I e D which implies that > legl? =0,
a contradiction. leD

OI. a, =0, s € B, and argue as in I arriving at contradiction.

Thus, (3.7) does hold. This proves Lemma 2, and Theorem 1 is an
immediate consequence. -

The following results are obfained as before ([7], VII § 3).

TEEoREM 3. Suppose F(z, k) = (i@, k), ..., ful®, k)) is a generalized
conjugate system on E"xZ and [ |F(z, klds < 4, for all keZ, A>0

n
independent of k. Then Hm F(w, k) = F(x) ewists in L' and a.e. (=)
k—>—o
=sup |fi(@, k) el j =0,1,..., mand sothen does fi(#) = Hm fi(z, k).
keZ k00

COROLLARY 4. Suppose gy fhys -3 fm OY6 finite Borel measures on K.
If F(z, k) = (pol®, k), -y i@, k) is a generalized conjugate system,
then p; is absolufely comiinuous, j =0,1,...,m.

COROLLARY 5 (F. and M. Riesz theorem). Suppose p is @ finite Borel
measure and Ryu are also finite Borel measures, 1 =1,2;...,7 Then p
is absolutely continuous.

§ 4. A generalized conjugate system induced by a field structure on K".
Tn [8] it is shown that there is & model K’ for E" that is, itself a local
field and that harmonic analysis on K’ is identical to harmonic analysis
on K™ if the norms are adjusted for homogeneity (|-[g» = |"1&), in the
same way that the complex numbers is & model for the Euclidean plane.

The theorem of Chao, referred to in the introduction, says that on
any local field (with local class field of odd order) there is ab least one
singular integral operator of the Calderén—Zygmund type (denote it f— fo
and name it the conjugate operator and f the conjugate of f) such that it f
i defined then (f(#, k), f(m, k)) iz a conjugate system (which is & par-
ticular case of a generalized conjugate system). Furthermore, we may
choose this operator so (f)~ = f. Consequently,

TarorEM 5. If u and ji are both finite Borel measures then w and [
are absolutely continuous.

Thus, we may construct generalized coz%ugate system with n oper-
ators {B;} that behave like the Riesz operators, or may use the one conuj-
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gate operator. There is a simple extension of these ideas that shows that
we never need more than ¢"—2 independent operators.

All the operators we arve considering arve determined by kernels
Q,(z)/|2]™ where Q; is homogeneous of degree zero so it is determined
by its values on R*. On B* it is constant on cosets of P so it is determined
by the ¢"—1 numbers {€;(¢/)}. Finally,

-1

fo =3 aE) =0
A

j=1

so the collection of such functions (and, so also, the collection of such
operators) is a vector space over C of dimension (¢"—2).

COROLLARY 6. Let {T;} be a system of ¢"—2 independent Calderdn—
Zygmumd operators on K™ of the sort described in the paragraph above. If u
and Tyu are finite Borel measures then u is absolutely continuous.

Using a similar argument shows that we restrict ourselves to oper-
ators with odd kernels we only need (¢"—1)/2 such odd independent
operators.

§ 5. Equivalence of characterizations of the Hardy space, H', for K".
We gather, in this section, a collection of various definitions and norms
that bave been suggested for the Hardy space H'(EK™) and show that
they all give the same space with equivalent norms.

In the following definitions, where we assume that f e I}, we could
just as well assume that f was a finite Borel measure and obtain the inte-
grability of f as a conclusion.

A. Mazimal function. Let f € I' and f(», k) be the regularization of f.
Let f*(@) = sup |f(w, k)|. Iff* e L' we say that f e H} and set ||f]4 = I/l
keZ

B. Zusin-function. Let f e L' and f(m, k) be the regularization of f.
Let 8f(z) = [ X If(2, &) —f(z, k+1)F*". (On a local field this is the
KeZ

natural analogue of the Lusin Area Integral as well as the Littlewood—
Paley Operator.) If 8f e L' we say that f € Hy and set ||fllg = |If Il -+ I18F -

0. Conjugate system. We say that {T))7, is a generalized conjugate
system of operators if T, =Id and if, whenever T,f is defined for all I,
Flo, k) = (f(e, &), Tif (@, k), ..., T,f(®, k) is a generalized conjugate
system, where T;f(w, k) is the regularization of Tf (the T, as in the para-
graph preceding Corollary 6).

If for some generalized conjugate system of operators {T;}, T;f e I*’
m

for all I we say that f e Hy and set ||f fle, = 2 ITif Iy Alternately we may
1=0

e ©
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require only that sup l{ (2, k)| da = |fllg, < 0. |l, and |-], are

equivalent norms. Furthermore, the norms derived from any pair of
generalized conjugate systems are equivalent.

D. Atoms. A coset of some P* in K" is called a sphere. An atom, a,
is a fonction that is supported on a sphere I, la] < |IJ7Y and fa =0.
I

If f(o) = Y'¢,a;(z), a; an atom for all 4 and 2 le;] < oo, then we say that
feH, and set

Ifllp = M{Z!ci}: f= Zc,-a,-, a; an atom for all i}.

E. Molecules. A function M is & molecule about a point w, if
[M=0 oand [ 13 (@) 24w [ 1M (@)} lo— ™ d < 1.
" in "

If f(z) = Y d;M,(x), M; a molecule for all { and 2l < oo, then we say
that f e Hy and a set

Ifle = int{ Y'idif:.f = > a,M;, 3, a molecule for all ¢}.

TeEEOREM 7. The space H), to Hy are oll the same space and the norms
I-lils fo |-z are equivalent.

Before proceeding we should note that, contrary to appearances, the
list above is really quite narrow. For example, there are “ non-tangential”?
versions of the maximal function and Lusin function which give equiv-
alent norms. (See [2], [3].) For another, the atoms described above are
(L, o) atoms. There are (1,¢), 1< ¢< oo, atoms that give the same
space. The molecules described above are 1-molecules. There are e-mol-
ecules, £ > 0 that give the same space. (See [5] for details.) There are
endless variants to consider including Lipschitz space characterizations
of the Fourier transforms of molecules.

We also pause here to show the power of these results by showing
how the conjugate characterization (H}) gives a result which super-
ficially has nothing to do with conjugate funetions.

OoROLLARY 8. Let J be a muliiplier transform on K"; i.e., (Jf)" = mf,
m o bounded function. Then J maps H' boundedly into H* iff J maps H*
into L' and the two operator norms are equivalent.

Proof. We use the conjugate operator described in §4, f— f and
consider the H' norm |fllg, = Ifli+Iiflh. I Wflla < M:llflm, Wwe see
that Wl < I flg, < Milfllg, so the result in one direction is trivial.
It is easy to see that J commutes with the conjugate operator when op-~
erating on distributions with Fourier transforms that are functions so
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if | fl < Mo llf gz for all f € H* we see that
WSlat = WFl+ T = 15l + 1l < M 1 e+ Mo e

But (Y~ =f, 50 |flas = iz and henee, |Jfllz < 2M,fllg. This com-
pletes the proof of the corollary.

Now to sketch a proof of Theorem 7.

The equivalence of D and B is found in Coifman and Weiss [5] since K™
is a space of homogeneous type.

The equivalence of D and A is due to Herz [6] since it is easy to
see that {f(z, k)}, the regularization of f, is a regular (and so regulated)
martingale. (Definitions are found in Herz’s paper.)

The equivalence of A and B is found in Chao [3].

Wext we show that for a given generalized conjugate system, the two
norms described in O give the same space and are equivalent. We note
from [7], IV (1.8)-(1.9) that g e I' then s%cp flg(-, k), = lgll,. Let F(x)

=(f@), Tof (@), ..., Tf(@). I T,fel’, 1=0,1,...,m we se that
IFl, = Iflls, and (L/(m-+1)[f o, < IFl < Ifllg,- In the one case we
are given that the T,f are in I*. In the other case it follows from Theorem 3.

‘We now finish by showing that A = C for each generalized conju-
gate system and if C holds for any particular generalized conjugate system
then that implies A.

A = (. Chao [2] has shown that for operators like the T;, we have
that [|(Tof)* 1l < BilIf*Il- (Actually, the proof is for a subelass of operators,
but it extends trivially, to the class we are considering here.) Thus, if
f* e I* each Tif e L' and we see that

Wloy = STl < It | X BJIF L = (14 X BY Il
i=0 =1 I=1

C = A. From Theorem 3 we see that f* = (T,f)* e I', s0 we are
done if we show that there is a constant M > 0 such that f|f*|, < M|f fle,
= Msup [ |F(x, k)| do.

k

An examination of the proof of Theorem 3 shows that then additional
information is available, In the proof of Theorem 3, a least regular
majorant, m is constructed. This function is the least regular majorant of
|7 (=, k){?, for & p, 0 < p <1, such that |F(w, k)|” is subregular. m e '
and lmlly, = If18, by [71, IV (8.7). By [7], IV (1.7) it follows that m* e IMP
and [m*;, < M, |IfIiB. But an easy calculation shows that

llﬁ < I = NPy < ¥y < M, NP8,
80 [f*lly < (M)** || ll, and the proof is eomplete.

icm
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