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Take now f = g,. Then (3) reduces to

9,5 S, < 0P r g, = O gz,

which precisely says that fe &P~ m
Incidentally from Theorem III we also get & very simple proof of
the multiplier theorem of Fefferman—Stein [4].
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Representation of random linear functionals
on certain S{IM,} spaces ’

by
CHIFAW CHANNING (Cleveland, Ohio)

Abstract. We prove an integral representation theorem for random linear funec-
tionals on certain § {Mp} spaces. With stronger conditions on {My}, the represen-
tation can be rewritten in terms of the Lebesgue integral over R%. In the process of
proving the main theorems, we obtain a probabilistic Riesz-Radon representation
theorem, which is of interest in it’s own right.

1. Introduction. The purpose of this paper is fo prove a representation
theorem for generalized random processes on a rather large class of spaces,
namely S{},} spaces. Such spaces are introduced by Yamanaka in & note
[67 in order to make possible a unified treatment of the K {M,} and S-type
spaces of Gel’fand-Shilov [2]. For K(a) (i.e. the space of C*(R)-functions
with supports contained in [—a, a]) such a representation theorem is
obtained by Ullrich [5], and for certain K {M,} spaces, by Swartz and
Myers [4]. Since the conditions we impose on S {1} spaces are all satistied
by those K {M,} spaces considered by Swartz and Myers, our represen-
tation theorem is hence more general.

Ag far as method goes, Ullrich, Swartz and Myers all use a scheme
of representing continuous linear functionals on ¢-normed spaces parallel
to the scheme employed by Gel’fand—Shilov [1], [2]. In this paper, we
are working in the same spirit.

The organization of the paper is as follows: In IT, we give the necessary
preliminary definitions, then prove S{M,} is complete and o-normed.
In III, we lay down the basic assumptions on {M,}, with the derivation
of two straightforward consequences. And in IV, we prove a lemma which
gives a “large” measurable set B ¢ %, where (2,4, u) is a fixed prob-
ability space, on which our random process is bounded. Then in V, we
establish a probabilistic version of the classical Riesz—Radon theorem for
continnous functions vanishing at co. This theorem, which is of indepen-
dent interest, is an important ingredient in the proof of Theorem 6.1.
An extension theorem, of a probabilistic Hahn-Banach type, is also stated
in V. This theorem is proved in Hang [3], and is used here on many oc-
casions that follow. In VI, the main results of this paper are stated and
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proved. Under suitable decay conditions on {M, (v, ¢)} for large =z, g,
a random linear functional on the test function space 8{M,} can be written
as a sum Y, of “random” integrals; such a representation is true for an

arbitrary lzqu*ge measurable subset B of £. An example showing that u(B)
cannot be 1 in the case of K (a) spaces is given by Ullrich [5]. With further
assumptions on {M,}, the original family of defining norms {||-||,} can be
replaced by @ family {||-|,} which enables us to write the representation
theorem in terms of Lebesgue measure with a random density rather
than in terms of the “random” measure. This we do in VI. 3. The im-
portance of this theorem lies in that by specializing the {M,}, one obtains
the known results of Ullrich [5], and of Swartz and Myers [4]. In VII,
the Appendix, we supply a proof for the separability of the space (I, ||
used in VL1. Finally, we say a word on the use of u in (2, #, u). We use
(2, #, u) rather than (2, #) in Lemma 4.1 and hence Theorem 6.1 and
Theorem 6.5. Elsewhere, however; the measurable space (2, %) is sufficient.

II. Preliminaries and basic theorems.

II. 1. A probability space is & triple (2, %, u) consisting of a nonempty
set Q, a o-algebra # of subsets of 2, and a measure g on & with wx(Q2) = 1.
We fix (2, #, u). We employ the following definition of generalized stoch-
astie proeess, which we refer to as a random linear functional. Let X
be a topological linear space and X’ be its topological dual. A random
linear functional (r)1.) is a map yp: 2 xX — R such that

(i) w(-,2) is Q-measurable Vz e X, and

(i) p(ew,)eX".

Here R is the set of real numbers; it is equipped with the usual topology
and the induced Borel structure.

I1.2. Let d be apositive integer; let R be the d-dimensional Enclidean
space with the usual inner product structure; and let Z% he the collection

of d-tuples of nonnegative integers ¢ = (g, ..., g;). D¢ denotes the differ-
entiation operator defined by the relation

lal

D= —
: ozt ... Bxls’
where |g] : = ¢+ ... +4gq.

IL.3. Let R denote the extended real numbers R : = {—oc}URU {c0}.
We shall use the following arithmetic in R: for a e R,

a4+t o0 = 0044 =00, G—00 = —00ta = —00,

®©+00 = 00, —o00—00 = —o0, oo—oco i§ undefined,
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o if beR,b>0,
—co i beR,b<0,

bioo = o0-b =

[ee]
L% _0, 0oo=000=0, —=0.
o0 -_—0 o

Note that R is not a field under those operations.

IL.4. Let X be a topological space.

O(X) := the collection of continuous functions on X into R,

0p(X) := {f € O(X): [ is bounded},

Co(X) := {fe O(X): f has compact support}.

IL.5. A Radon measure space is a quadruple (X,,X,») where
(X, X, v) is 2 measure space and 7 is a T'; topology on X such that:

ORA=P
(i) (X, X,») is complete,
(ifi) » is locally finite, ie.,
VeeXAGer -3 -wel, and »(F) < «,
(iv) » is inner regular, lLe.,
VEeZ, »(B) = sup »(K).
KeE
K compach

Sueh o v is called a Radon measure on X. A random Radon measure is & map
1: 0x >R such that A(-, B) is O-measurable VE € X, and A(w,")
is a Radon measure on = Vo € Q. We shall denote such a measure by
Mo, do). (o, ds) is finite i Ao, X) < o, Vo e

IL.6. A topological linear space is perfect if bounded sets are -pre-
compact i.e., the closures are compact. 3

ILT. Teb {M,(w, @)} (¢ €Z%,0 e R?) be a sequence of " R-valued
functions on R%xZ% such that .

) 0K My(w, ) < My(o, ) < oo < M (0, @) <oy Vo eR? g EZ&-‘H

(ii) For each (s, g) e R?x 2%, all M,(w, ) are either finite or infi-
nite simultaneously V,. M, (x, g) is continuons in » where it is finite;

(iii) For each p 3N, eR[{0}:> ‘N, oo a§ p—> o, ingp(m, q)>0

whenever [g| < N3 and M, (s, q) = 0 for jg] > N,.
I1.8. ”

DEFINITION. ¢ € S{M,} iff ¢ € C°(RY) and M, (a, q)pq¢(m) is every-
where defined, continuous in 2 and bounded in » and g, i.e.
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lpllp: = sup My (2, @) |1 DU®)] < 0, p=1,2,...
x,q

Among examples of 8{M,} spaces ave the K {IM,} spaces and S-type
spaces of Gel’fand-Shilov ([2], Chapter 2 and Chapter 4).

‘We now study some basie topological properties of S{M,} spaces.

DErmvIrIoN. Let p be fixed and denote by §,, the space S{IM,} equipped
with the norm ||-|,.

Each 8, is a normed linear space. We will show it is indeed complete
and therefore Banach. We need the following definition and lemmas.

DermNiTIoN. Let {p,} be a sequence in 0®(R% and let. @ € O (R9).
{p} s said o comverge correctly to p iff for each ¢, D%, (s) converges to
D%(x) uniformly on compact subsets of RZ

Leama 2.1. If {p,} is o Cauchy sequence in Sy, then Ip e O°(R% such
that {p,} converges correctly to p.

Proof. It is obvious. m

LEvmA 2.2. Let {p,} be o sequence in 8, which converges correctly to
¢ € C°(R?) with lle.ll, < O, Vv and for some positive constant C. Then, lpll, < C.

Proof. Let N, be determined by p (see condition (iif) of IL.7 ).

Case 1. |g|>N,. Then M (z,p) =0 Vz and so

Mz, q)| D% w) =0 Va.
Case 2. |g| < N,. Then M, (z,q)> 0 Vo and so

¢
M, D? <0 = D@ <——— Vy, Va.
p(m, ) D%, (@) < C = [ Do, ()} < Mp(’m’ 0 vy, V&
Therefore, by passing to limif, we obtain
c
D% ()] < ———ro.
N qj( Mp(m; Q)

That is,
My (@, )| D9(2)| < O V.

Thus [lgfl, < C as claimed, and in particular, pe §,. ®
THEOREM 2.3. 8, is a Banach space.

Proof. Let {p,} be a Cauchy sequence in S,. Then {p,} converges
correctly to some ¢. Thus {p,} converges to @in - ],- Also, from the Cauchy
condition, we have, |jp,|l, < € for some positive constant €. Thus, by the
lemmas above, we get ¢ €8y and |lp,—¢l,— 0 as v — co. Therefore 8,
is complete. w

We now turn back to (8{M 30 l; » =1,2,...) and show the
norms |-, » =1,2,... are pairwise consistent.
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LeMMA 2.4. Let {p,} be a sequence which is Cauchy in Ilp, and §-1,,,
and converges to zero in ||l . Then {p,} converges to zero in |- g, -

Proof. Since {p,} is Cauchy in -1, and converges to zero in -l
it converges to zero pointwise. Bub pointwise convergence to zero toge-
ther with Cauchyness in |- |, imply {p,} converges to zero in || lp,- @

THEOREM 2.5. (S{I}, 11,59 =1, 2, ...) is a complete o-normed space.

Proof. Since S{M,} = [ 8, and each §, is complete (Theorem 2.3),
=1

P
S{M,} is therefore complete ([2], p. 17, § 3.2 Theorem); also the norms
I-ll,, » =1,2,... are pairwise consistent (Lemma 2.4). Hence S{I,}
is a complete o-normed space. ®

HII. Assumptions on {1, (%, ¢)}.
III1. The following conditions on {if,} (not always taken together)
will be used in the sequel.
®) Vpdp'>p-5Vsel0,1],AN > 0-5 - Y, (x, q) < e, (x, q)
whenever |¢|> N or M,(z,q)>N.
(8) Vpdp'>p-o-V¥eel0,1],3¢'> 0.5 M, (z,0) <M, (2,0
Yz, Vo= ¢q'.
VM, () 9)

e I}(RY and
My (2, q)

(N) VPEIP'>P'5 'mpp’(m’ Q) =
supfmm,,(m, q)dw < oo.
g pd

(M) ¢ >z;| and ajwy >0 imply M,(@y, ..o, By oeny Bay @)
= My (#y, ...y m}’? ooy gy )

Remark. (P), (8), (N), (M) stand for perfect, supplementary, nuclear,
and monotonie, respectively.

IL.2. We now derive some easy consequences of the above conditions
concerning the behavior of M, (x, ¢)|D?(@)| for large |»[.
Levwma 3.1. Condition (P) implies that

My(z, ) |Dp(@)| >0 as o] oo, Vp, Vg, Vo e S{}M,}.
Proof. Suppose the contrary, i.e., 3p, ¢ and |z,| - co such thab
My(z, ) 1D (2,)| = C > 0.

Corresponding to that », dp’ > p by (P) such that EMp(w,,, Q) <&My(2,9)
where &, — 0. Thus,

¢
M, (=, ¢) |1 D"(x,, )] = Pt
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which is a contradiction. Therefore,
M, (2, )|D?p(2)| -0  as |o|—>oco. &
Similarly, the behavior of M, (2, q)|D%(z)| for large |g|, assuming
condition (8) is given by
Lewwma 3.2. Oondition (8) = Vp, Vo e S{M,}
limsup M, (v, g) | D% (@)] = 0.

g0 T
Proof. Condition (iii) of IL.7 trivially implies the lemma if N, < oo.
Otherwise, fix p and & > 0. We can find a p’ > p and a ¢’ by condition (8)
such that whenever g > ¢’ we have for every =,
My (2, q) 1D (@)] < ey (3, ) 1D (@)
Hence,
sup M, (2, g) | D7p(2)] < e(sup M, (w, ¢) |1 D% (@)]) < elipll,-
T z
Thus, the lemma is proved. ®
IV. Properties of random linear functionals? We now prove an ana-
logue of ([4], p. 663, Lemma 4).

Lmvwa 4.1. Let (X, {13 » =1, 2, ...) be a perfect, complete o-normed
linear space; and ¥ be a random linear functional on X. Let ¢ > 0, then

(i) IBeB 2 -u(B)=1—s,

() 3 an integer v > 0 such that

Ko, Pl < lgl,, VYpeX,weB.

Proof. Sinee (X, ||-|,; » =1,2,...) is c-normed, to each continu-
ous linear functional @ on X there exists an r such that

|P(p)| < constllpf,, ¢eX.

Since ¥(w) e X', Yo € 2, Jconst,, > 0, 7, > 0 such that [{p, F(w))|
< const,|igll,, Vo eX.

‘We may and will assume r, > const,, since {I- )= 18 increa.éi.ngly
directed. Theréefore '

e, (o] <75l

Define
g An(g):={w e 2: Kp, P(0))] < Nlply}-
Obviously, :
An(p) € Ayia(o)
and
Q=10 M Aylp).
N=1 geX
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Now, since X is perfect Fréchet, it is separable ([2], p. 58). There exists
therefore a countable dense subset D < X and thus

A= W(gy Ax(p) = Q Aynlp)e4.

Since 2 = |J Ay, for every >0 3 integer » > 0 (independent of w)
N=1
such that
:M(Ar) = 1—e.

Now, take B:= 4,. Since (ii) is satistied, by construction, the lemma is
thus proved. m

COROLLARY. Suppose {M,(z,q)} satisfies (P) and ¥ is a r.li. on
(S{M 3 p; » =1,2,...). Let e> 0, then:

(1) 3B e# -5 -u(B) =1—¢

) 3 integer 7> 03 Kp, PN <rlpl,, VpeS{I,}, oeB.

Proof. Condition (P) on (S{I,}, I-l,; » = 1,2, ...) implies perfec-
tness ([6], p. 2; [2], p. 94), therefore the corollary follows. &

Remark. This lemma shows that the size of (g, ¥(w)) is independent
of wif weB.

V. A probabilistic Riesz-Radon representation . theorem. We prove
a probabilistic Riesz-Radon representation theorem for continuous func-
tions vanishing at co (see definition below) on a locally compact, g-com-
pact metric space X (e.g. RY). We begin by quoting the well-known Riesz—
Radon representation theorem for compact metric spaces.

LeyuA 5.1.-Let X be a compact metric space and (C(X), Il ) e the
space of real continuous functions on X, equipped with the uniform norm
[Vl := sup |- (#)}. Then, for every positive linear functional @ on O(X)

: e X

&Z
there ewists a unique finite positive Radon measure v on #(X) such that @
is the integral with respect to v, i.6.,

of= [fav, feC(X).
X

LEVMA 5.2. Let ¥ be a random linear functional on (C(X), |I- lloo) where X
is compact metrizable. Then 3! random finite Radon measure v(w, dz)
such that

Pf= [flo)r(o,dn), Voel,feC(X).
. ¥ -
Proof. (A) Reduction step. We show that it is sufficient to prove

the lemma for the case of positive random linear functionals on C(X).
For, assume the lemma is true for such functionals ¥. Then, for each
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weR, ¥(w, ) has a canonical decomposition:

(e, ) = 7f—i.(f‘ua =¥ (o, )

where P+ (w, -) are positive linear functionals on C(X) for each w e Q.

Recall that
Y¥(w, f) 1= sup (o, g);

i<g<f

fy9eC0(X).

Using separability of C(X), we conclude that ¥*(-,f) is Q-measurable,
and hence ¥~ (-, f) is 2-measurable also. They also have the smoothness
property, viz., f,{0 = ¥*(w,f,) = 0. Vo e 2 (Dini’s lemma).

Now, by our assumption and Lemmsa 5.1, we obtain positive finite
random Radon measure

v (0, B) :=¥*(w, 1z),

such that ¥+ is the integral of »*.
We define the signed random Radon measure »(w, *):

Eed(X),

(0, ) =¥ (@, )= (o, ).

Then the representation continues to hold for this ».

(B) So assume Yo € 2, ¥(w, +) is a positive linear functional on ¢(X).
Therefore by Lemma 5.1, ! finite positive Radon measure »(w,:) on
% (X) such that, for that particular o € Q, ‘

(o, f) = [f@)r(w,ds), Yfel(X).
x
‘We must show #(-, dz) is Q2-measurable. Now, 15 e 0(X),

o, X) = [1zv(o, da) = ¥(o, 1x)
Py

and hence »(-, X) iy Q2-measurable. Let @ = X be open. We claim that
o, @) = sup {P(o,f)}
FeCy(X)

I<lg
Proof of claim.
?(0,@) = sup {r{w, P}, Voe
F£§Jgaet

by inner regularity of the Radon measure » If F = & is compact, 3 f e C,(X)
such that 1y <f< 1g. Therefore, )

»(@, F)< [fr(0, d) <v(w, 6)
by positivity of ». Hence
o)< smp flo, P < s [fr(w, dz) < (o, @)

FeClp(x) ¥

=
F compact <1

e _®
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Therefore,

»(w, @) = sup ff'v(co, dx)
FeOg(X)
<y

as claimed. But X is compact, hence (GD(X), ]H[m) is a Banach space.
Since X is metrizable, 0p(X) is separable. Let D < Cy(X) be countable
and dense (in || |l,) in Cy(X). We have

d) = SU
{£eCqX).I<1GIND

(@, {¥(o, 1)}
Therefore, »(+, @) is Q-measurable, V@ open in X, as it is a countable
supremum of Q-measurable functions ¥(-, f). Hence v(-, B) is Q-measur-
able for every Borel set E.
Remark. Lemms 5.1 is proved by Ullrich ([53], p. 662, Lemma 3),
for the case X := [0, 1], u(-, B):= [ [ 1zdg(-, ), where g e BV[0, 1].
0,1]

DerFINTTION. Let f € 0(X), where X is locally compact. f is said.fo
vanish at oo it {w: |f(@)| > €} is compact, Vs > 0.

We now state a lemma which will be used very frequently in the
sequel. Tt says that for separable Banach spaces, & probabilistic Hahn—~
Banach Theorem is valid.

Levma 5.3 ([3], p. 1154, Theorem 2): Let (2, %) be a measurable
space, X a real separable normed linear space and M < X a linear subspace.
Let T be a random linear functional on M. Then I a random linear func-
tional F on X agreeing with F on M with preservation of bounds.

TEEOREM 5.4. Let (X, 1) be o locally compact, o-compact, metrizable
space. Let O (X) be the Banach space of condinuous Sfunctions on X vanis-
hing at co. Let F: 2 X Coo(X)— R be a random linear functional. Then 3!
random finite Radon measure v(w, +) on B(X), Vo e Q such that I is the
integral with respect to v(w, dz).

Proof. (A) Bwistence. Let X := XU {oco} be the one-point compac-
tification of X. Then X is a compact metric space. Since every f € 0, (X)
has a nnique confinuous extension to X with f(co) = 0, 0, (X) is isometri-
cally (with respect o |- |l,,) isomorphic to the (closed) linear subspace I of
0(X) defined by I':= {f e C(X): f(o0) = 0}. Hence 0, (X)" ~ I"andevery
random linear functional ¥ on C.,(X) corresponds uniquely to a random
linear functional on IV, also denoted by F (by abuse of language). Now,
by Lemma 5.3, 3 a random linear functional ¥ on 0(X) agreeing with F
on I' with preservation of bounds. Hence by Lemma 5.2, 3! random finite
Radon measure »(w, dv) such that

Flo,f) = [fl@pie, dn), Yoe,fe0(d).
x
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In particular,
(@,1) = [f@)v(w,dw), VfeC.(X)
X

Since the Borel structure #(X) if X is a o-additive class in #(X), the
measure v(w, dz) is c-additive on #(X), Vo € 2. Q-measurability of »
is guaranteed by Lemma 5.2.

(B) Unigqueness of »(w, dw) on B(X). Let A(w, do) be determined by
another extension of ' to ¢(X), then

(0,f) = ff(m)uw dr), Vfelq(X).

We claim A = on #(X).
Proof of the claim. Since 0,(X) is dense (in |-||,) in Co(X), it
is sufficient to work in C,(X) (e.g., by monotone convergence, one ean

pass to elements of C,(X) by elements of 0y(X)). So, letting f € (y(X),
we have

(@,f) = [ f@)(w, dz)
= [f@)Mw, dz).

sup F(w, f) = Ao, @) for every Qe (see the proof
fec'u(x)

of Lemma 5.2). Therefore A =9 on Z(X).

But v(w, @) =

VI. Representation theorems.

VI1. We are now in a position to prove a main result of this paper.
TEEOREM 6.1. Let ¥ be a random linear functional on 8 {M,} with

conditions (P) and (S) assumed on {M, oy Let &> 0, then there exist Be B
and an integer r > 0 such that

() p(By=1—¢,
(i) Vo e B, p e S {M,}
@ Plo) =D [ M,(z, ) D ()r,(w, dz)
2 Rd
where v,(w, dx) is a random finite Radon measure for each g.

Proof. (A) Fix £> 0. By the corollary of Lemma 4.1, dBe 4,
integer » > 0 such that (i) is satisfied and
Key Plop| < Vpes{

T”(p”rl Mp}, weB.

Define
(g, ¥(w)), weB,

$p, Plo))y 1=
01 w¢B

icm
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and
Sleo):= eup Kes Plo)l-
geS{M
ely<i
But 8 {M,,} is separable, so let D be a countable set dense in § {IM,}. We have

Kg, Pl
9D, ligl,<1
Hence §(w) is 2-measurable and [{gp, (o)) < S(e)lgl,-

(B) Let O, (R% be the bounded continuous funetions C(R? on R?
vanishing at oo, provided with the sup norm:

If o = = sup {f{2)].
Form the countable product

S(w) = sup

e

and consider the following subspace I

{fyel={f}e[]Ca(RY) and
Equip I' with norm:

]]_jm”f:f“oo =0.

W == sup Nfillo -

Then (I, |-]}) is & separable Banach space, (2 proof is provided in VII,
the Appendix).
(0) We next construct a linear map

(S} 11y = (5 - 1)
where r is the integer determined in Lemma 4.1. Let
0(p) := {M,(z, 9 D?(2)}, < (S{M} ')

This map is obviously injective and isometric (recall thab Mz, q) Dp(x)
-0 as |g|— co, and M,(z, g)D%(z) >0 a8 g— oo) Define F(w, *) on
O(S {M,}) by

(a) o( )~'— {p» gf("-’))
Note F(w, -) e [@(S {1 with
| B0, O(p))| < S(@) 1O ().

Since (I, I-1) is separable and F(w, -) is a random linear functional on
(S{ar }), hence by the probabilistic Hahn-Banach extension theorem
(Lemma 5.3), there is a random linear functional Fw,-) on (T, ||-|)) with

11’1(0),') < S(o) Il V(')EI"
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(D) Now, each continuons linear functional & on I'is of the form
Al & = D<K, &

i=

.) is & continuous linear functional on

0,...): fi e O (BRH}.

where & (7 =1,2, ..

Iy = {(0, e i
We have

len = g,
=1

(B) Each 17’ (j =1,2,..) is therefore a random linear functional
on I;. Hence by the probabilistic Riesz—Radon theorem (Theorem 5. 4),
thele exist random finite Radon measures (o, dz) on R? such that

Fio,f) = ff, (w,dm), §j=1,2,...

Hence, Yo € B
Flo, 0(9)) = <p, V(o)) = D) [ M,(z, ) D% (@)v,(0, du).
a R
The theorem is thus proved. m
VI.2. We will derive an equivalent set of norms on S{I {M,} under
additional conditions; namely, (M) and (N), together with (B) and (8).
Under these conditions on {M,}, we can rewrite Theorem 6.1. Tnstead

of random finite Radon measures v, (w, dz), we can use the Lebesgue
measure dz. This is worked out in VI.3.

THEOREM 6.2. Suppose {M, (=, ¢)} satisfies assumptions (P), (8), (N)
and (M). Let

lplh: =sup [ M, (, ) D% (o) dv, Vo eS{M,}
q RrA

Then {||-l,} and {-,,} are equivalent.
Proof. (i) Let || lpll, = supM (#, )| D) < 0, p =1,2,... Con-

dition (N) gives a p’' > p such that
My (@, 1D (@)] = My (w, Q)M (2, g) | D% ()]
< Moy (0, 0) SUD M, (3, ) | Dp (o)
pp'( H Q) ”‘P“p
Thus
lll, = sup [ M, (2, ) ID% ()| d < sup B, (g) ], < oo,
q qa

icm
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since supB (q)'—supf My (%, Q)42 < o0 by (N). Hence

el < const, lpil,.
(ii) Consider

lel, = squ M, (z, 9| D% ()] = sup sup My(2, 9) 1 D%()].

Since M, (», q)|D%(»)| is continuous in » and goes to 0 for every g as
J@| > oo (Lemma, 3.1), 322 such that
M (af, q) [DY(af)| = sup M, (z, )| D% (o).
Therefore,
ligll, = sup M, (f, q) |1D?p(af)].
q

Now
Lmsup M,(xz, g} |D% ()| = lim M, (22, g) | D% (29| =0
g0 T g—>oo

by Lemma 3.2. Hence g, such that
llgly = M (afo; go) ID%g(fo)| = sup M, (w, go) [D%gp (a)].

We claim

sup M,(@, g,) |D%p(2)] < sup M, (w, g,)] [ !D""“q?(f) agl.
xz T z
Proof of claim. First observe that the improper integral

J Dtigeas

exists. For,
lim D%g(y) = 0,

- Jyl>o0
and thus
[ Dutip(s)a (D%«p (y) —D%g(@)) = —D%gp(a).
Now,
My (5 g0) [ D@(00) — D%g(a)] > — M, (w,q0) | D% c0)| + M, (, go)| D gp(s) |
and

My (2, ¢) | DBgp(o0)] =0,
because by using (M), we get
My(2, g0) < Myt g0, I8 = |2

2 — Studia Mathematica LXIV.3


GUEST


Ch. Channing

208
and
M, (2, go)
0 < im M, (= D% e (1)) —21
Tt (o, @) 1D 3760
< HmM,(t, go) | DPg (¥} = 0.
ft|—c0
Therefore

M, (2, g) |D%g(00) — Dg(a)| > My (@, ) D0 (@)]

and our claim is established.
Now,

lply < sup [ M, (e, go) ID*p(£)|

= constysup [ M (@, g+1) 1D g ()48
T x . .

where const, € B is such that
My (w, g,) = consty, M, (@, g-+1).
Thus, by (M),

lgll, < eonsty,sup f M, (&, go+1) ID%F (&) dE
= const,sup [ M, (£, g)ID*p(£)|aé = consty lpll-
q

Hence {|I-I,} and {-|,} are equivalent. m
VI.3. We need the following lemmas:
LemMA 6.3 ([4], p. 236, Proposition 1). Let & be a random linear
functional on L'(R®, dw). Then there emists f: Q x R*— R such that
i) (-, #) e L°(2), Yz e R%
(i) f(o, -) is essentially bounded with respect to dw, Vm e s
(i) Vo e @, pe I} (RS, dz)

<@y E@)y = [p(@)f(a,)ds.
R

(I°(Q) is the set of measurable functions on £.)

Levwma 6.4, Let £ be a random linear functional on L' (Re, W (x)dz)
where W: R®—>[1, o] is a weight function such that W is bounded continu-
ous on {w e R%: W (a) is finite} < R% i.e. WeC,. Then 3f: 2x R*>R
such that

() §(-, ) e I°(Q), Vo c B?,
(i) f(w, -) s essentially bounded w.ri. dz, Vo € 2;

icm

\ 3f: 2xR% > R satistying (i) and (ii). Furthermore, by

b
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(ili) Yo e Q and ¢ e L' (R, W (=) dw)
ps E@) = [ p(@)f(w, 2)W (@) do.
b4
Proof. p e I'(R%, W () dz) means o(z)W(z) e IMRY% dz). Denote

the norm in I'(R?, dz) by |-, and in I*(R% W (z)d) by || |ll,.
Cleatly, the map v: g~ W is injective and linear. Algo,

gl < K Sf lplde < K lipll,

where 8:= {g e R*: W(z) is finite} = R% and K is a positive constant
= W(a), Yz € 8. On the other hand, if y e L*(RY, dx)

hi= [ p@lido = [ 1p(e) L2
RrY

Wia) @

< [ @ W@aw: = iyl
Hence |-||, and [|{-]]], are equivalent on »[I! (R%, W(z)dw)] = L}(R%, dz).
_Now .let £ be a random linear functional on L(R% W(x)dz). First we
1dlent‘1zfy L' (R% W(x)ds) with o[ (R% W(x)dz)], then we extend & to
L' (R% dz) by the standard argument. Thus, for ¢ € I} R?, W () dw),
Lemma 6.3

$ps é(0)) = Cv(g), &(w))

= [¢@W (@)f (0, 2)ds

= [p@)f(w, 2)W (2)dz. w
THEOREM 6.5. Let ¥ be @ random linear Junctional on S{M,} with

assumptions (P), (8), (M), (N) and L < M, (=, q), Vo, p,q. Let ¢> 0. Then

there ewist B € &, an integer r> 0 and R-valued Sfunctions {f} on Qx R,
such that

(i) p(B)>1—¢,

(ii) (a) fo(w, -) is essentially bounded with respect to dw for each w € Q,
(b) fol-, #) e L*(Q2), Vo e R?,
(i) Vo € B, p e §{M,}

@ Py = 3 [ M@ D@/, 9.
7 R

. Proof. (A) Let r be the integer determined in Lemma 4.1 and let
L E.M,.(m, q)dr] be the space of functions on R? integrable w.r.t. the
weight M,.(z, q), provided with the usual norm

= J1()IM, (0, iz, V.
Rd
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Form the countable product

[] 71, (2, 9 d0]
q

and define a subspace

4 < [[ LM, (2, g)dn]
4
as follows:

AR ¢81;pf lgq| M, (@, g) dv < oo.
Now equip 4 with the uniform norm '
oo} : = sup [ g M (2, @) o
(4,1-]) is a Banach space. Recall the Banach space (S{H,}, II* k) wheire

lipll, := sup [ M, (2, g)| D% (@) dw < oo.
The map )
(S{M}, 1117 5 ¢ = {DPp (@)} € 4

is clearly injective, linear and isometric

(D"p(a) e I'[M,dw] because [ |D%(@)| M, (2, @)dw < o0, Vq).
R4

Therefore, the image of that map is a closed linear subspace of (4, |-I)-
Hence every continuous linear functional on (8 {2}, [-1) can be ex-
tended to a continuous linear functional on (4, ||-])) with norm conserved,
by the Hahn-Banach theorem.

(B) Now, let ¥ be a random linear functional on § {},} with assump-
tions (P), (S), (M), (W) and 1< My (2, 9), Yz, p, q, on {M,}. ¥ canbe extended
to a random linear functional on A by the probabilistic Hahn-Banach
theorem. By Lemma 6.4, and the corollary of Lemma 4.1, we have the
required representation

g, Po)y = D) [ Dp(@fy(w, 0) M, (v, 0)do
RrE

a
VweB,geS{M,}. u

Remarks. 1. Theorem 6.5 says essentially that with additional
assymptions on {M,} (compare Theorem 6.5 with Theorem 6.1), one can
write »,(w, dz) as f,(o, x)dw, the Lebesgue meagure on R? with density
fo(o, @) where the “randomness” enters only into the density.

icm°®
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2. By making suitable choices for the {M,}, one obtains the results
of Tllrich [5] and of Swartz and Myers [4].

VII. Appendix. In this appendix, we prove that (I, Jll) is separable.
We need the following lemma which is the main ingredient in the proof.
For definitions of terms, see VL.

Tmva 7.1 (Cu(BR%), +)lw) ie separable.

Proof. Write

R?:=JB;
F=1
where B;:= {zeR%: 0| <j}

Now, for each j e Z,\{0} (positive integers), construct, by Urysohn’s
lemma, a continuous funetion g; which is 1 on B;, 0 outside B;,, and is
between 0 and 1 on B;,,\B;. Fix one such g; for each j.

Let & denote the set of all polynomials on R® with rational coef-
ficients. For each p € # and j €Z,, we define

|y o= By,
i 0  elsewhere,
and
Bi = P39
Cleaxly, B, & Co(R?) and in fact, §; € Gy(R% Byy1) Le., itis supported on B 4.
Furthermore,
~ p on By
P; = .
0  outside B;,,
and
B;(@) < Ip@)1- ‘
Fix &> 0. Let f & O (RY), then K := {w € R%: |f(#)| > &[4} s compact.
Let B, be the smallest B; containing K. Then, by the classical Weierstrass’s
thoerem, there exists & py € Byy, Which uniformly approximates f[ By,
(41 means “restricted to”) unto /4. )
On B,

|fl@)—By(@)] = If(2)—p(@)| < &/t
On B;.,\B;, we have '
Ip (@) < If(@)| +eld < eld+eft =el2,

and so,

(@)= Bal@)] < (@) + 7@ @) < 7 + (g) 1=
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Outside By,
If(#)—0] < &/4.
Therefore,
sup |f(@) =3 (@)] < e,
zeRd
ie.,
If = Brlle < &.

Hence, {p;: pe, jeZ,} is a d
ence, | . enumerable dense subset of
(OB, [I*llns)- Thus, (O (BY, || |10} is separable as claimed. m
THEOREM 7.2. (I, ||*||) 48 separable.

i Proof. I' c [TC(R? and O, (R is separable by Lemma 7.1. A coun-
i ae product of sepamble r.uetrie Spaces is separable metric. A subspace
separable metric space is separable. (I', [I-Il) is therefore separable. m
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Generalized conjugate Vsystems on local fields

by

JIA-ARNG CHAO (Austin Tex.)
and
MITCHELL H. TAIBLESON (St. Louis, Miss.)*

Abstract. The notion of a conjugate system of regular functions over K" xZ,
where K7 is the n-dimensional vector space over a local field and Z is a set of rational
integers, is extended to that of a generalized conjugate system (GCS). Such systems
are analogues of generalized Cauchy—Riemann systems of harmonic functions on
Euclidean half-spaces. Examples of such GCS’s are constructed by means of a system
of operators, {Bj}f.;, that are analogues of the Riesz transforms. An F. and M. Riesz
theorem is proved. (If x and By, 1 = 1,2, ..., mare all finite Borel measures, then x
5 absolutely continuous.) A conjugate system definition of the Hardy space, H'(K™),
is proposed (f e H' iff fe I* and Bif € It for all 1) and it is shown that this definition
is equivalent to other proposed definitions; namely, maximal funetion, Lusin area
junetion, and atomie definitions.

§ 1. Introduction. Chao [1] and Chao and Taibleson [4] have given
a definition of conjugate systems of functions on K xZ, K a local field
and Z the rational integers, which gives rise to an F. and M. Riesz theorem:
Suppose the local class fidd of K is odd. Then there i3 a singular integral
operator T on K with the property that if u and Tp are both finite Borel
measures then p is absolutely comtinwous. This operator is the local field
version of the conjugate operator (Hilbert transform) on R. In this paper
we will extend the notion of conjugate system to generalized conjugale
system (GCS) and we will econstruct examples which arise from systems
of “Riesz” transforms, {E;}}, on K", the n-dimensional vector space
over K. )

For such & Riesz system we will establish an F. and M. Riesz theorem:
If u and Ryp, 1 =1,2,...,n are all finite Borel measures then p is absol-
utely comtinuous. It will also be shown that a range of definitions for
the Hardy space H'(E™ are all equivalent. Thus, if H' is defined by the
property: f € H iff f and Byf, 1 =1,2,..., n are all integrable, then that

* Research supported in part by the National Science Foundation under Grant
No. MPS75-02411.
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