Some characterizations of the n-dimensional Peano derivative

by

ISRAEL BERNARD ZIBMAN (Princeton, N.J.)

Abstract. A measurable function is said to have a Peano derivative of order \(k \) at a point \(x \) if there is a polynomial \(P \) of degree \(k \) with the property that

\[f(x + \varepsilon) = P(\varepsilon) + o(|\varepsilon|^k) \]

This work gives a characterization of the Peano derivative for functions of several variables in terms of the behaviour of the expression

\[\sum_{i=1}^{N} A_i f(x + \varepsilon \nu_i) - \left(\sum_{i=1}^{N} A_i \right) f(x) \]

The \(A_i \) are real numbers and the \(\nu_i \) are points on the unit sphere, \(\varepsilon > 0 \) and \(\varepsilon \in SO(n) \).

The techniques involve boundary behavior of harmonic functions and analysis on \(SO(n) \). When \(n \) is greater than 2 the non-commutativity of \(SO(n) \) requires special treatment. A technique, introduced by Stein and Zygmund, is developed which allows one to substitute a certain convolution with a central function for a convolution with a non-zero function.

Introduction. The purpose of this paper is to present an extension and a unification of several of the characterizations of the n-dimensional Peano derivative. Our characterizations will be stated as a description of the behavior of functions restricted to spheres centered at points of possible differentiability. The action of the rotation group on the sphere will play a significant role.

We say that a function \(f \) defined on a neighborhood of a point \(x \) in \(\mathbb{R}^n \), has a \(k \)-th Peano derivative at \(x \) if there is a polynomial \(P \) of degree at most \(k \) such that

\[f(x + \varepsilon) = P(\varepsilon) + o(|\varepsilon|^k) \]

When \(k = 1 \), this is the ordinary derivative. When \(k > 1 \), \(f \) need not be \(k - 1 \) differentiable near \(x \) to have a \(k \)-th Peano derivative at \(x \).

We consider in this paper configurations consisting of a finite number of points on the unit sphere in \(\mathbb{R}^n \), \(\nu_1, \ldots, \nu_N \). We assign each point a non-zero weight \(A_i \). The origin is given the weight \(\sum A_i \). To each configuration we associate an integer type \(m \). The integer \(m \) is defined as the infimum of the degrees of all polynomials for which

\[\sum_{i=1}^{N} A_i P(\nu_i) + \]
Theorem (10), p. 77. Let \((\partial/\partial x)^a\) be a differential monomial of degree 2. If \(f\) is continuously twice differentiable and has compact support, then
\[
\left\| \frac{\partial}{\partial x} f \right\|_{L^p} \leq A_p \left\| df \right\|_{L^p} \quad \text{for } 1 < p < \infty.
\]

The last theorem has been generalized and extended to other elliptic systems \([1]\). The following version is very closely related to the results in this paper.

Theorem. Let \(P_1(x), \ldots, P_d(x)\) and \(P(x)\) be homogeneous polynomials of degree \(m\). Suppose the only common complex zeros \(1\) of \(P_1, \ldots, P_d\) all lie on the variety \(a_1^2 + \cdots + a_d^2 = 0\). For \(1 < p < \infty\), there is a constant \(A_p\) such that for all \(f \in C^m(\mathbb{R}^d)\) with compact support,
\[
\|P(\partial/\partial x) f\|_{L^p} \leq A_p \sum_{i=1}^d |P_i(\partial/\partial x)f|_{L^p}.
\]

The proof of this theorem is based on an easy application of the Hilbert Nullstellensatz and the boundedness of the higher Riesz transforms for \(1 < p < \infty\).

The proof of the theorems in this paper will use the local analog of the Riesz transform theory—the theory of nonnegative limits for conjugate systems of harmonic functions. The \(P_1, \ldots, P_d\) will be homogeneous harmonic polynomials. These polynomials transform suitably under the action of the rotation group. We let \(u(x, y)\) be the Poisson integral of our function \(f\). We shall gain control of \(P_i(\partial/\partial x) u(x, y), i = 1, \ldots, d\). The method of harmonic derivatives of Stein \([10]\), \([11]\) will be used to complete the proof.

The early theorems about differentiability were concerned with essentially linear configurations. In the theorems of Khintchine and Marcinkiewicz–Zygmund and the earlier theorem of Stein–Zygmund, the second point, \(-t\), is in the opposite direction of the first point. When other directions are introduced, as in the second theorem of Stein–Zygmund, we are led in the proof to consider expressions of the following type.

\[
\sum_{i=1}^{\infty} \int_{\mathbb{S}^{n-1}} \int_{\mathbb{S}^{n-1}} P[y, x_1, r, \sigma(x(y)), \sigma(y)] \frac{df(x + \sigma(x(y)))}{dx} \frac{df(y + \sigma(y))}{dy} \, d\sigma \, d\tau.
\]

The function \(P[y, x_1, r, \sigma(y), \sigma(y)]\) will be some derivative of the Poisson kernel expressed in spherical coordinates. In two dimensions, \(\sigma(x_1) = y_1\) for any unit vectors \(x_1, y_1\), and \(\sigma \in \mathbb{SO}(2)\). We can then move
the summation sign inside the integral, past the function $P(y, r, \sigma(y))$. In higher dimensions this is not possible since SO(n) is not commutative.

To overcome this problem we develop a technique introduced by Stein-Zygmund [8]. They demonstrated the existence of a function $\hat{P}(y, r, \sigma)$ which is a central function of $\sigma \in SO(n)$ and satisfies

$$\int_{SO(n)} \hat{P}(y, r, \sigma) f(\sigma(0)) d\sigma = \int \left(2 \frac{\partial}{\partial y} \right)^2 \left(\frac{\partial^2}{\partial^2 y} - 2 \sigma(r) \frac{\partial}{\partial y} + \sigma(r)^2 \right) f(\sigma(0)) d\sigma$$

for any y on the unit sphere. It is also shown that \hat{P} is comparable in size to the indicated second derivative of the Poisson kernel. The proof uses the theory of semigroups and Schauder type estimates. The proof in this paper is more direct and extends to other derivatives of the Poisson kernel. This will be carried out in Section II.

I would like to express my appreciation to my adviser, E. M. Stein who suggested the problem and who provided much advice and encouragement during the course of this work.

I. The characterizations. Let η_1, \ldots, η_n be a finite collection of points on the unit sphere in R^n. Let A, A_i be non-zero real numbers. Set $B = B(0)$ which $\sum A_i \eta_i + B(0) \neq 0$. We note that m is greater than zero. Let f be a measurable function defined on a neighborhood of a measurable subset B of R^n. We obtain the following theorems.

Theorem 1. The function f has an m-th Peano derivative at almost every $x \in B$ if and only if for $\varepsilon > 0, \sigma \in SO(n)$,

$$\sum_{i=1}^{m} A_i f(\sigma + \varepsilon \eta_i) + Bf(\sigma) = O(\varepsilon^m) \quad \text{as} \quad \varepsilon \to 0$$

for a.e. $x \in B$.

The estimate may depend on x but is uniform in σ for fixed x.

Theorem 2. If f is a k-th Peano derivative at x_0 if for all m-tuples $\eta = (\eta_1, \ldots, \eta_m)$ with $\sum_{i=1}^{m} a_i \leq k$, $(\partial^m f)(\eta(0))u(x, y)$ has a non-tangential limit at x_0. This means that there is a $\beta > 0$ such that

$$\lim_{t \to 0^+} \left(\frac{\partial^m}{\partial^m t} \right) u(x, y)$$

exists and is finite.

Definition ([1]). A function $f \in L_p(R^n), 1 \leq p < \infty$, has a k-th derivative in the L_p sense at x_0 if there is a polynomial Q of degree at most k with the property that

$$\left| \left(\frac{\partial^m}{\partial^m t} \right) Q(\sigma(0)) \right| = o(\varepsilon^m) \quad \text{as} \quad \varepsilon \to 0$$

If f has a k-th Peano derivative at x_0 or a k-th derivative in the L_p sense, then f has a k-th harmonic derivative at x_0. Also if f and all derivatives

Observe that the conditions for differentiability in Theorem 2 are independent of the type of the configuration as long as k is less than m. This might seem surprising, since, when m is very large, the cancellations would cause $\sum A_i f(\sigma + \varepsilon \eta_i) + Bf(\sigma)$ to be small for any reasonable function f. The method of Marcinkiewicz [3] shows that for any configuration and $\varepsilon > 0$, one can find a function possessing an ordinary first derivative almost everywhere, yet

$$\int \int_{\eta \in SO(n)} \left[\sum_{i=1}^{m} A_i f(\sigma + \varepsilon \eta_i) + Bf(\sigma) \right] f(\sigma(0)) d\sigma d\eta$$

is infinite almost everywhere for any $\varepsilon > 0$.

The proof of Theorems 1 and 2 will be based on the idea of “splitting of functions” developed by Marcinkiewicz [4] and Calderón and Zygmund [1]. It will use the method of harmonic derivatives due to Stein and Zygmund [10] [13]. This method is described by the following definitions and theorem from Stein [10], Chapter VIII. In Stein's book the statements are for first derivatives, but the extension to higher derivatives is immediate.

Definition. Let f be a locally integrable function defined in an open set B. For a fixed $x_0 \in B$ we modify f by setting it to zero outside a bounded neighborhood of x_0. The function f is now in $L_1(R^n)$ and we may take its Poisson integral

$$u(x, y) = P_x f(x) = \int \frac{a_n y}{(|x-t|^2 + y^2)^{n-1}} f(t) dt.$$
of order less than or equal to k exist in the sense of distributions and are in L_p, (we write $f \in L_p^k$), then f may be redefined on a set of measure zero to have a kth Peano derivative almost everywhere.

Splitting Theorem. Suppose that f is a locally integrable function and that for every x_0 in a set E of finite measure f has a kth harmonic derivative at x_0. Then for every $\varepsilon > 0$ we can find a compact set E with $m(E - E) < \varepsilon$ and a function $g \in L_p^k$ such that $|f(x) - g(x)| < \varepsilon$ everywhere on E. If f has a kth derivative in the L_p sense at every point of E, then we may choose F as above with the additional property that

$$\int_{|y|<\varepsilon} \frac{\|b(x_0 + y)\|}{|y|^{n+k}} \, dy < \infty$$

for $x_0 \in F$.

We proceed to prove Theorem 1 and 2.

The necessary part of the condition in Theorem 1 is clear. Suppose

$$f(x+1) = \sum_{j=1}^N P_j(x) + o(|x|^m),$$

where P_j is homogeneous of degree j. Then

$$\sum_{j=1}^N A_j f(x + \varepsilon v_j) + B f(x) = \sum_{j=1}^N \varepsilon^j \sum_{j=1}^N A_j P_j (\varepsilon v_j) + o(\varepsilon^m).$$

Since the configuration is of type m, $\sum_{j=1}^N A_j P_j (\varepsilon v_j) = 0$ for $j < m$. Hence

$$\sum_{j=1}^N A_j f(x + \varepsilon v_j) + B f(x) = \varepsilon^m \sum_{j=1}^N A_j P_j (\varepsilon v_j) + o(\varepsilon^m) = O(\varepsilon^m).$$

The necessary condition of Theorem 2 is proven in the same fashion. To show the necessity of condition (b), we first prove the following proposition.

Proposition. Let $\{x_i, v_i, i = 1, \ldots, N\}$ be a configuration of type m. Let $k < m$. If $f \in L_p^k$, then

$$\int_{R^n} \int_{R^n} \left| \sum_{j=1}^N A_j f(x + \varepsilon v_j) + B f(x) \right|^2 \frac{d\sigma d\sigma}{\varepsilon^{n+k}} \leq C \|f\|^2_{L_p^k}.$$

Proof. By Plancherel's theorem and the effect of translations on the Fourier transform, the left-hand side of (1) is equal to

$$\int_{R^n} \int_{R^n} e^{-|x|^2} \left| \int f(y) \left(\sum_{j=1}^N A_j e^{\varepsilon y v_j} + B \right) dz \right|^2 \frac{dy dz}{|y|^{n+k}}.$$

Let

$$I(t) = \int_{R^n} \int_{R^n} \left| \sum_{j=1}^N A_j e^{\varepsilon y v_j} + B \right|^2 e^{-|z|^2} \frac{dy dz}{|y|^{n+k}}.$$

For fixed t, Taylor's theorem shows that $\sum_{j=1}^N A_j e^{\varepsilon y v_j} + B = O(\varepsilon^m)$ as $\varepsilon \to 0$ so $I(t)$ is finite. By homogeneity, $I(t) = O(|t|^m)$. Hence (2) is equal to

$$C \int_{R^n} e^{-|y|^2} \left| \sum_{j=1}^N e^{\varepsilon y v_j} \right|^2 dy \leq C \int \left| \sum_{j=1}^N e^{\varepsilon y v_j} \right|^2 dy.$$

If f has a kth Peano derivative on E, then f is locally bounded. We may restrict E to a compact set and assume that f vanishes outside a bounded neighborhood of E. Now the existence of a kth Peano derivative implies that f has a kth derivative in the L_p sense on E and the Splitting theorem may be applied. We can find a set F, arbitrarily close to E in measure and functions $g \in L_p^k$ and $b(x) - f(x) - g(x)$. The function g is in L_p^k and satisfies condition (b) of the theorem by the proposition. Since v vanishes on F,

$$\int_{R^n} \left(\sum_{j=1}^N A_j \left(x + \varepsilon y v_j \right) \right)^2 dy \leq \sum_{j=1}^N e^{|x+y|^2} \left| A_j \left(x + \varepsilon y v_j \right) \right|^2 dy < \infty$$

for $x \in F$.

Hence $f = g + b$ also satisfies condition (b).

The proof of the sufficiency of the conditions is more difficult. We will first show that it suffices to prove that f has a harmonic derivative of the appropriate order. The following lemma will be used repeatedly for the purpose of "desymmetrization."

Desymmetrization Lemma. Let E be a measurable subset of R^n of finite positive measure. \mathcal{X} will denote the characteristic function of E. Set $c = \frac{1}{2} \int_{R^n} e^{-x \cdot y} \frac{d\sigma y}{|y|^{n+k}}$. If v_1, \ldots, v_N is a finite subset of the unit sphere in R^n and $0 < \varepsilon \leq 1$, then for almost every $x \in E$ there is a $\delta_n > 0$ such that $\varepsilon^{-n} - \varepsilon^{n} < \delta_n$, then

$$\int_{R^n} \left| \sum_{j=1}^N A_j (x + \varepsilon y v_j) \right|^2 \frac{d\sigma y}{|y|^{n+k}} > C \varepsilon^{n-k} \int_{R^n} \left| \sum_{j=1}^N A_j (x + \varepsilon y v_j) \right|^2 \frac{d\sigma y}{|y|^{n+k}}.$$

This says that if x is close to x_i, there is a point of E even closer to x with the property that this point, $(x + \varepsilon y v_j)$, is the center of a confi-
Now suppose that \(f \) has a \(k \)th harmonic derivative at every \(x_0 \in E \). We choose \(F = E \) and write \(f = g + b \) according to the splitting lemma. The function \(g \) is in \(L^\infty \) and has a \(k \)th Peano derivative a.e. The function \(b \) vanishes on \(F \). To show that \(b \) has a \(k \)th Peano derivative on \(F \), it will certainly suffice to show that \(b(x_0 + t) = o(|t|^k) \) for a.e. \(x_0 \in E \).

\[
\sum_{i=1}^{N} A_i b(x_0 + \varphi(v_i)) + B b(x_0) = \sum_{i=1}^{N} A_i \left(f(x_0 + \varphi(v_i)) - g(x_0 + \varphi(v_i)) \right) + B (f(x_0) - g(x_0)) = O(t^k).
\]

Consider the subset \(F_1 = \{ x_0 \in E : \sum_{i=1}^{N} A_i b(x_0 + \varphi(v_i)) + B b(x_0) < j c^k \} \) for \(c = 1 \). \(F_1 \) is given by a continuum of conditions and may not be measurable if \(f \) is not continuous. Nevertheless, we may still apply the desymmetrization lemma to \(F_1 \) for any \(e \), \(0 < e \leq 1 \). For a.e. \(x_0 \in F_1 \), there is an \(\delta_{x_0} > 0 \) with the property that for any \(x \) with \(|x - x_0| < \min(\delta_{x_0}, 1/e) \), there is an \(i \), \(0 < e < |x - x_0| \), and \(c \in \mathcal{S}(n) \) such that \(x - \varphi(v_i) \in F_1 \) and \(x - \varphi(v_i) \in F_1 \), \(i = 2, \ldots, N \). The function \(b \) vanishes at these points. Hence

\[
|A_i b(x)| \leq \sum_{i=1}^{N} A_i b(x - \varphi(v_i) + \varphi(v_i)) + B b(x - \varphi(v_i)) \\
\leq j c^k (|x - x_0|)^k = o(|x - x_0|^k).
\]

Recall that \(A_i \) is not zero. Since \(E \) is equal to a countable union of the \(F_i \), \(b \) has a \(k \)th Peano derivative almost everywhere in \(E \) and hence in \(E, f = g + b \), likewise, has a \(k \)th Peano derivative in \(E \).

The remainder of the paper will be devoted to showing that \(f \) has a \(k \)th harmonic derivative almost everywhere in \(E \).

LEMMA. Under the condition of Theorem 2 and condition (a) of Theorem 2 \(f \) is locally bounded near a.e. \(x_0 \in E \).

Proof. Let \(F_1 = \{ x \in E : |f(x)| < j \} \) and \(\sum_{i=1}^{N} A_i f(x + \varphi(v_i)) + B f(x) < j c^k \) for \(0 < c < 1 \). Apply the desymmetrization lemma to \(F_1 \). For a.e. \(x_0 \in F_1 \), \(|x - x_0| < \delta_{x_0} < 1/j \), there is a \(i \), \(0 < e < |x - x_0| \), and \(c \in \mathcal{S}(n) \) with the property that \(x - \varphi(v_i) \in F_1 \) and \(x - \varphi(v_i) \in F_1 \), \(i = 2, \ldots, N \).

\[
|A_i f(x)| \leq \sum_{i=1}^{N} A_i f(x - \varphi(v_i) + \varphi(v_i)) + B f(x - \varphi(v_i)) \\
\leq j c^k + j f(x) \sum_{i=1}^{N} |A_i| + |B|.
\]
We may restrict \(f \) and \(E \) and assume that \(f \) is bounded and has compact support.

We set \(u(x, y) = P_y * f(x) \) — the Poisson integral of \(f \).

We will use the following theorems about harmonic functions \(u(x, y) \) defined in the upper half space \(\mathbb{R}^{n+1}_+ \) [8]. We fix \(a > 0 \) and \(h > 0 \). \(\Gamma(h) \) will denote the truncated cone, \(\{(x, y) : |x| < a, 0 < y < h\} \).

Theorem. If \(u \) is non-tangentially bounded in \(E \), then \(u \) has a non-tangential limit almost everywhere in \(E \).

Theorem. If \(\frac{\partial^2 u}{\partial y^2} \) has non-tangential limits in \(E \), then the same is true almost everywhere in \(E \) for \(P(\partial / \partial y)u \) when \(P(\partial / \partial x)u \) is a homogeneous polynomial in \(y, a_1, \ldots, a_n \) of degree \(k \).

Theorem. For any integral \(k > 0 \), in order that \(u \) have non-tangential limits almost everywhere in \(E \), it is necessary and sufficient that a generalized area integral

\[
A_k(a_n) = \int_{\mathbb{R}^n} \left| y^{n-k-1} \left(\frac{\partial^2 u}{\partial y^2} \right) (x, y) \right|^2 \, dx \, dy
\]

be finite for a.e. \(a_n \in E \).

Theorem. If \(Q_1(x), \ldots, Q_k(x) \) are homogeneous polynomials of degree \(r \) and the common complex zeroes satisfy \(z_1 + \ldots + z_k = 0 \), then

(a) The non-tangential boundedness of \(Q_i(\partial / \partial x)u, i = 1, \ldots, d \), in a set \(E \) implies the existence of non-tangential limits a.e. of \(P(\partial / \partial x)u \) when \(P \) is any homogeneous polynomial of degree \(r \) in \(y, a_1, \ldots, a_n \).

(b) The finiteness of \(\int_{\mathbb{R}^n} g^{(n-k-1)}(Q_i(\partial / \partial x)u(x, y)) \, dx \, dy \), \(i = 1, \ldots, d \), in a set \(E \) implies the finiteness a.e. of \(\int_{\mathbb{R}^n} g^{(n-k-2)}(P(\partial / \partial x)u(x, y)) \, dx \, dy \) when \(P \) is any homogeneous polynomial in \(y, a_1, \ldots, a_n \) of degree \(r \). In particular, if \(a = (a_1, \ldots, a_n) \) is any non-negative \(n \)-tuple with \(|a| = \sum a_i < r_1 \), then the finiteness of

\[
\int_{\mathbb{R}^n} g^{(n-k-1)}(Q_i(\partial / \partial x)u(x, y)) \, dx \, dy
\]

implies the finiteness of

\[
\int_{\mathbb{R}^n} g^{(n-k-2)}(\frac{\partial^2 u}{\partial y^2}) \, dx \, dy
\]

for almost every \(a_n \in E \). This in turn implies the existence a.e. of non-tangential limits of \(\frac{\partial^2 u}{\partial y^2} \) by the preceding theorem.

Let \(Q \) be a homogeneous polynomial of smallest degree for which \(\sum_{i=1}^N A_i \phi_i(x) \neq 0 \). \(Q \) may be written \(Q(x) = P(\mathbf{a}^2 + |x|^2)R(x) \) where \(P \) is harmonic and \(R \) is of degree \(m-2 \) (see [3]). If \(\sum_{i=1}^N A_i \phi_i(x) \neq 0 \), we take \(P \) as our \(Q \). Otherwise, \(\sum_{i=1}^N A_i \phi_i(x) \phi_i(x) = \sum_{i=1}^N A_i \phi_i(x) \phi_i(x) \neq 0 \). By our definition of \(m \), \(R \) must be a constant function and \(\sum_{i=1}^N A_i \phi_i(x) \phi_i(x) \neq 0 \).

In this latter case we shall prove Theorem 1 by showing that \(\frac{\partial^2 u}{\partial y^2} \) is non-tangentially bounded a.e. in \(E \). Theorem 2 shall be proved by showing that

\[
\int_{\mathbb{R}^n} g^{(n-k-2)} \left(\frac{\partial^2 u}{\partial y^2} \right)^2 \, dx \, dy
\]

is finite almost everywhere in \(E \). The preceding theorems may be applied to show that \(u \) has a second or first harmonic derivative respectively when these quantities are finite. The estimates on \(\frac{\partial^2 u}{\partial y^2} \) used in obtaining these results are identical to those shown below in the case of \(Q(\mathbf{a}) \) a harmonic polynomial. The algebra is considerably easier and will not be shown.

Let \(Y_1(x), \ldots, Y_d(x) \) be an orthonormal basis for the homogeneous harmonic polynomials of degree \(m \). To prove Theorem 1 we shall show that \(Y_i(\partial / \partial x)u(x, y) \) is n.t. bounded a.e. in \(E \). To prove Theorem 2 we shall show that

\[
\int_{\mathbb{R}^n} g^{(n-k-1)}(Y_i(\partial / \partial x)u(x, y)) \, dx \, dy
\]

is finite a.e. in \(E \). The following lemma shows that the \(Y_i \) satisfy the conditions for the \(Q \) of the preceding theorem.

Lemma. The only common zero of \(Y_1, \ldots, Y_d \) is \(x = 0 \).

Proof. For \(1 \leq i, j \leq n \), \(j \neq k \), \((x_i + \epsilon a_i)m\) and \((x_i - \epsilon a_i)m\) are homogeneous harmonic polynomials of degree \(m \). They are simultaneously zero only when \(a_i = \epsilon a_i = 0 \).

In the following lemma \(P_y(x) = \frac{\epsilon a_y}{(|x|^2 + y^2)^{\frac{n+1}{2}}(x^2 + y^2)} \) is the Poisson kernel.

Lemma. Let \(Q \) be a homogeneous harmonic polynomial of degree \(m \).

Then

\[
Q(\partial / \partial x)P_y(x) = C_{nm}Q(\mathbf{a})(|x|^2 + y^2)^{-(n+2m)}
\]

where \(C_{nm} = C_n \) and \(C_m = -(n+2m-1)C_{nm-1} \).

Proof. When \(m \) is zero the lemma is obvious. Consider now \(Q \) of the form \(Q(x) = (x_i + \epsilon a_i)m \). Assume that the lemma holds for polynomials.
of degree $m - 1$. We write $|x|^2 = (x_1 + i x_2) (x_1 - i x_2) + x_3^2 + \ldots + x_n^2$. Since
\[
\left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) (x_1 + i x_2) = 0 \quad \text{and} \quad \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) (x_1 - i x_2) = 2 \text{,}
\]
we have
\[
\left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right)^m P_{\nu}(x) = \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right)^x \times [G_{m-1, y} (x_1 + i x_2)^{m-1} (x_1 + i x_2)^{m-1} + x_3^2 + \ldots + x_n^2 + y^2]^{-\frac{m+2n}{4}}
\]
\[
= -2 \left(\frac{m + 2n - 1}{2} \right) C_{m-1, y} (x_1 + i x_2)^{m-1} (x_1 + i x_2)^{m-1}.
\]

Hence, the lemma holds for Q of the form $Q(x) = (x_1 + i x_2)^m$. We may change coordinates by replacing x by $\sigma^{-1}(x)$ for any $\sigma \in SO(n)$. The lemma thus holds for a polynomial $P(x) = Q(\sigma^{-1}(x))$. Since the space of homogeneous harmonic polynomials of degree m with real coefficients is an irreducible representation space for $SO(n)$ under the action of R_ν, the image of R_ν (the real part of Q) under $SO(n)$ spans this space so the lemma holds for all homogeneous harmonic polynomials.

We regard the vector space over R spanned by Y_1, \ldots, Y_N as a representation space for an irreducible unitary representation of $SO(n)$ (see [23]). We denote by $Z^\nu(x)$ the zonal harmonic of degree m with respect to the direction ν. Then $Z^\nu(\sigma(x)) = Z^\nu(x)$ whenever $\sigma(x) = x$. We choose $Y_1(x) = Z^0(x)$ where N is the unit vector $(1, 0, \ldots, 0)$. The entries $Y_1(\sigma(x)), \ldots, Y_N(\sigma(x))$ occupy the first column of the representation matrix for σ with respect to this basis.

\[
\sum_{j=1}^{\infty} Y_j(\tau^{-1} \sigma(N)) Y_j(\sigma(N)) = (R_{\tau^{-1}} R_{\sigma(0)}) = (R_{\tau^{-1}} R_{\sigma(0)}) = Y_j(\tau^{-1} \sigma(N))
\]

We may use the preceding lemma and the fact that $\int_Q = \int_\infty^\infty Q(\partial x)P_{\nu}(x) dx = Q(0)$ for any polynomial Q to write
\[
A_i \int_{\infty}^\infty Y_i(\delta u) u(x_1, y) dx = C_m y^m \int_{\infty}^\infty Y_i(\nu(x)) dx = \int_0^\infty \int_0^\infty C_m y^m Y_i(\nu(x)) dx \sigma x_1 + \sigma(x_2) d\sigma x_1 + \sigma(x_2) d\theta.
\]

We let τ_i be any rotation for which $\tau_i(N) = v_i, i = 1, \ldots, N$.

\[
A_i \sum_{j=1}^{d} Y_j(\tau_i(N)) Y_j(\delta u) u(x_1, y) = \int_0^\infty \int_0^\infty C_m y^m \sum_{j=1}^{d} Y_j(\nu(x)) Y_j(\sigma(x)) \int_0^\infty \int_0^\infty C_m y^m Y_j(\nu(x)) dx \sigma x_1 + \sigma(x_2) d\sigma x_1 + \sigma(x_2) d\theta.
\]

We would like to use our control of f by adding up these integrals for $i = 1, \ldots, N$. However, when $n > 2$, $Z^\nu(\sigma(x))$ does not generally equal $Z^\nu(\sigma(x))$.

Recall from the representation theory that, as a function of x, $f(x + \sigma(x))$ is a linear combination of the $Y_j(\tau_i \sigma(N))$ plus some function which is orthogonal to the entry functions of this representation. Also, the entry functions themselves are pairwise orthogonal. Let $\chi_m(x)$ denote the character of the representation. With respect to the basis where $Y_j(\tau_i \sigma(N))$, $j = 1, \ldots, d$, occupy the first column,

\[
\chi_m(x) = \int_0^\infty \int_0^\infty Z^\nu(\sigma(x)) f(x_1 + \sigma(x_2)) d\sigma x_1 + \sigma(x_2) d\sigma x_1 + \sigma(x_2) d\theta.
\]

By orthogonality,
\[
\int_{\infty}^\infty Z^\nu(\sigma(x)) f(x_1 + \sigma(x_2)) d\sigma x_1 + \sigma(x_2) d\sigma x_1 + \sigma(x_2) d\theta = \int_{\infty}^\infty \chi_m(x) f(x_1 + \sigma(x_2)) d\sigma x_1 + \sigma(x_2) d\sigma x_1 + \sigma(x_2) d\theta.
\]

Now we can add and obtain
\[
\sum_{j=1}^{d} A_i \sum_{j=1}^{d} Y_j(\tau_i(N)) Y_j(\delta u) u(x_1, y) = \int_0^\infty \int_0^\infty C_m y^m \sum_{j=1}^{d} A_i \int_0^\infty \int_0^\infty C_m y^m Y_j(\nu(x)) dx \sigma x_1 + \sigma(x_2) d\sigma x_1 + \sigma(x_2) d\theta.
\]

If $\sum_{i=1}^{N} A_i f(x_1 + \sigma(x_2)) + Bf(x_1) = O(\epsilon^n)$, the hypothesis of Theorem 1, then (6) is dominated by $C \int_0^\infty \int_0^\infty e^{-n} d\sigma x_1 + \sigma(x_2) d\theta$ which is uniformly bounded as n tends to zero.
Now suppose that \(f \) satisfies condition (b) of Theorem 2. We have the estimates
\[
y^{m}(q^{2}y^{2})^{-[k(n+2m+1)]} \leq Ay^{-n-m} \quad \text{and} \quad y^{m}(q^{2}y^{2})^{-[k(n+2m+1)]} \leq Ay^{-n-m-1}.
\]

We set \(|A_{i}| = \sum_{n=0}^{N} |A_{i}| \). We obtain
\[
\left| \sum_{i=1}^{N} A_{i} Y_{i}(\eta_{i}) \sum_{j=1}^{d} Y_{j}(\eta_{j}) \right| \leq Ay^{-n-m} \sum_{i=1}^{N} |A_{i}| y^{-1} + Ay \sum_{i=1}^{N} |A_{i}| y^{-n-m-1} e^{-1} \eta_{i} d \eta_{i} = I_{1}(y) + I_{2}(y).
\]

By Schwarz's inequality
\[
|I_{1}(y)| \leq Ay^{-n-m} \left(\sum_{i=1}^{N} |A_{i}| y^{-1} d \eta_{i} \right) \left(\sum_{i=1}^{N} |A_{i}| y^{-n-m-1} e^{-1} \eta_{i} d \eta_{i} \right) = By^{-n-m} \sum_{i=1}^{N} |A_{i}| y^{-2} d \eta_{i},
\]

\[
\int_{0}^{\infty} y^{2n-k+1} |I_{1}(y)|^{2} dy \leq B \int_{0}^{\infty} y^{-2} \int_{0}^{\infty} |A_{i}|^{2} y^{-1} d \eta_{i} d \eta_{i} = B \int_{0}^{\infty} |A_{i}|^{2} y^{-1} d \eta_{i} < \infty.
\]

Similarly,
\[
|I_{2}(y)| \leq Ay^{-n-m} \left(\sum_{i=1}^{N} |A_{i}| y^{-1} d \eta_{i} \right) \left(\sum_{i=1}^{N} |A_{i}| y^{-n-m-1} e^{-1} \eta_{i} d \eta_{i} \right) = By^{-n-m} \sum_{i=1}^{N} |A_{i}| y^{-2} d \eta_{i},
\]

\[
\int_{0}^{\infty} y^{2n-k+1} |I_{2}(y)|^{2} dy \leq B \int_{0}^{\infty} y^{-2} \int_{0}^{\infty} |A_{i}|^{2} y^{-1} d \eta_{i} d \eta_{i} = B \int_{0}^{\infty} |A_{i}|^{2} y^{-1} d \eta_{i} < \infty.
\]

This gives us radial control of the expression
\[
\sum_{i=1}^{N} A_{i} Y_{i}(\eta_{i}) Y_{j}(\partial / \partial \eta_{i}) u(a_{n}) \quad \text{for} \quad a_{n} \in E.
\]

Observe, in fact, that our estimates hold uniformly in \(SO(n) \) if we replace the \(\eta_{i} \) by \(\sigma(\eta_{i}) \).

Recall the homogeneous harmonic polynomial \(P \) which had the property that \(\sum_{i=1}^{N} A_{i} P(\eta_{i}) \neq 0 \) is a linear combination of the \(Y_{j} \). Hence, we know that \(\sum_{i=1}^{N} A_{i} Y_{j}(\eta_{i}) \neq 0 \) for some \(j \). The representation of \(SO(n) \) acts on \(R^{d} \) by sending the non-zero vector \(\sum_{i=1}^{N} A_{i} Y_{j}(\eta_{i}) \) into the vector \(\sum_{i=1}^{N} A_{i} Y_{j}(\sigma(\eta_{i})) \). Since the representation is irreducible, the image of this vector under the action of \(SO(n) \) spans \(R^{d} \). Thus, there are real numbers \(B_{i} \), \(1 \leq i, \leq d \), and \(\sigma_{i} \) with the property that
\[
\sum_{i=1}^{d} B_{i} \sum_{i=1}^{N} A_{i} Y_{j}(\eta_{i}) = \delta_{d}.
\]

So
\[
Y_{j}(\partial / \partial \eta_{i}) u(a_{n}, y) = \sum_{i=1}^{d} B_{i} \sum_{i=1}^{N} A_{i} Y_{j}(\sigma(\eta_{i})) Y_{j}(\partial / \partial \eta_{i}) u(a_{n}, y).
\]

Using our estimates for the inner summand, we obtain the result that \(Y_{j}(\partial / \partial \eta_{i}) u(a_{n}, y) \) is uniformly bounded as \(y \to 0 \) and
\[
\int_{0}^{\infty} y^{2n-k+1} |Y_{j}(\partial / \partial \eta_{i}) u(a_{n}, y)|^{2} dy < \infty \quad \text{for} \quad a_{n} \in E.
\]

under the conditions of Theorems 1 and 2, respectively.

We now proceed to obtain non-tangential control. As before, we observe that
\[
A_{i} \sum_{j=1}^{d} Y_{j}(\eta_{j}) Y_{j}(\partial / \partial \eta_{j}) u(a_{n}+r_{n}, y) = \int_{0}^{\infty} \int_{0}^{\infty} \sum_{j=1}^{d} C_{n} \nabla \sum_{j=1}^{d} Y_{j}(\eta_{j}) Y_{j}(\eta_{j} - \sigma(\eta_{j})) (r_{n} - \sigma(\eta_{j}))(r_{n} - \sigma(\eta_{j})) \eta_{j} d \eta_{j} d \eta_{j} = \int_{0}^{\infty} \int_{0}^{\infty} C_{n} \nabla Y_{j}(r_{N} - \sigma(\eta_{j})) Y_{j}(\partial / \partial \eta_{j}) u(a_{n}+r_{n}, y) d \eta_{j} d \eta_{j}.
\]

As before, if \(SO(n) \) were abelian, we could add these expressions for
\[
\sum_{i=1}^{d} A_{i} Y_{i}(\eta_{i}) Y_{j}(\partial / \partial \eta_{i}) u(a_{n}) \quad \text{for} \quad a_{n} \in E.
\]

Observe, in fact, that our estimates hold uniformly in \(SO(n) \) if we replace
\[
P(r, \eta_{i}, y, \sigma) = \frac{C_{n} \nabla Y_{j}(r_{N} - \sigma(\eta_{j}))}{(r^{2} + \sigma^{2} - 2r \sigma \eta_{j})^{(n+2m+1)}}.
\]
We seek a function \(\hat{P}(r, \epsilon, y, \sigma) \) with the property that
\[
\left| \int_{\infty}^{y} \hat{P}(r, \epsilon, y, \sigma) f(\sigma n + \sigma \epsilon n) \, d\sigma \right| \leq \int_{\infty}^{y} \hat{P}(r, \epsilon, y, \sigma) f(\sigma n + \sigma \epsilon n) \, d\sigma.
\]
That is, \(\hat{P} \) should have the same effect as \(P \) as a convolution kernel operating on functions defined on the sphere. It is clear that \(\hat{P} \) should be a central function in \(\sigma \). That is, \(\hat{P}(r, \epsilon, y, r^{-1} \sigma) \) should equal \(P(r, \epsilon, y, \sigma) \). \(\hat{P} \) in effect, masks the non-commutativity of \(SO(n) \). We should also require that \(\hat{P} \) satisfy the non-tangential estimate,
\[
|\hat{P}(r, \epsilon, y, \sigma)| \leq A_\epsilon y |y + \sigma|^{-n-1} \quad \text{for} \quad r < \alpha y, \quad \alpha > 0.
\]
Observe that \(P \) satisfies such an estimate. When \(r = 0 \) we saw that \(\hat{P} \) could be constructed by replacing a zonal harmonic by a character. When \(r \neq 0 \) the construction of \(\hat{P} \) follows this idea but requires more work. We construct \(\hat{P} \) in Section II. Here we assume the existence of \(\hat{P} \).

\[
\int_{\infty}^{y} A_i \sum_{j=1}^{d} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r + \nu_r, y) \, d\sigma = \int_{\infty}^{y} A_i \sum_{j=1}^{d} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r + \nu_r, y) \, d\sigma.
\]

Using the estimate for \(\hat{P} \) and proceeding exactly as in the radial case, we obtain that if \(\hat{P} \) satisfies the condition of Theorem 1, then (4) is uniformly bounded for \(r < \alpha y \) as \(y \) tends to zero. Similarly, under condition (b) of Theorem 2,

\[
\int_{\infty}^{y} A_i \sum_{j=1}^{d} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r + \nu_r, y) \, d\sigma < \infty.
\]

We shall show that we have similar control over \(Y_k(\sigma(\nu)) u(\sigma_r + \epsilon \nu, y) \) for \(|\nu| < \alpha y \) and \(h = 1, \ldots, d, \).

The vectors \(Y_1(\sigma(\nu)), \ldots, Y_d(\sigma(\nu)) \) span \(\mathbb{R}^d \) as \(\sigma \) runs through \(SO(n) \). We can find a \(K > 0 \) with the property that the measure of the set of \(\{\sigma_1, \ldots, \sigma_d\} \subset SO(n)^d \) with

\[
\det \begin{bmatrix} Y_1(\sigma_1(\nu)) & \cdots & Y_1(\sigma_d(\nu)) \\ \vdots & \ddots & \vdots \\ Y_d(\sigma_1(\nu)) & \cdots & Y_d(\sigma_d(\nu)) \end{bmatrix} < K
\]

is smaller than \((\frac{1}{2} \int_{SO(n)} d\sigma) \times 2^d \).

Let \(S \) denote the complement of this set in \(SO(n)^d \).

Suppose that \(f \) satisfies the condition of Theorem 1. Let \(F_M \) be the set of \(x \in \mathcal{E} \) for which \(|Y_j(\sigma(\nu)) u(\sigma, y)| < M \) for \(y > 0 \) and \(j = 1, \ldots, d \) and

\[
\left| \sum_{\lambda} A_\epsilon \int_{\mathcal{E}} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r + \nu_r, y) \, d\sigma \right| < M, \quad r < \alpha y.
\]

We apply the corollary to the desymmetrization lemma to \(F_M \) with \(\epsilon = 1 \). For \(x \in \mathcal{E} \), we can find \(\delta_\epsilon > 0 \) such that if \(|x - z| < \delta_\epsilon \) there is a \(r < \alpha y \) with the property that

\[
\int_{SO(n)} \left| \sum_{\lambda} A_\epsilon \int_{\mathcal{E}} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r + \nu_r, y) \, d\sigma \right| \, d\sigma > \delta_\epsilon.
\]

By the preceding remarks we know that we can find \((\sigma_1, \ldots, \sigma_d) \in S \) with the property that \(v - \sigma_i(\nu) \in F_M \) and \(v - \sigma_i(\nu) + \sigma_j(\nu) \in F_M, \quad i = 1, \ldots, d, \quad j = 1, \ldots, d, \quad N \). We can find a bounded set of real numbers \(B_i(\nu) \) with a bound depending only on \(K \) such that

\[
A_i \sum_{\lambda} B_i(\nu) Y_j(\sigma_j(\nu)) = \delta_\epsilon;
\]

\[
Y_j(\sigma(\nu)) u(\sigma, y) = A_i \sum_{\lambda} B_i(\nu) Y_j(\sigma_j(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r - \nu_r, y).
\]

Hence, for \(|x - z| < \alpha y \),

\[
\int_{\mathcal{E}} \sum_{\lambda} A_\epsilon \int_{\mathcal{E}} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r - \nu_r, y) \, d\sigma < CM.
\]

The constant depends only on \(K \) and is independent of \(v \). The terms for \(i = 2, \ldots, N \) are uniformly bounded since \(v - \sigma_i(\nu) \in F_M \). Thus, \(Y_k(\sigma(\nu)) u(\sigma, y) \leq O(M) \) for \(|x - z| < \alpha y \). Where \(Y_k(\sigma(\nu)) u(\sigma, y) \) has non-tangential limits a.e. in \(F_M \) and hence almost everywhere in \(\mathcal{E} \). We have seen that this implies that all mixed partial derivatives of order \(m \) have non-tangential limits a.e. in \(\mathcal{E} \). So \(f \) has a kth harmonic derivative in \(\mathcal{E} \) and therefore kth Peano derivatives.

Now suppose that \(f \) satisfies the conditions of Theorem 2. Let \(F_M \) be the set of \(x \in \mathcal{E} \) such that

\[
(1) \int_{\mathcal{E}} y^{\epsilon(n-k)-1} Y_j(\sigma(\nu)) u(\sigma, y) \, dy < M, \quad \epsilon = 1, \ldots, d,
\]

and

\[
(2) \int_{\mathcal{E}} y^{\epsilon(n-k)-1} \sum_{\lambda} A_\epsilon \int_{\mathcal{E}} Y_j(\sigma(\nu)) Y_j(\sigma(\epsilon \nu)) u(\sigma_r - \nu_r, y) \, d\sigma < M.
\]

We shall satisfy the result of the desymmetrization lemma with \(\delta_\epsilon = 1/M \).

\(F_M \) is measurable and \(\mathcal{E} = \bigcup_{M=1}^{\infty} F_M \). For \(v \) satisfying \(|x - z| < 1/M \), if \(x \in \mathcal{E} \), we choose \(\sigma_1, \ldots, \sigma_d \) and \(B_i(\nu) \) as above. Arguing as above, we obtain

\[
\int_{\mathcal{E}} y^{\epsilon(n-k)-1} Y_j(\sigma(\nu)) u(\sigma, y) \, dy < CM, \quad \epsilon = 1, \ldots, d.
\]
We wish to show that for a.e. \(x \in F_M\) and \(I(x) = \{(v, y) : |v - s| < \alpha y < 1/M\}\)
\[
\int_{F_M} g^{(m-1)}(v) Y_M(\partial / \partial v) u(v, y)^2 \, dv \, dy < \infty.
\]
It will suffice to show that
\[
\left(\int_{F_M} \int_{F_M} g^{(m-1)}(v) Y_M(\partial / \partial v) u(v, y)^2 \, dv \, dy \right) < \infty.
\]
Let \(v(x, y)\) be the characteristic function of \(\{(x, y) : |v - s| < \alpha y < 1/M\}\)
\[
\int_{F_M} v(x, y) \, dx \leq m \{ x : |x - s| < \alpha y \} = O y^a.
\]
Rewrite (7) as
\[
\left. \int_{F_M} \int_{F_M} g^{(m-1)}(v) Y_M(\partial / \partial v) u(v, y)^2 \, dv \, dy \right|_{x \in F_M} < B \int_{F_M} g^{(m-1)}(v) Y_M(\partial / \partial v) u(v, y)^2 \, dy \, dx.
\]
Since \(F_M\) is bounded, the measure of \((x, y) : \text{distance}(x, F_M) < 1/M\)
is finite. By (6), the above integral is also finite. The theory of the area integral tells us that
\[
\int_{F_M} g^{(m-1)}(v) \frac{\partial^m}{\partial v^m} (v) Y_M(\partial / \partial v) u(v, y)^2 \, dv \, dy < \infty
\]
for almost every \(x \in E, \) any non-negative \(s\)-tuple of order \(k.\) This in turn implies that \(f\) has a \(k\)th harmonic derivative in \(E\) and hence, as we have seen above, a \(k\)th Peano derivative almost everywhere in \(E.\)

II. A central version of the Poisson Kernel. It remains to find a function \(\tilde{P}(r, \theta, y, \phi)\) which is a central function of \(s\) and for which
\[
\tilde{P}(r, \theta, y, \phi) = \int_{S^1} C_{m,y} Z(s, N)^m \sigma'(s) \, ds.
\]
We also require that \(\tilde{P}(r, \theta, y, \phi) \leq A_{m,y} (r + \theta + y)^{a_1 - m - 1}\) for \(r < \alpha y.\)
We shall first construct \(\tilde{P}\) for \(m = 0,\) that is, for the Poisson kernel itself. Now if \(Z_{m,y}^0 = -a_{m+1} y^{a_1 - a_m - m - 1} + \ldots,\) then
\[
C_{m,y} Z_{m,y}^0 \sigma(N - \sigma(X)) \left(r^2 + s^2 - 2r s \cos(X) + \frac{y^2}{2} \right) \int dx
\]
\[
= \frac{a_1 y}{(s + y)^2} \left(\frac{a_1 y}{(s + y)^2} \right)^{a_m} \left(\frac{a_1 y}{(s + y)^2} \right)^{a_{m-1} - 1} \left(\frac{a_1 y}{(s + y)^2} \right)^{a_{m-2} - 2} \left(\frac{a_1 y}{(s + y)^2} \right)^{a_{m-3} - 3} \left(\frac{a_1 y}{(s + y)^2} \right)^{a_{m-4} - 4} \left(\frac{a_1 y}{(s + y)^2} \right)^{a_{m-5} - 5} \ldots
\]
\end{equation}

The identities \(a_1 y = r N - \sigma(X) l_{1 + \alpha} (\sigma(X))\) and \(\frac{\partial}{\partial y} P_{\sigma}(y) = -\frac{\partial}{\partial y} P_{\sigma}(s)\) were used in the above equality. Once we find \(\tilde{P}\) for \(m = 0\) we may take these derivatives (and prove estimates) to construct the proper version for any \(m.\)

We write the Poisson kernel as
\[
a_{m,y} = \left((s + r + y)^{a_1} / 2 \sigma \right) \left(\sigma(N - X) \right)^{a_m}.
\]
Set \(a = (s + r + y)^{a_1} / 2 \sigma.\)

Lemma. For \(a > 0, \) \(r < \alpha y\) implies \(a > 1 + \delta a\) for some \(\delta a > 0.\)

Proof. If \(\alpha = 2r,\)
\[
a = \frac{r^2 + s^2 + y^2}{2 \sigma^2} > 1 + \frac{1}{4 \sigma^2}.
\]
If \(\alpha > 2r,\)
\[
a > 1 + \frac{5}{4} \frac{y^2}{2 \sigma^2} > 1 + \frac{5}{4}.
\]

Let \(a = \sqrt{s - r + \delta s^2 - 1.\) This solves \(a = (1 + s^2)/2s.\) For \(a > 1 + \delta, \) \(0 \leq \delta \leq 1 - \delta.\) Recall ([12], p. 143) that the Poisson kernel for the sphere is
\[
P(s, \sigma(N)) = \frac{1}{2 \sigma(N)} \frac{s^4}{(s - \sigma(N))^4} = \frac{1}{2 \sigma(N)} \frac{s^4}{(s - \sigma(N))^4} = \sum_{k=0}^{\infty} d_k(N) Z_k(\sigma(N)).
\]

The dimension of the space of homogeneous harmonic polynomials of degree \(k,\) \(d_k,\) is of the order \(k^{3/2} - 1.\)

We shall first find a central analog of
\[
(a - \sigma(N))^{-n} = \frac{(2s)^n}{1 - s^2} \sum_{k=0}^{\infty} d_k s^k Z_k(\sigma(N)).
\]
A fractional integration in \(a\) will produce an analog of \(a - \sigma(N) N^{-k/2} - \sigma(N).
\]
Fubini's theorem justifies the interchange of the fractional integration and the convolution in \(a.\)

We have seen earlier that
\[
Z(s, N) \int_{S^1} f(\sigma(N)) \, ds = \int_{S^1} f(\sigma(N)) \, ds.
\]
This suggests that we define \(a - \sigma(N) N^{-n} \) by
\[
(a - \sigma(N) N^{-n} = \frac{(2s)^n}{1 - s^2} \sum_{k=0}^{\infty} d_k s^k Z_k(\sigma(N)).
\]
The series is dominated by the geometric series \(\sum_{k=0}^{\infty} x^{k(n-3)} z^k \), which converges uniformly for \(0 < x \leq 1 - \delta \). The derivatives of (9) with respect to \(s \) (or \(a \)) also converge uniformly. For large \(a \), \(s = a - \sqrt{a^2 - 1} \sim \sqrt{2} a \). We may find central functions \(b_k(a) \) for which

\[
(a - \sigma(N) \cdot s)^{n-1} \sim \sum_{k=0}^{\infty} b_k(s) a^{-k-n^2}.
\]

The series and its derivatives converge uniformly for \(a > 1 + \delta \).

\[
(a - \sigma(N) \cdot s)^{-1} (1 + s) = \frac{d}{da} \left(\sum_{k=0}^{\infty} b_k(s) a^{-k-n^2} \right) = \frac{d}{da} \left(\sum_{k=0}^{\infty} b_k(s) (1 + s)^{-k} \right) = \sum_{k=0}^{\infty} b_k(s) a^{-k-n^2} = a^{-n-1} \sum_{k=0}^{\infty} b_k(s) a^{-k}.
\]

We set

\[
\tilde{P}(r, \theta, y, a) = \frac{c_y}{(2\pi r)^{m-1}} a^{-n} \sum_{k=0}^{\infty} b_k(s) a^{-k} = \frac{c_y}{(r^2 + y^2 + z^2)^{m-1}} \sum_{k=0}^{\infty} b_k(s) a^{-k}.
\]

We have seen that \(\tilde{P} \) satisfies (8) for \(m = 0 \). We shall now show that

\[
\frac{\partial^m}{\partial y^{a_1} \partial r^{a_2}} \tilde{P}(r, \theta, y, a) < A_y y(q + y)^{-n-1} \]

for \(r < cy \).

Lemma. We have

\[
\frac{\partial^m}{\partial y^{a_1} \partial r^{a_2}} \tilde{P} = (2\pi r)^{m-1} \sum_{k=0}^{\infty} Q^{(m,k)}(r, \theta, y, a) a^{-k},
\]

where \(Q^{(m,k)}(r, \theta, y, a) \) is a homogeneous polynomial in \(r, \theta, y, a \) of degree \(m \) whose coefficients are central functions of \(a \).

Proof. It is true for \(m = 0 \). Assume that the lemma is true for \(m-1 \),

\[
\frac{\partial^{m-1}}{\partial y^{a_1} \partial r^{a_2}} P = c_y (q^2 + r^2 + y^2)^{-1}(1 + s)^{-1} \sum_{k=0}^{\infty} Q^{(m-1,k)}(r, \theta, y, a) a^{-k}.
\]

A simple computation using the identities \(2r^2 a = q^2 + r^2 + y^2 \) and \(\partial a/\partial r = 2(r - a) / (2q^2) \) produces the result

\[
\frac{\partial^m}{\partial y^{a_1} \partial r^{a_2}} \tilde{P} = c_y (q^2 + r^2 + y^2)^{-1}(1 + s)^{-1} \sum_{k=0}^{\infty} Q^{(m,k)}(r, \theta, y, a) a^{-k},
\]

where

\[
Q^{(m,k)}(r, \theta, y, a) = -(a + 2m - 1) c_k Q^{(m-1,k)} + (q^2 + r^2 + y^2)^{-1} \frac{\partial Q^{(m-1,k)}}{\partial r} - 2k q Q^{(m-1,k)} (k - 1) c_k Q^{(m-1,k)}.
\]

A similar computation using the identity \(\partial a/\partial y = 2y / (2q^2) \) produces a similar expression for \(\frac{\partial^m}{\partial y^{a_1} \partial r^{a_2}} \tilde{P} \). When we differentiate with respect to \(y \) an odd number of times the result does not contain the factor \(y \).

Since the differentiated series converges uniformly and absolutely for \(a > 1 + \delta \), we obtain

\[
\frac{\partial^m}{\partial y^{a_1} \partial r^{a_2}} \tilde{P}(r, \theta, y, a) \ll B y (q + r + y)^{-n-1-m-1} \]

\[
\ll A_y y(q + y)^{-n-1} \]

for \(r < cy \). Adding up the terms for \(\frac{\partial^m}{\partial y^{a_1} \partial r^{a_2}} \tilde{P} \), we obtain the desired function and the desired estimate for any \(m \).

References

GENERAL TOPOLOGY

MONOGRAFIE MATEMATYCZNE, Vol. 60

626 pp., cloth bound

This book gives a reasonably complete and up-to-date exposition of general topology. It is addressed primarily to the graduate student but it can also serve as a reference for the more advanced mathematician. The arrangement of the materials follows the author's earlier book, Outline of General Topology, published in 1968. However, the present book is much more exhaustive. More than one third of the text is devoted to recent developments in general topology which were not discussed in the Outline. New features include a thorough discussion of invariances of topological properties under mappings and an exposition of the most important results in the theory of cardinal functions. The book contains about 200 problems, which are more special theorems complementing the material in the text; they are provided with carefully worked-out hints, which are in fact sketches of proofs.

BANACH CENTER PUBLICATIONS

published by the Polish Academy of Sciences, Institute of Mathematics

The Stefan Banach International Mathematical Center organizes long-term (3-6 month) research and training activities called semesters, with participants from all over the world. Some semesters end with international working conferences. Each semester yields a great deal of written material: lecture notes as well as original papers prepared during the author's stay at the Center. The series BANACH CENTRE PUBLICATIONS publishes selected materials from each of the semester of conferences.

Volume 1
MATHEMATICAL CONTROL THEORY
166 pp., cloth bound

Volume 2
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
230 pp., cloth bound

Volume 3
MATHEMATICAL MODELS AND NUMERICAL METHODS
391 pp., cloth bound

Volumes in preparation:
Volume 4: APPROXIMATION THEORY
Volume 5: PROBABILITY THEORY
Volume 6: MATHEMATICAL STATISTICS

To be ordered at your bookseller or directly at
ABR POLONA, Krakowskie Przedmieście 7, 00-685 Warszawa (Poland)