

STUDIA MATHEMATICA, T. LXIII. (1978)

L_p -approximation by the method of integral Meyer-König and Zeller operators

by

MANFRED W. MÜLLER (Dortmund)

Dedicated to Professor W. Meyer-König on the occasion of his sixty-fifth birthday.

Abstract. The well-known linear approximation method $(M_n)_{n\in\mathbb{N}}$ of W. Meyer-König and K. Zeller on the normed space $(O(I),\|\cdot\|_{\infty})$ is extended to a method $(\hat{M_n})_{n\in\mathbb{N}}$ for the L_p -approximation of functions $f\in L_p(I)$, I=[0,1], $1\leqslant p<\infty$ with respect to the L_p -norm on I. Approximation properties and especially the degree of approximation by this method are studied in detail.

1. Preliminaries. It is well known that the *n*th operator M_n , $n \in N$, of Meyer-König and Zeller is associating with a bounded function $f: I = [0, 1] \rightarrow \mathbb{R}$ the so-called *n*th Bernstein power series

$$(1.1) M_n f(x) = \sum_{k=0}^{\infty} m_{nk}(x) f\left(\frac{k}{k+n}\right), m_{nk}(x) = \binom{k+n}{k} (1-x)^{n+1} x^k$$

converging for $0 \le x < 1$. If f is continuous to the left at the point t = 1, then $M_n f$ can be continuously extended to I by putting

$$(1.2) M_n f(1) := \lim_{x \to 1^-} M_n f(x) = f(1)$$

(see [9]). Thus the operators M_n are mapping especially the space C(I) of real-valued continuous functions on I into itself and $M_n f$ can be regarded as an approximation to $f \in C(I)$ on I for each $n \in N$. W. Meyer-König and K. Zeller [9] proved that the sequence $(M_n)_{n \in N}$ gives a linear approximation method on the normed space $(C(I), \|\cdot\|_{\infty})$ (with $\|\cdot\|_{\infty}$ the usual sup-norm on I), i.e. $\lim_{n \to \infty} \|f - M_n f\|_{\infty} = 0$ for all $f \in C(I)$. Its degree of approximation can be estimated by [8]

$$\|f - M_n f\|_{\infty} \leqslant \frac{31}{27} \omega_{1,\infty} \left(f, \frac{1}{\sqrt{n}} \right) \qquad (n \in \mathbb{N}),$$

where $\omega_{1,\infty}(f,\cdot)$ is the ordinary modulus of continuity of f with respect to the sup-norm.

The aim of this paper is to develop a comparable method for the L_p -approximation of functions $f \in L_p(I)$, $1 \leqslant p < \infty$, the space of real-valued pth power integrable functions on I, with $\|\cdot\|_p$ the usual L_p -norm on I. The corresponding operators \hat{M}_n will roughly speaking be constructed replacing the point evaluations of f in (1.1) at discrete nodes by integral means of f over suitable small and disjoint intervals containing these nodes. For this formal reason we shall refer to them as integral Meyer-König and Zeller operators. Their explicit construction follows a method given by G. G. Lorentz [6] when changing Bernstein polynomials into Kantorovič polynomials: Applying the first derivative operator D to $M_n f$, we obtain [7]

 $(1.3) DM_n f(x)$

$$=(n+1)(1-x)^n\sum_{k=0}^{\infty}\binom{k+n+1}{k}x^k\left[f\left(\frac{k+1}{k+n+1}\right)-f\left(\frac{k}{k+n}\right)\right],$$

 $0\leqslant x<1.$ If $f\in L_p(I)$, consider the indefinite integral $F(x)=\int\limits_0^x f(t)\,dt.$ (1.3) applied to the (absolutely continuous) function F gives for $0\leqslant x<1$ and $n\in N$

(1.4)
$$\hat{M}_n f(x) := D M_n F(x) = \sum_{k=0}^{\infty} \hat{m}_{nk}(x) \int_{T_k} f(t) dt,$$

with
$$I_k = \left\lceil \frac{k}{k+n}, \frac{k+1}{k+n+1} \right\rceil$$
 $(k \in N_0)$ and

(1.5)
$$\hat{m}_{nk}(x) = (n+1) \binom{k+n+1}{k} (1-x)^n x^k.$$

The operators \hat{M}_n are linear, positive and preserve the identity. (Since $\hat{M}_n f$ will be considered as an approximation to a function integrable in the sense of Lebesgue on I, we can define $\hat{M}_n f(1)$ arbitrarily, e.g. $\hat{M}_n f(1) = 0$.) For later reference we list the useful relations:

(1.6)
$$\hat{m}_{nk}(x) \int_{I_k} dt = m_{n-1,k}(x)$$

(where we put formally $m_{0k}(x) = (1-x)x^k$) and

(1.7)
$$\int_{0}^{1} \hat{m}_{nk}(x) dx = (n+1) {\binom{k+n+1}{k}} B(k+1, n+1) = 1.$$

In Section 2 it is shown that the sequence $(\hat{M}_n)_{n\in\mathbb{N}}$ gives a linear approximation method on the normed space $(L_p(I), \|\cdot\|_p)$. In Section

3 the degree of approximation by this method is estimated in terms of the first order modulus of continuity $\omega_{1,p}(f,\cdot)$. The main result (Theorem 3) will be that

$$\|f - \hat{M}_n f\|_p = O\left(\omega_{1,p}\left(f, \frac{1}{\sqrt{n}}\right)\right).$$

It should be observed that this order is $O(n^{-a/2})$ if f is belonging to a Lipschitz class $\operatorname{Lip}(a,L_p)$. The method of proof is smoothing, i.e. f is first approximated by a function g with g' in $L_p(I)$ and then g is approximated by $\hat{M}_n g$. The connection between these two processes is given via the K-functional of Peetre.

2. L_p -approximation. Given $f\in L_p(I),\ 1\leqslant p<\infty,$ we write \hat{M}_nf as a singular integral of the type

$$\hat{M}_n f(x) = \int\limits_0^1 H_n(x,t) f(t) dt$$

with the positive kernel

$$H_n(x,t) = \sum_{k=0}^{\infty} \hat{m}_{nk}(x) \mathbf{1}_{I_k}(t),$$

where $\mathbf{1}_{I_k}$ is the characteristic function of the interval I_k with respect to I. Utilizing (1.6) and (1.7), we have for all n and x or t respectively

(2.1)
$$\int_{0}^{1} H_{n}(x,t) dt = \sum_{k=1}^{\infty} m_{n-1,k}(x) = 1,$$

(2.1)
$$\int_{0}^{1} H_{n}(x,t) dx = \sum_{k=0}^{\infty} \mathbf{1}_{I_{k}}(t) = 1$$

and thus by a theorem of W. Orlicz [13] follows easily that $\hat{M}_n f$ belongs to $L_p(I)$ and the operator norms $\|\hat{M}_n\|_p$ are uniformly bounded by 1. Theorem 1. For $f \in L_p(I)$, $1 \leqslant p < \infty$, there holds

(2.3)
$$\lim_{n\to\infty} ||f - \hat{M}_n f||_p = 0.$$

Proof. We show that (2.3) holds for the dense subspace C(I) of $L_p(I)$. Using (1.6), we have for $f \in C(I)$ and an arbitrary $x \in I$

$$(2.4) \, |\hat{M}_n f(x) - M_{n-1} f(x)| \leqslant \sum_{k=0}^\infty \, \hat{m}_{nk}(x) \int\limits_{I_k} \left| f(t) - f\left(\frac{k}{k+n-1}\right) \right| \, dt \qquad (n \geqslant 2) \, .$$

In view of |t-k|(k+n-1)| < 1/(n-1) for $t \in I_k$ we obtain from (2.4)

 L_p -approximation

85

and (1.6)

$$|\hat{M}_nf(x)-M_{n-1}f(x)|\leqslant \omega_{1,\infty}\bigg(f,\frac{1}{n-1}\bigg)\sum_{k=0}^{\infty}\hat{m}_{nk}(x)\int\limits_{I_k}dt=\omega_{1,\infty}\bigg(f,\frac{1}{n-1}\bigg)$$

and thus

$$(2.5) \qquad \|\hat{M}_n f - M_{n-1}\|_p \leqslant \|\hat{M}_n f - M_{n-1} f\|_{\infty} \leqslant \omega_{1,\infty} \left(f, \frac{1}{n-1}\right).$$

Now

$$||f - \hat{M}_n f||_p \leqslant ||f - M_{n-1} f||_{\infty} + ||M_{n-1} f - \hat{M}_n f||_p$$

For $n\to\infty$ each term goes to zero, the first one since $(M_n)_{n\in\mathbb{N}}$ is a linear approximation method on the space $(C(I), \|\cdot\|_{\infty})$ and the second one by (2.5), which proves (2.3) for continuous functions.

The rest of the proof follows by the density of C(I) in $L_p(I)$ with respect to the L_p -norm since $\|\hat{M_n}\|_p \leq 1$ for all $n \in \mathbb{N}$.

As an application of Theorem 1 we obtain the following criterion of compactness for a bounded subset

$$K := \{ f \in L_n(I) | \|f\|_n \leqslant M, M \text{ a positive constant} \}$$

of $L_p(I)$: K is compact with respect to the L_p -norm iff $||f - \hat{M_n}f||_p \to 0$ $(n \to \infty)$ uniformly for all $f \in K$.

The method of proof is quite similar to an argument given by G. G. Lorentz ([6], p. 33) for Kantorovič polynomials using the fact that by Hausdorff's criterion of compactness in complete metric spaces (see [3], p. 108) K is compact iff for each $\varepsilon > 0$ there is a finite ε -net.

- **3. Degree of** L_p -approximation. Let $L_p^1(I) := \{f \in L_p(I) | f \text{ absolutely continuous, } f' \in L_p(I) \}$ $(1 \le p < \infty)$ with the norm $\|f\|_p^1 = \|f\|_p + \|f'\|_p$. The most efficient technique in deriving estimates for the degree of L_p -approximation is smoothing (see [2], [11], [12]). This means
 - (i) approximation of $f \in L_n(I)$ by a "smooth" function $g \in L_n^1(I)$,
 - (ii) approximation of $g \in L_p^1(I)$ by the method $(\hat{M}_n)_{n \in \mathbb{N}}$,
 - (iii) combination of steps (i) and (ii) via the K-functional of Peetre.

We start with step (ii). In 1972, D. Leviatan [5] gave an estimate of the desired type for the case p=1, which reads in our notation as follows:

$$||g - \hat{M}_n g||_1 < \sqrt{\frac{2}{e}} \frac{1}{\sqrt{n}} \int_{x}^{1} \sqrt{x(1-x)} |dg(x)|, \quad g \in B_1 \ (n \in N),$$

where B_1 is the set of all functions $g \in L_1(I)$ being of bounded variation in every closed subinterval of (0,1) and for which the right-hand integral exists. From this we conclude easily that

Next we will derive the corresponding estimate for p>1 by a method which is tailored exactly to this case. For its proof we need the following

LEMMA. There exists a positive constant A, independent of $n \in \mathbb{N}$ and $x \in I$, such that

$$\hat{M}_n(t-x)^2(x) \leqslant \frac{A}{m}.$$

Observing that

$$\hat{M}_n(t-x)^2(x) = D\{\frac{1}{2}M_nt^3(x) - xM_nt^2(x)\} + x^2$$

for an arbitrary $x \in I$, a proof of (3.2) can be based on a careful analysis of the possibility of differentiating asymptotic expressions for $M_n t^2(x)$ and $M_n t^3(x)$ given by P. C. Sikkema ([15], p. 431-433), noticing a lemma in [10], p. 402. Details are left to the reader.

THEOREM 2. For $g \in L_n^1(I)$, p > 1, there holds

$$\|g - \hat{M}_n g\|_p \leqslant \frac{C_p}{\sqrt{n}} \|g'\|_p \quad (n \geqslant 2),$$

where C_p is some positive constant, independent of g and n. Proof. Fix $x \in [0, 1)$. Then by (1.4) and (1.6)

$$\begin{aligned} |g(x) - \hat{M}_n g(x)| &= \Big| \sum_{k=0}^{\infty} \hat{m}_{nk}(x) \int_{I_k}^{t} \int_{x}^{t} g'(u) \, du \, dt \Big| \\ &\leq \sum_{k=0}^{\infty} \hat{m}_{nk}(x) \int_{I_k} \Big| \int_{x}^{t} g'(u) \, du \, dt \Big| \\ &\leq \theta_{g'}(x) \sum_{k=0}^{\infty} \hat{m}_{nk}(x) \int_{I_k} |t - x| \, dt, \end{aligned}$$

where

$$\theta_{g'}(x) := \sup_{0 \le t \le 1} \frac{1}{t-x} \int_{x}^{t} |g'(u)| du$$

is the Hardy–Littlewood majorant of g'. $g' \in L_p(I)$ implies for p > 1 by a theorem of Hardy and Littlewood (see [16], Theorems 13, 15) $\theta_{g'} \in L_p(I)$

with

(3.4)
$$\int_{0}^{1} \theta_{g'}^{p}(x) dx \leq 2 \left(\frac{p}{p-1}\right)^{p} \int_{0}^{1} |g'(x)|^{p} dx.$$

Applying Cauchy-Schwarz's inequality and the lemma, we obtain from (3.3)

$$\begin{split} |g(x) - \hat{M}_n g(x)| &\leqslant \theta_{g'}(x) \left\{ \sum_{k=0}^{\infty} \hat{m}_{nk}(x) \int\limits_{I_k} (t-x)^2 dx \right\}^{1/2} \\ &= \theta_{g'}(x) \left\{ \hat{M}_n (t-x)^2 (x) \right\}^{1/2} \leqslant \sqrt{A} \theta_{g'}(x) \frac{1}{\sqrt{n}} \end{split}$$

and from this by (3.4) for p > 1

$$\|g-\hat{M_n}g\|_p\leqslant \sqrt{A}\,\frac{1}{\sqrt{n}}\,\left(\int\limits_{z}^{1}\theta_{g'}^{\,p}(x)\,dx\right)^{\!1/p}\leqslant \sqrt{A}\,\frac{p}{p-1}\sqrt[p]{2}\,\frac{1}{\sqrt{n}}\,\|g'\|_p\,,$$

which completes the proof.

In what follows we will measure smoothness by using the K-functional of J. Peetre [14]. It is for $f \in L_n(I)$, $1 \le p < \infty$, defined by

$$(3.5) \hspace{1cm} K_p(t,f) = \inf_{g \in \mathcal{I}_p^1} (\|f-g\|_p + t \|g'\|_p) \hspace{0.5cm} (0 \leqslant t \leqslant 1) \, .$$

Roughly speaking the K-functional is a semi-norm on $L_p(I)$ measuring the degree of approximation of a function $f \in L_p(I)$ by smoother functions $g \in L_p^1(I)$ with simultaneous control on the size of $\|g'\|_p$.

The more classical measure for smoothness, the integral modulus of continuity, which for $f \in L_n(I)$, $1 \le p < \infty$, is defined by

(3.6)
$$\omega_{1,p}(f,t) := \sup_{0 < h < t} ||f(\cdot + h) - f(\cdot)||_p(I_h)$$

(where $\|\cdot\|(I_h)$ is indicating that the L_p -norm is to be taken over the interval $I_h = [0, 1-h]$) is in a certain sense equivalent to the K-functional. H. Johnen ([4], Prop. 6.1) proved that there are constants $c_1 > 0$ and $c_2 > 0$, independent of f and p, such that

$$(3.7) c_1 \omega_{1,n}(f,t) \leqslant K_n(t,f) \leqslant c_2 \omega_{1,n}(f,t) (0 \leqslant t \leqslant 1).$$

THEOREM 3. For $f \in L_p(I)$, $1 \leq p < \infty$, there holds

$$\|f - \hat{M}_n f\| \leqslant M \omega_{1,p} \left(f, \frac{1}{\sqrt{n}} \right) \quad (n \geqslant 2),$$

where M is some positive constant, independant of f and p.

Proof. Let $D_p = \max(C_p, 1/\sqrt{2e})$. In view of (3.1), Theorem 2 and $\|\hat{M}_n\|_p \leqslant 1$ $(n \in N, 1 \leqslant p < \infty)$, we have

$$\|h-\hat{M}_nh\|_p\leqslant\begin{cases}2\,\|h\|_p, & h\in L_p(I)\\ \frac{D_p}{\sqrt{|n|}}\,\|h'\|_p, & h\in L_p^1(I)\end{cases} \qquad (1\leqslant p<\,\infty,\,\,n\geqslant 2).$$

When $f \in L_p(I)$ and g is an arbitrary function from $L_p^1(I)$, then

$$\begin{split} \|f - \hat{M}_n f\|_p &\leqslant \|(f - g) - \hat{M}_n (f - g)\|_p + \|g - \hat{M}_n g\|_p \\ &\leqslant 2 \left(\|f - g\|_p + \frac{D_p}{\sqrt{n}} \ \|g'\|_p\right). \end{split}$$

Taking now the infimum over all $g \in L_p^1(I)$ on the right-hand side, using the definition of the K-functional and observing (3.6), we find

$$\begin{split} \|f - \hat{M}_n f\|_p \leqslant 2K \left(\frac{D_p}{\sqrt{n}}, f\right) \leqslant 2e_2 \, \omega_{1,p} \left(f, \frac{D_p}{\sqrt{n}}\right) \\ \leqslant 2\left(1 + D_p\right) \, \omega_{1,p} \left(f, \frac{1}{\sqrt{n}}\right), \end{split}$$

which completes the proof.

COROLLARY: If
$$f \in \text{Lip}(\alpha, L_p)$$
 $(0 < \alpha \le 1)$, then

$$||f - \hat{M}_n f||_p = O(n^{-a/2}) \quad (n \to \infty).$$

Here the Lipschitz class $\operatorname{Lip}(\alpha, L_p)$ of order α with respect to the L_p -norm is defined as the collection of all functions $f \in L_p(I)$ with the property $\omega_{1,p}(f,t) = O(t^p)$ $(t \to 0 +)$.

Remark. The last results can still be made more transparent if one considers the family of intermediate spaces $[L_p^1, L_p]_a$, $.0 \le a \le 1$, between $L_p^1(I)$ and $L_p(I)$, constructed from these spaces by means of some modification of the K-functional (see [11], [12]). It can easily be proved that $f \in [L_p^1, L_p]_a$ is equivalent to $f \in \text{Lip}(a, L_p)$, $0 < a \le 1$. Thus the corollary tells that elements of an intermediate space $[L_p^1, L_p]_a$ between $L_p^1(I)$ and $L_p(I)$ are approximated by the method of integral Meyer-König and Zeller operators with respect to the L_p -norm of the order $O(n^{-a/2})$.

References

P. L. Butzer and H. Berens, Semi groups of operators and approximation, Springer, Berlin 1967.

^[2] R. A. De Vore, Degree of approximation, in: Approximation theory II (G. G. Lorentz, C. K. Chui, L. L. Schumaker, Eds.), pp. 117-161, Academic Press, New York 1976.

[3] F. Hausdorff, Mengenlehre, Berlin 1935.

88

[4] H. Johnen, Inequalities connected with the moduli of smoothness, Mat. Vestnik 9 (1972), pp. 289-303.

[5] D. Leviatan, The rate of approximation in the L₁-norm by some Bernstein-type operators (unpublished manuscript).

[6] G. G. Lorentz, Bernstein polynomials, Univ. of Toronto Press, Toronto 1953.

[7] A. Lupas, Some properties of the linear positive operators (I), Mathematica (Cluj) 9 (32) (1967), pp. 77-83.

[8] A. Lupas and M. W. Müller, Approximation properties of the M_n-operators, Aequationes Math. 5 (1970), pp. 19-37.

[9] W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihen, Studia Math. 19 (1960), pp. 89-94.

[10] M. W. Müller, Gleichmäßige Approximation durch die Folge der ersten Ableitungen der Operatoren von Meyer-König und Zeller, Math. Z. 106 (1968), pp. 402-406.

[11] - Degree of L_p-approximation by integral Schoenberg splines, J. Approximation Theory 21 (1977), pp. 385-393.

[13] W. Orlicz, Ein Satz über die Erweiterung von linearen Operationen. Studia Math. 5 (1934), pp. 127-140.

[14] J. Peetre, A theory of interpolation of normed spaces, Lecture Notes, Brazilia 1963.

[15] P. C. Sikkema, On the asymptotic approximation with operators of Meyer-König and Zeller, Indag. Math. 32 (1970), pp. 428-440.

[16] A. Zygmund, Trigonometric series, Vol. I. and II, Cambridge University Press, London-New York 1968.

Received July 6, 1976 (1177)

STUDIA MATHEMATICA, T. LXIII. (1978)

Some characterizations of the n-dimensional Peano derivative

by

ISRAEL BERNARD ZIBMAN (Princeton, N.J.)

Abstract. A measurable function f is said to have a *Peano derivative* of order k at a point x if there is a polynomial P of degree at most k with the property that $f(x+t) = P(t) + o(|t|)^k$. This work gives a characterization of the Peano derivative for functions of several variables in terms of the behaviour of the expression

$$\sum_{i=1}^{N} A_{i} f(x + \varrho \sigma(v_{i})) - \left(\sum_{i=1}^{N} A_{i}\right) f(x).$$

The A_i are real numbers and the v_i are points on the unit sphere, $\varrho>0$ and $\sigma\in \mathrm{SO}(n)$. Almost everywhere results similar to those of Denjoy-Rademacher-Stepanov, Khintehine, and Stein-Zygmund are obtained in this non-linear setting.

The techniques involve boundary behavior of harmonic functions and analysis on SO(n). When n is greater than 2 the non-commutativity of SO(n) requires special treatment. A technique, introduced by Stein and Zygmund, is developed which allows one to substitute a certain convolution with a central function for a convolution with a zonal function.

Introduction. The purpose of this paper is to present an extension and a unification of several of the characterizations of the *n*-dimensional Peano derivative. Our characterizations will be stated as a description of the behavior of functions restricted to spheres centered at points of possible differentiability. The action of the rotation group on the sphere will play a significant role.

We say that a function f, defined on a neighborhood of a point x in \mathbb{R}^n , has a kth Peano derivative at x if there is a polynomial P of degree at most k such that $f(x+t) = P(t) + o(|t|^k)$. When k=1, this is the ordinary derivative. When k is greater than 1, f need not be k-1 differentiable near x to have a kth Peano derivative at x.

We consider in this paper configurations consisting of a finite number of points on the unit sphere in \mathbb{R}^n , v_1,\ldots,v_N . We assign each point a non-zero weight A_i . The origin is given the weight $B=-\sum\limits_{i=1}^N A_i$. To each configuration we associate an integer type m. The integer m is defined as the infimum of the degrees of all polynomials for which $\sum\limits_{i=1}^N A_i P(v_i) +$