L_p-approximation by the method of integral Meyer-König and Zeller operators

by

MANFRED W. MÜLLER (Dortmund)

Dedicated to Professor W. Meyer-König on the occasion of his sixty-fifth birthday.

Abstract. The well-known linear approximation method \((M_n)_{n \in \mathbb{N}} \) of W. Meyer-König and K. Zeller on the normed space \(C(I), \| \cdot \|_m \) is extended to a method \((M_n)_{n \in \mathbb{N}} \) for the \(L_p \)-approximation of functions \(f \in L_p(I), I = [0,1], 1 \leq p < \infty \) with respect to the \(L_p \)-norm on \(I \). Approximation properties and especially the degree of approximation by this method are studied in detail.

1. Preliminaries. It is well known that the \(n \)th operator \(M_n \), \(n \in \mathbb{N} \), of Meyer-König and Zeller is associated with a bounded function \(f : I = [0,1] \rightarrow \mathbb{R} \) the so-called \(n \)th Bernstein power series

\[
M_n f(x) = \sum_{k=0}^{n} m_{nk}(x) \left(\frac{k}{n+1} \right), \quad m_{nk}(x) = \binom{n}{k} (1-x)^{n-k} x^k
\]

converging for \(0 \leq x < 1 \). If \(f \) is continuous to the left at the point \(t = 1 \), then \(M_n f \) can be continuously extended to \(I \) by putting

\[
M_n f(1) = \lim_{x \to 1^-} M_n f(x)
\]

(see [9]). Thus the operators \(M_n \) are mapping especially the space \(C(I) \) of real-valued continuous functions on \(I \) into itself and \(M_n f \) can be regarded as an approximation to \(f \in C(I) \) on \(I \) for each \(n \in \mathbb{N} \). W. Meyer-König and K. Zeller [9] proved that the sequence \((M_n)_{n \in \mathbb{N}} \) gives a linear approximation method on the normed space \((C(I), \| \cdot \|_m) \) (with \(\| \cdot \|_m \) the usual sup-norm on \(I \)), i.e., \(\lim_{n \to \infty} \| f - M_n f \|_m = 0 \) for all \(f \in C(I) \). Its degree of approximation can be estimated by [8]

\[
\| f - M_n f \|_m \leq \omega_{1,m}(f, \frac{1}{n}) \quad (n \in \mathbb{N}),
\]

where \(\omega_{1,m}(f, \cdot) \) is the ordinary modulus of continuity of \(f \) with respect to the sup-norm.
The aim of this paper is to develop a comparable method for the L_p-approximation of functions $f \in L_p(I), \ 1 \leq p < \infty$, the space of real-valued pth power integrable functions on I, with $\| \cdot \|_p$ the usual L_p-norm on I. The corresponding operators \hat{M}_n will roughly speaking be constructed replacing the point evaluations of f in (1.1) at discrete nodes by integral means of f over suitable small and disjoint intervals containing these nodes. For this formal reason we shall refer to them as *integral Meyer-König and Zeller operators*. Their explicit construction follows a method given by G. G. Lorentz [6] when changing Bernstein polynomials into Kantorovich polynomials: Applying the first derivative operator D to $M_n f$, we obtain [7]

\begin{equation}
D M_n f(x) = (n+1)(1-x)^n \sum_{k=0}^{m} \binom{k+n+1}{k} x^k \int \left[f \left(\frac{k+1}{k+n+1} \right) - f \left(\frac{k}{k+n} \right) \right] dt.
\end{equation}

0 \leq x < 1. If $f \in L_p(I)$, consider the indefinite integral $F(x) = \int f(t) dt$. (1.3) applied to the (absolutely continuous) function F gives for $0 \leq x < 1$ and $n \in \mathbb{N}$

\begin{equation}
\hat{M}_n f(x) = D M_n F(x) = \sum_{k=0}^{m} \hat{m}_k(x) \int_{I_k} f(t) dt,
\end{equation}

with $I_k = \left[\frac{k}{k+n}, \frac{k+1}{k+n+1} \right)$ ($k \in \mathbb{N}_0$) and

\begin{equation}
\hat{m}_k(x) = (n+1) \binom{k+n+1}{k} (1-x)^n x^k.
\end{equation}

The operators \hat{M}_n are linear, positive and preserve the identity. (Since $\hat{M}_n f$ will be considered as an approximation to a function integrable in the sense of Lebesgue on I, we can define $\hat{M}_n f(1)$ arbitrarily, e.g. $\hat{M}_n f(1) = 0$.) For later reference we list the useful relations:

\begin{equation}
\hat{m}_k(x) \int_{I_k} dt = m_{n-1-k}(x)
\end{equation}

(2.1) and

\begin{equation}
\hat{m}_k(x) \int_{I_k} f(t) dt = (n+1) \binom{k+n+1}{k} B(k+1, n+1) = 1.
\end{equation}

In Section 2 it is shown that the sequence $(\hat{M}_n f)_{n \geq 0}$ gives a linear approximation method on the normed space $(L_p(I), \| \cdot \|_p)$. In Section

3 the degree of approximation by this method is estimated in terms of the first order modulus of continuity $\omega_{1, p}(f, \cdot)$. The main result (Theorem 3) will be that

\begin{equation}
\| f - \hat{M}_n f \|_p = O \left(\omega_{1, p} \left(f, \frac{1}{\sqrt{n}} \right) \right).
\end{equation}

It should be observed that this order is $O(n^{-m})$ if f is belonging to a Lipschitz class $\text{Lip}(a, L_p)$. The method of proof is smoothing, i.e., f is first approximated by a function g with $g' \in L_p(I)$ and then g is approximated by $\hat{M}_n g$. The connection between these two processes is given via the K-functional of Peetre.

2. L_p-approximation. Given $f \in L_p(I), \ 1 \leq p < \infty$, we write $\hat{M}_n f$ as a singular integral of the type

\begin{equation}
\hat{M}_n f(x) = \frac{1}{c} \int_{I_k} H_n(x, t) f(t) dt
\end{equation}

with the positive kernel

\begin{equation}
H_n(x, t) = \sum_{k=0}^{m} m_k(x) I_k(t),
\end{equation}

where I_k is the characteristic function of the interval I_k with respect to I. Utilizing (1.6) and (1.7), we have for all n and x or t respectively

\begin{equation}
\int_{I_k} H_n(x, t) dt = \sum_{k=0}^{m} m_{n-1-k}(x) = 1,
\end{equation}

and thus by a theorem of W. Orlicz [13] follows easily that $\hat{M}_n f$ belongs to $L_p(I)$ and the operator norms $\| \hat{M}_n \|_{L_p(I)}$ are uniformly bounded by 1.

Theorem 1. For $f \in L_p(I), \ 1 \leq p < \infty$, there holds

\begin{equation}
\lim_{n \to \infty} \| f - \hat{M}_n f \|_p = 0.
\end{equation}

Proof. We show that (2.3) holds for the dense subspace $C(I)$ of $L_p(I)$. Using (1.6), we have for $f \in C(I)$ and an arbitrary $x \in I$

\begin{equation}
\int_{I_k} \hat{m}_k(x) \int_{I_k} f(t) dt = \sum_{k=0}^{m} \hat{m}_k(x) \int_{I_k} f(t) dt = \frac{1}{c} \int_{I_k} f(t) dt = 1.
\end{equation}

In view of $|t - k/(k+n-1)| < 1/(n-1)$ for $t \in I_k$ we obtain from (2.4)
and (1.6)
\[|\hat{M}_a f(x) - M_{a+1} f(x)| \leq \omega_{1,\infty}(f) \sum_{k=1}^{n} \hat{m}_{ak}(x) f_k(x) dt = \omega_{1,\infty}(f, 1/n) \]
and thus
\[|\hat{M}_a f - M_{a+1} f|_{\infty} \leq \omega_{1,\infty}(f, 1/n - 1) \]
Now
\[\|f - M_{a+1} f|_{p} \leq \|f - M_{a+1} f|_{\infty} \|M_{a+1} f - \hat{M}_a f|_p \]
For \(n \to \infty \) each term goes to zero, the first one since \((M_{a+1} f)\) is a linear approximation method on the space \(O(1) \), \(\|\| \sigma \| \) and the second one by (2.5), which proves (2.3) for continuous functions.

The proof of this follows by the density of \(O(1) \) in \(L_p(I) \) with respect to the \(L_p \)-norm since \(\|M_{a+1} f\|_p \leq 1 \) for all \(n \in N \).

As an application of Theorem 1 we obtain the following criterion of compactness for a bounded subset
\[K = \{ f \in L_p(I) : \|f\|_p \leq M, M \text{ a positive constant} \} \]
of \(L_p(I) \): \(K \) is compact with respect to the \(L_p \)-norm iff \(\|f - \hat{M}_a f\|_p \to 0 \) (\(n \to \infty \)) uniformly for all \(f \in K \).

The method of proof is quite similar to an argument given by G. G. Lorentz [6], p. 33 for Kantorovich polynomials using the fact that by Hausdorff's criterion of compactness in complete metric spaces (see [3], p. 108) \(K \) is compact iff for each \(\epsilon > 0 \) there is a finite \(s \)-net.

3. Degree of \(L_p \)-approximation. Let \(L_p(I) := \{ f \in L_p(I) : f \text{ absolutely continuous}, f' \in L_p(I) \} \) \((1 < p < \infty)\) with the norm \(\|f\|_{L_p}^p = \|f\|_p + \|f'\|_p \). The most efficient technique in deriving estimates for the degree of \(L_p \)-approximation is smoothing (see [3], [11], [12]). This means
(i) approximation of \(f \in L_p(I) \) by a "smooth" function \(g \in L_p(I) \),
(ii) approximation of \(g \in L_p(I) \) by the method \((M_{a+1} f)\),
(iii) combination of steps (i) and (ii) via the \(K \)-functional of Poore.

We start with step (ii). In 1973, D. Leviatan [3] gave an estimate of the desired type for the case \(p = 1 \), which reads in our notation as follows:
\[\|g - \hat{M}_a g\|_p < \sqrt{\frac{2}{\epsilon}} \frac{1}{\sqrt{n}} \int_{\epsilon}^{1} \|g'(a)\|_p (1 - a) da \]
where \(B_1 \) is the set of all functions \(g \in L_p(I) \) being of bounded variation in every closed subinterval of \((0, 1)\) and for which the right-hand integral exists. From this we conclude easily that
\[\|g - \hat{M}_a g\|_p < \frac{1}{\sqrt{2n}} \|g'\|_p, \quad g \in L_p(I) \quad (n \in N). \]

Next we will derive the corresponding estimate for \(p > 1 \) by a method which is tailored exactly to this case. For its proof we need the following LEMMA. There exists a positive constant \(A \), independent of \(n \in N \) and \(x \in I \), such that
\[\hat{M}_a (t - x)^2 (a) < \frac{A}{n} \]
Observing that
\[\hat{M}_a (t - x)^2 (a) = D (\hat{M}_a t^2 (x) - a \hat{M}_a t^2 (x) + x^2) \]
for an arbitrary \(x \in I \), a proof of (3.2) can be based on a careful analysis of the possibility of differentiating asymptotic expressions for \(M_a t^2 (x) \) and \(\hat{M}_a t^2 (x) \) given by P. C. Sikkema ([15], p. 431-433), noticing a lemma in [10], p. 469. Details are left to the reader.

THEOREM 2. For \(g \in L_p(I), p > 1 \), there holds
\[\|g - \hat{M}_a g\|_p < \frac{C_p}{\sqrt{n}} \|g'\|_p \quad (n \geq 2) \]
where \(C_p \) is some positive constant, independent of \(g \) and \(n \).

Proof. Fix \(x \in [0, 1] \). Then by (1.4) and (1.6)
\[\|g(x) - \hat{M}_a g(x)\|_p = \sum_{k=1}^{n} \hat{m}_{ak}(x) \int_{\epsilon}^{1} \|g'(a)\|_p (1 - a) da \]
\[\leq \sum_{k=1}^{n} \hat{m}_{ak}(x) \int_{\epsilon}^{1} |g'(a)| \int_{\epsilon}^{1} |g'(a)| \int_{\epsilon}^{1} (1 - a) da \]
\[\leq \theta_p (x) \sum_{k=1}^{n} \hat{m}_{ak}(x) \int_{\epsilon}^{1} |t - x| \int_{\epsilon}^{1} (1 - a) da \]
where
\[\theta_p (x) := \sup_{x \in [0, 1]} \frac{1}{t - x} \int_{\epsilon}^{1} |g'(a)| \int_{\epsilon}^{1} (1 - a) da \]
is the Hardy-Littlewood majorant of \(g' \), \(g' \in L_p(I) \) implies for \(p > 1 \) by a theorem of Hardy and Littlewood (see [16], Theorems 13, 15) \(\theta_p \in L_p(I) \)
with

\[
\int_0^1 \theta_p(x) \, dx \leq \left(\frac{p}{p-1} \right)^{1/p} \int_0^1 \left| g(x) \right|^p \, dx.
\]

Applying Cauchy-Schwarz's inequality and the lemma, we obtain from (3.3)

\[
|g(x) - \bar{M}_a g(x)| \leq \theta_p(x) \left(\sum_{n=1}^{\infty} \frac{\theta_n(x)}{V_n} \right)^{1/2} \left\| \tau \right\|.
\]

and from this by (3.4) for \(p > 1 \)

\[
\|g - \bar{M}_a g\|_p \leq \left(\frac{1}{V_n} \frac{1}{p-1} \frac{p}{p-1} \frac{1}{V_n} \right)^{1/2} \|g\|_p,
\]

which completes the proof.

In what follows we will measure smoothness by using the K-functional of J. Peetre [14]. It is for \(f \in L_p(I) \), \(1 \leq p < \infty \), defined by

\[
K_p(f, t) = \inf \left\{ \|f - g\|_p + t \left(\int_0^1 \left| g(x) \right|^p \, dx \right)^{1/p} \right\},
\]

for \(t > 0 \).

Roughly speaking the K-functional is a semi-norm on \(L_p(I) \) measuring the degree of approximation of a function \(f \in L_p(I) \) by smoother functions \(g \in L^r_p(I) \) with simultaneous control on the size of \(\|g\|_p \).

The more classical measure for smoothness, the integral modulus of continuity, which for \(f \in L_p(I), 1 \leq p < \infty \), is defined by

\[
\omega_{p, n}(f, t) := \sup_{x \in [0, 1]} |(t + x) - (t + y)|^p \left(\frac{1}{V_n} \sum_{n=1}^{\infty} \frac{\theta_n(x)}{V_n} \right)^{1/2},
\]

(3.3)

for \(t \in [0, 1] \).

(3.4)

where \(\|g\|_p \) is indicating that the \(L_p \)-norm is to be taken over the interval \(I_n = (0, 1 - h) \) is in a certain sense equivalent to the \(K \)-functional.

H. Johnen ([4], Prop. 6.1) proved that there are constants \(c_2 > 0 \) and \(c_1 > 0 \), independent of \(f \) and \(p \), such that

\[
\omega_{p, n}(f, t) \leq K_p(f, t) \leq c_1 \omega_{p, n}(f, t) \quad (0 \leq t \leq 1).
\]

(3.5)

Theorem 3. For \(f \in L_p(I), 1 \leq p < \infty \), there holds

\[
\|f - \bar{M}_a f\|_p \leq \left(\frac{1}{V_n} \right) \left(\frac{1}{p} \right)^{1/p} \left(\frac{1}{V_n} \right)^{1/p} \|g\|_p,
\]

where \(\bar{M}_a \) is some positive constant, independent of \(f \) and \(p \).

Proof. Let \(\Delta_n = \max \{ \|g\|_p, 1/\sqrt{2} \} \). In view of (3.1), Theorem 2 and \(\|\bar{M}_a g\|_p \leq 1 \) (\(a \in N, 1 \leq p < \infty \)), we have

\[
\|f - \bar{M}_a f\|_p \leq \left(\frac{1}{V_n} \right) \left(\frac{1}{p} \right)^{1/p} \left(\frac{1}{V_n} \right)^{1/p} \|g\|_p.
\]

Then \(f \in L_p(I) \) and \(g \) is an arbitrary function from \(L^r_p(I) \), then

\[
\|f - \bar{M}_a f\|_p \leq \|f - g\|_p + \|g - \bar{M}_a g\|_p
\]

\[
\leq \left(\frac{1}{V_n} \right) \left(\frac{1}{p} \right)^{1/p} \left(\frac{1}{V_n} \right)^{1/p} \|g\|_p.
\]

Taking now the infimum over all \(g \in L^r_p(I) \) on the right-hand side, using the definition of the K-functional and observing (3.6), we find

\[
\|f - \bar{M}_a f\|_p \leq \left(\frac{1}{V_n} \right) \left(\frac{1}{p} \right)^{1/p} \left(\frac{1}{V_n} \right)^{1/p} \|g\|_p,
\]

which completes the proof.

Corollary: If \(f \in L_p(a, b) \), then

\[
\|f - \bar{M}_a f\|_p = O(n^{-\omega}(n \to \infty)).
\]

References

Some characterizations of the n-dimensional Peano derivative

by

ISRAEL BERNARD ZIBMAN (Princeton, N.J.)

Abstract. A measurable function f is said to have a Peano derivative of order k at a point x if there is a polynomial P of degree at most k with the property that $f(x + t) = P(t) + o(|t|^k)$. This work gives a characterization of the Peano derivative for functions of several variables in terms of the behaviour of the expression

$$
\sum_{i=1}^{n} A_i f(x + \sigma \cdot y) - (\sum_{i=1}^{n} A_i) f(x).
$$

The A_i are real numbers and the y_i are points on the unit sphere, $\sigma > 0$ and $\sigma \in S_0(n)$. Almost everywhere results similar to those of Denjoy–Rademacher–Stepanov, Khaltofo, and Stein-Zygmund are obtained in this non-linear setting.

The techniques involve boundary behavior of harmonic functions and analysis on $S_0(n)$. When n is greater than 2 the non-commutativity of $S_0(n)$ requires special treatment. A technique, introduced by Stein and Zygmund, is developed which allows one to substitute a certain convolution with a central function for a convolution with a zonal function.

Introduction. The purpose of this paper is to present an extension and a unification of several of the characterizations of the n-dimensional Peano derivative. Our characterizations will be stated as a description of the behavior of functions restricted to spheres centered at points of possible differentiability. The action of the rotation group on the sphere will play a significant role.

We say that a function f, defined on a neighborhood of a point x in \mathbb{R}^n, has a kth Peano derivative at x if there is a polynomial P of degree at most k such that $f(x + t) = P(t) + o(|t|^k)$. When $k = 1$, this is the ordinary derivative. When k is greater than 1, f need not be $k-1$ differentiable near x to have a kth Peano derivative at x.

We consider in this paper configurations consisting of a finite number of points on the unit sphere in \mathbb{R}^n, v_1, \ldots, v_N. We assign each point a non-zero weight A_i. The origin is given the weight $B = -\sum A_i$. To each configuration we associate an integer type m. The integer m is defined as the infimum of the degrees of all polynomials for which $\sum_{i=1}^{N} A_i f(v_i) +$