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Ly,-approximation by the method of integral Meyer-Konig and
Zellex operators

by
MANFRED W. MULLER (Dortmund)

Dedicated to Professor W. Meyer -Konig on the occasion of his
siwty-fifth birthday.

Abstract. The well-known linear approximation method (M,)nex of W. Meyer-

Konig and K. Zeller on the normed space (0 (I), || lo) is extended to a method (lf[n),,,N
for the Ly-approximation of functions f e Ly(I), I = [0, 1], 1 < p < oo with respect
to the I/p norm on I. Approximation propertles and especially the degree of approxi-
mation by this method are studied in detail.

1. Preliminaries. It is well known that the =th operator 34,
n e N, of Meyer-Konig and Zeller is associating with a bounded functlon
f: I =[0,1]-R the so-called nth Bernstein power series

W) Mfe) =§mnk<m)f(%¢;), (o) = (17} a—apa

k=0

converging for 0 << # < 1. If f is continuous to the left at the point ¢ = 1,
then M, f can be continuously extended to I by putting

(1.2) M, f1): -—hmMnf ») = f(1)

(see [9]). Thus the operators M, are mapping especiany the space C(I)
of real-valued continuous functions on I into itself and M, f can be regarded
a3 an approximation. to fe ¢(I) on I for each n € N. W. Meyer-Konig
and K. Zeller [9] proved that the sequence (M,),.x gives a linear approxi-
mation method on the normed space (0(I), |-lle) (with ||-],, the usual
sup-norm on I),'i.e. im | f —M,fll, = 0 for all f € O(I). Its degree of appro-

T~500

ximation can be estimated by [8]

I~ Ml S%wl,w(f;%) (ne N,

where w; . (f, ') is the ordinary modulus of eontimiity of f with respect
to the sup-norm.
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The aim of this paper is to develop a comparable method for the
L,-approximation of functions f e L,(I), 1< p < oo, the space of real-
valued pth power integrable functioms on I, with [|-[, the usual L,-norm
on I. The corresponding operafors Jl?[n will roughly speaking be construe-
ted replacing the point evaluations of f in (1.1) at discrete nodes by integral
means of f over suitable small and disjoint intervals containing these
nodes. For this formal reason we shall refer to them as integral Meyer-
Kinig and Zeller operators. Their explicit construction follows a method
given by G.G. Lorentz [6] when changing Bernstein polynomials into
Kantorovié¢ polynomials: Applying the first derivative operator D to
M,f, we obtain [7]

(1.3) DM,f()

= (1‘”2”(“:“) al=== _f(kin)]

k=0

0<ws<1 I feL,(I), consider the indefinite integral ¥(x

ff 1) di.

(1.3) applied to the (absolutely continuous) function F gives for 0 <
and ne N

00

(1.4) Hnfl@):= DM, P(o) = Yty (o) [ f(t)at,
k=0 I,

with I, = [ﬁ—n,%—%'%] (ke N,) and

(15) tiasle) = (o) T oy,

The operators ﬁ" are linear, positive and preserve the identity. (Since

jInf will be considered as an approximation to a function integrable in

the sense of Lebesgue on I, we can define lf[,,f (1) arbitrarily, e.g. JfI,,f (1)
= 0.) For later reference we list the useful relations:

(1.6) T (@) [
I
= (L—a)a"®) and

= mn—l,k (50)

(where we put formally mg(z)
1

Wy [re)de = n+1)(’°+““)B(k+1,n+1) ~1.
‘ 4]

In Section 2 it is shown that the sequence (]l;[,,)neN gives a linear
approximation method on the normed space (L,,(I), I-1,). In Section

m<1'
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3 the degree of approximation by this method is estimated in terms of
the first order modnlus of continuity w, ,(f, *). The main result (Theorem 3)

will be that
N 1
If~M,fl, = O (wl,ﬂ (fﬁ))

It should be observed that this order is O (n~) if f is belonging to a Lip-
schitz class Lip(a, L,). The method of proof is smoothing, i.e. f is first
approximated by a function ¢ with ¢’ in L, (I) and then g is approximated
by Ji;.f,,g. The connection between these two processes is given via the
K-functional of Peetre.

2. L, -approximation. Given fe L,(I), 1 <p < oo, we write JALTnf as
a smgular integral of the type :

M, f(z)

with the positive kernel

= [ H,(z, 0f(t)dt
0

2 1 (@) 17, (£)

k=0

where 1; is the characteristic function of the interval I, with respect
t6 I. Utilizing (1.6) and (1.7), we have for all # and » or ? respectively

Zmn Ik =1,

f H, (@, t)de = 2 1, (1) =1
0 k=0

and thus by a theorem of W. Olicz [13] follows easily that Mnf belongs
to L,(I) and the operator norms [I,[, are uniformly bounded by 1.
TEEOREM 1. For feL,(I), 1<p < oo, there holds

lim | f— M, fl, = 0

N—>00

(2.1) fH @, t)dt =

(2.1)

(2.3)

Proof. We show that (2.3) holds for the dense subspace C(I) of L,(I).
Using (1.6), we have for fe O(I) and an arbitrary s eI

. . 3 )
(2.4) | M f () — M, f(2)] < Z My, () f‘f(t) —f(m:f)} a (nz=2).
=0 Iy,

In view ofﬁ——k/(k—!-n—l)l < 1/(n—1) for tel, we obtain from (2.4)-
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and (1.6)

W

' 1\ 9. ' 1
IMnf ’0) -Mn 1f( ) 0y, co( !m)zmnk(m) fdt = wl,m(f’ %—1)
k=0 I

and thus

” N 1
@08) WMyl < VL~ ol S 0y (£ )

Now

If =ML fllp < 1F— M-1fi 1o f — Ml -

For n—oo each term goes to zero, the first one since (M,),.x is & linear
approximation method on the space (C(I), |||l,) and the second one by
(2.5), which proves (2.3) for continuous functions.

The rest of the proof follows by the density of O(I) in L,(I) with
respect to the L,-norm since ][ﬂinnp < lforall ne N.

As an application of Theorem 1 we obtain the following criterion of
compactness for a bounded subset

E:={feL,(DI Ifl, < M, M a positive constant}

of L,(I): K is compact with respect to the L,-norm iff |f—M,fl,—~0
(n—o0) uniformly for all fe K.

The method of proof is quite similar to an argament given by G. G. Lo-
rentz ([6], p. 33) for Kantorovid polynomials using the fact that by Haus-
dorff’s criterion of compactness in complete metrie spaces (see [3], p. 108)
K is compact iff for each > 0 thers is a finite ¢-net.

3. Degree of L,-approximation. Let I}I ) 1= {f € I, (I)| 4 absolutely
continnous, f'eL,(I)} (L<p < o) wn;h the norm |]f||p s+ 051,
The most efficient technique in deriving estimates for the degree of I,-
approximation is smoothing (see [2], [11], [12]). This means

(i) approximation of fe ,(I) by a “smooth” function g e L, (I),

(i) approximation of g e L)(I) by the method (M’n)nﬂ,

(iii) combination of steps (i) and (ii) via the K-functional of Peetre.

We start with step (ii). In 1972, D. Laviatan {5] gave an estimate

of the desired type for the case p = 1, which reads in our notation as
follows:

T 1
. I R —
ly—Igh <}/ = —= [Voll—a)dg@)l, geB, (ne N),
¢ Vny
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where B, is the set of all functions g € L, (I) being of hounded variation
in every closed subinterval of (0, 1) and for which the right-hand integral
exists. From this we conclude easily that

. 1
(3.1) lg =M, glh < ——=lg'lh, geIilI) (ne N).
V2en

Next we will derive the corresponding estimate for p > 1 by a method
which is tailored exactly to this case. For its proof we need the following

LEMMA. There exists o positive constant A, independent of ne N and
w e 1, such that

(3.2) A (— 0 () < .
Observing that

M, (t—a) (0) = D GM, 1 (2) — oM, ¥ (o)} + 2
for an arbitrary o € I, a proof of (3.2) can be based on a careful analysis
of the possibility of differentiating asymptotic expressions for M, # (z)

and M, #*(z) given by P. C. Sikkema ([15], p. 431-433), noticing a lemma
in {10], p. 402. Details are left to the reader.

THEOREM 2. For g € Ly (I), p > 1, there holds

lg—H,, g1, < (n>2),

017
—=lg’l|
,/ﬁ ‘0
where Cp, is some positive constant, 'ifndepe;zdem of g and n.
Proof. Fix # €[0,1). Then by (1.4) and (1.6)

3.3) 19@) —,g(@) = | Y s (o) J f o ()t |
k=0
< N inalo) fifg'(u)du]dt
k=0 Iy
&) X (@) [ lt—oldt,
k=0 Iy

where

0, (@)= 8§ f Ig ()| du
D<t<l t_‘
I#x
is the Hardy-Littlewood majorant of ¢’. ¢’ € L,(I) implies for p > 1 by
& theorem of Hardy and Littlewood (see [16], Theorems 13, 15) 6, €L, (I)


GUEST


86 M. W. Miiller
" with
1 1
: p \?
(3.4 [Bwaws<s (———) [ g @pran.
] ‘p _1 0
Applying Cauchy-Schwarz’s inequality and the lemma, we obtain from (3.3)

0 @) | > ttate) [ t—opaa]”
=0 I

= 6, (2) {M,,(t—1)

lg(2) — M, g(2)] <

2 (2)} < VA0, (5) —=

<

and from this by (3.4) for p> 1

llg— ngllp <v4a

(fﬁ(w)dw "<V L Vi,

which completes the proof.

In what follows we will measure smoothness by using the K-functional
of J. Peetre [14]. It is for f e L,(I), 1 < p < oo, defined by

(3.5) Ky, f) = inf(|f —gll, +2lg'l,)  (0<E<T).

1
gst

Roughly speaking the K-functional is a semi-norm on I,(I) measuring
the degree of approximation of a function f € L,(I) by smoother functions
g € L, (I) with simultaneous control on the size of llg"ll,-

The more classical measure for smoothness, the integral modulus
of continuity, which for f e L,(I), 1< p < oo, is defined by

(3.6) w1 (f, 1) 1= sup If( +B)—F(-)lp(Tn)

O<h<ci .
(where [[-]|(I;) is indicating that the IL,norm is to be taken over the
interval I, = [0, 1—5]) is in a certain sense equivalent to the K-func-

tional. H. Johnen ([4], Prop. 6.1) proved that there are constants ¢, > 0
and ¢, > 0, independent of f and p, such that

(3.1 o0y, (f; ) < K, (5, f) <
- THEOREM 3. For fe L,(

0501 ,(f, 7)

I), 1< p < oo, there holds

0<i<l).

If—Mnf | < Mo, , (f, i_) n>2),
Va

where M is soms positive constant, independant of f and p.
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Proof. Let D, = max(C,,1/V2¢). In view of (3 1), Theorem 2 and
IIMnllp <l (ne N, 1<p< ), we have
‘ h hel (I
h— M, Rk, < 12 b >0 1<p< oo n>2).
Iy < 22, he Ty
7

When f e L,(I) and g is an arbitrary function from L;(I), then
If =D fly < U(F—9) — o (F— @)l + g = Hngly

D,
2 (llf—yller 1/—3 Hg'llp) .
n

' Taking now the infimum over all ¢ € L;(I) on the right-hand side, using

the definition of the K-functional and observing (3.6), we find
. : D D
=, <2 (22, 1) < 200, 1, 72

1
<2(1+D,) o, ( ———)
2] \ 1,0 f7 ]/')_'b 3
which completes the proof. :
CororrArY: If feLip(a,L,) (0<a

If =M, fl, = O (=)

Here the Lipschitz class Lip(a, L,) of order « with respect to the
L, norm is defined as the collection of all functions f e L, (I) with the prop-
aty o, ,(f, ) = 0{F) (—0+). .

Remark. The last results can still be made more transparent if
one considers the family of intermediate spaces [Lp, Lyl, 0<a<1,
between Ly (I) and ILy(I), constructed from these spaces by means of
gome modlflcatwn of the K-functional (see [11], [12]) It can easily be
proved that fe [Ly, L,], is equivalent to felip(a, L,), 0 < a< 1. Thus
the corollary tells that elements of an intermediate space [Lyy Ly,), between
IL(I) and L, (I) are approximated by the method of mtegral Meyer-Konig
and. Zeller operators with respect to the L,-norm of the order 0 (n=°").

< 1), then

(n—>o00).
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Some characterizations of the n-dimensional Peano derivative
by
ISRAEL BERNARD ZIBMAN (Princeton, N.J.)

Abstract. A measurable function f is said to have a Peano derivative of order
% at a point x if there is a polynomial P of degree at most & with the property that
flz+t) =P@E)+ o (|¢1)*. This work gives a characterization of the Peano derivative
for functions of several variables in terms of the behaviour of the expression

N N
3 Aif (ot oo ) — ( 3 4i) F()-
3 =1

i=1

The A; are real numbers and the v; are points on the unit sphere, ¢ > 0 and o e SO0(n).
Almost everywhere results similar to those of Denjoy—Rademacher—Stepanov, Khin-
tehine, and Stein—Zygmund are obtained in this non-linear setting.

The techniques involve boundary behavior of harmonic functions and analysis
on SO(n). When n is greater than 2 the non-commutativity of SO (n) requires gpecial
treatment. A technique, introduced by Stein and Zygmund, is developed which allows
one to substitute a certain convolution with a central function for a eonvolution with
a zonal funetion.

Introduction. The purpose of this paper is to present an extension
and a unification of several of the characterizations of the n-dimensional
Peano derivative. Our characterizations will be stated as a description
of the behavior of functions restricted to spheres centered at points of
possible differentiability. The action of the rotation group on the sphere
will play a significant role.

We say that a function f, defined on 2 neighborhood of a point  in
R", hag a kth Peano derivative at © if there is & polynomial P of degree at
most k such that f(z-+1) = P(#)-+o([tf). When k = 1, this is the ordinary
derivative. When & is greater than 1, f need not be k—1 differentiable
near » to have a kth Peano derivative at 2.

We consider in this paper configurations consisting of a finite number
of points on the unit sphere in R", vy, ..., Vy- ‘We assign each point &

N
non-zero weight A;. The origin is given the weight B = — ) A;. To each
i=1

_configuration we associate an integer type . The integer m is defined as

N
the infimum of the :degrees of all polynomials for ‘which _ZAiP(WiH—

=1
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