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On the dual of weighted H' of the half-space*
by
BENJAMIN MUCKENHOUPT (New Brunswick, N.J.)
and

RICHARD L. WHEEDEN (New Brunswick N.J.)

Abstract. We show that the dual of weighted H' of the half-space can be ident-
ified with a weighted analogue of the space of functions of bounded mean oscillation.
A dense subset of weighted H! consisting of “smooth” functions is constructed, and
several characterizations of funetions of weighted bounded mean oscillation are
obtained.

§1. Introduction. The purpose of this paper is to- extend the results
of [11] to functions of more than one variable, the central problem being
the identification of the dual of a weighted version of the Hardy—Stein—
Weiss space H.

Given a non-negative weight w(xz), # denoting a point of n-dimen-
sional Buclidean space E", L], denotes the collection of real-valued f such
that .

Wl = [ @lw@)ds < +oo.
‘w En
By H., we mean all (n+1)-tuples F(z,1) = ((z,1), v,(5, ), ..., v,(z, 9},
(z, %) € B = {(x, 1): # e B", 1> 0} such that
(a) T satisties the Cauchy—Riemann equations in

+1, E‘l_‘____ 9 0v; . _?35_=BIU"
e Low’ om0
(OYIEN =St'1%)llF(': t)nL1 < oo,

In (b)7 “-F("t)"Ll jllSt means

yJ#k,  and —- ==

[ w0+ Z”vf-(w, 0] w(o)da,

BT
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go that || F|l| is comparable to

n
supllu(-, ¢ 4+ ) suplioj(-y Ol 1 - “
sup fu (-, Ol 2 sup (-, Ol
We assume that w satisfies some A, condition, i.e., that there is
a constant ¢ such that for every “cube” I in E"

(4,) (T;I—fw(w) )(mfwm) ”(”‘l)dm) 1<c, 1<p< oo,

(4,) fw (x)dz < cessyinfw.

iy

The condition that w e 4, is equivalent to w*(x) <

w* iy the Hardy-Littlewood maximal function of w.

The closer p becomes to 1, the stronger the condition that w e 4,

becomes. In different theorems, we need different assumptions on the

value of p. For example, if w € A,,_yy, any F(x, ) in H;, has boundary
values F(z, 0) pointwise a.e. and in L, norm as {0, and

B ~ IF (-, 0)ll,

cw(x) a.e., where

(see [107], Theorem 2). We can then think of H, as subset of IL®... ®L;
by identifying an ¥ e HL, with its boundary values F (z, 0) = (f, f1, ..., f,)-
Viewed in this way, H, is a closed subspace of L},,@ @Ll (see the
proof of Theorem 3 below).

For our purposes, it will be convenient to have a characterization
of H. in terms of Riesz transforms. To obbain this, we strengthen the
assumption on w to A;. For w € 4,, it is proved in [10] that a Cauchy—
Riemann system ¥, F = (4,9, ...,9,), is in H,, if and only if « and
¥y, ..., U, are respectively the Poisson and conjugate Poisson integrals
of an f e I, each of whose Riesz transforms R.f, ..., R,f is also in Lk,

By RB;f, j =1, ..., n, we mean simply
Y; n+1 5
E;f(z) =lime, ff(ﬁ—y)"m—,fg ay, = T( )/ (e,
lyi>s
Y = (Y1, ..-,¥n), Where the limit is taken in the usual pointwise sense;

RB;f exists a.e. if fe wy Wed; (see [1]). The boundary value F (=, 0)
of Fis (f, Rif, ..., R,f), and we can think of HL, w € 4, as the subspa,ce
of the direct sum of 2-+1 eoples of L., consmtmg of all (f, R,f,..., R,f)
with .

WF Bufs ooy Buf i ufnLl+2 WEsfll, < -+ oo.
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It may be of interest to point out here that unlike unweighted H*,
H}, may contain some (f, Bif,..., R,f) with f>0. For example, let
%=1, w@) =»*, —1<ae<0, and let f be the characteristic function
of an interval (@, b). Then up to » muléiplicative constant, the Hilbert
fransform f of f equals log |(a —=){(b —=)|. Since this has only logarithmic
singularities locally and is of the order of magnitude O(|z]™!) as j@]—>oo,
it follows that (f,f) e HL.

To simplify notation, we will write f € H, it (f, B.f, ..., B,f) is the
boundary value of an Fin HL, w & A jin-1y- When this is the cage, we ghall
also write nf] for [|F}].

The class BMO of functions of weighted bounded mean oscillation,
defined in analogy with the class of John and Nirenberg [6], consists
of those locally integrable b such that

f 1b(@) —bsldz < Bmy,(I),

where I is a cube in E", b; = ]I]“l["b(w)da; My (1) = fw(m)dw, and

B is a constant independent of I (see [S], [2]). The least such B will be
denoted by bl. Two functions differing by a constant will be identified.
Any function bounded by a multiple of w clearly belongs to BMO,,.

Our main result is that the dual of H}, can be identified with BMO,,.
The proof is based on C. Fefferman’s proof for the case w = 1. Various
aspects of the proof require different assumptions on w. The strongest
is A;, and this is used in the most technical part of the proof —namely,
that dealing with the existence of a dense subset of HJ, consisting of smooth
functions.

Tn the case w = 1, & class of smooth functions dense in H' is construc-
ted in [9], p. 230. The same class turns out to be dense in H,,, we 4,.
To describe the class, let & denote the Schwartz space of rapidly decreasing

functions, and let f denote the Fourier transform of f. Liet
¢ ={f:fe&, f has comi)act support not containing 0}.

‘We shall see later that if fe®, then each R,fe®%. Therefore, if
fe#, f and the R;f belong to L. Moreover, since

w (%)
f 1 1 lmlﬂp
for any wed,, L<p< o0 (see, e.g., the discussion concerning condition
B, below), it follows that f and the R;f belong to I, for any w e 4,,. By

the results of [10] (see Theorem 3 there and the remarks after it), f eH,
for any w € dyp—y. Hence, ¥ c Hy if wedyg .

dz < +oo

AN
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THEEOREM 1. If w € 4,, then € is a dense subset of Hy,.

This will be proved in Section 4, after the proof of the duality
results.
The next two theorems state the main results of the paper.

THEOREM 2. Leét w € Ay . Then there is a constant ¢ such that
| [ f(@)b(@)da| < olfil, 1Bl
" b

for oll f €% and b e BMO,,.
If wedy iy, it also belongs fo A4, ), so that as mentioned

before, any F (2, 1) € Hy, can be identified with its boundary values F(z, 0)

= (f(@), 1(#), ..., fal@)) and [IF] ~ |F (2, O)),

functional ! on Hi, can therefore be thought of as a linear functional on
these boundary values which satisfies

0 Fos e T < 0Dy + 3 13l -

THEOREM 3. Let' w € Ay iyyy. If 1 is & continuous linear fundtional
on HL, there exists a unique element b of class BMO,, such that for every
je%,

1 - A continuous linear
w

UFy Bafy ooy Buf) = [ f(2)B(2)do.
B
As corollaries, we obtain in Theorem 4 below several characterizations
of BMO,,. To describe these, let Pf(w, ) denote the Poisson integral of f:

Pf(@, 1) f F@)P(@—y,1)dy,
where P(w,1) = 6,t/(t*+ |z| )(“'“)’o is the Poisson kernel for E"*'. We
will also nse the modified Riesz transforms

EBff(z) = lim ¢,

)T

ff(y){% 2y > 1l a,
lyi>s -

e —y
where y(ly| > 1) is the characteristic function of {y: ly] > 1}. Of course,
Rff may exist at points where R;f may not, but where R,f exists, it differs
from R¥f by » constant (depending on f). An important fact is that
Rff e BMO,, for any f which is bounded in absolute value by a multiple
of w (see Lemma 2).

THEOREM 4. Let we 4;. .

(i) The general element of BMO,, has the form

b =g+ > Bfg,
1

where g and the g; are bounded in absolute value by multiples ;f w.
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(1) If d(@) (1+|a)™"" < L' (&™), then b e BMO,, if and only if there
4s a constant ¢ such that far e@;en/ cube I,

[[43

B(I)
where B(I) = Ix (0, diamI). Moreover, the same is true if we replace

%Pb by VPb in the integral.

— Pb e‘Phg“’dydt < omy, (1),

We note in passing. that the expression exp{—(Plogw)(y,t)} in
the last integral is equivalent to ™ [ w(2)™'dw (see Lemma 6).

le—y) <t

Theorems 1-3 will be proved in thytla reverse order. Theorem 4 will be
proved at the end of the paper.

Finally, we list a few useful facts about weight functions. If w €4,
1< p < oo, then given ¢ > 0, theré is a § > 0 such that if B is a measurable
subset of a cube I and m,,(¥) < ém,(I), then |B| < &|I|. Any w which
satisfies this last condition will be said to belong to 4,,. Moreover, if w € 4,,
1< p<< oo, then

f w ()
m

where ¢ and #; denote the edge-length and center of I, respectively. We
shall be primarily concerned with the case p = (n-+1)/n; in this case,
the last integral has an obvious similarity to the Poisson integral of w.
It is also known that if w e 4,, 1 < p < oo, then there exists ¢ < p such
that w € 4, (and hence also w e B,). These basic facts are proved in [1],
{81, and [7].

If Iis a cube and o > 0, then ol denotes the cube with the same center
a8 I and edge-length o times that of I. If w € B,, then by extending the
integration there only over 21, it follows that there is a congtant ¢ indepen-
dent of I such that

tnﬂ bt 13

My (I)

B,
{2,) P T

1<p < oo,

My (21) < omy, (1)

This condition i referred to as the doubling condition.
We will often use the same letter ¢ for different constants which
may depend on w and n, but not on f, b or I. We also use L” to denote

. ordinary unweighted IL?.

§2. Theorem 3. The following lemma will be useful.
Levma 1. Let w sabisfy By, ond suppose that b € BMO,. Then

- there is a constant ¢ independent of b and I such that

f b(@) — by e i < ol "
1,"“+|m ml"ﬂ = * ] !

where t and .u, denote the edge-len _]th and center of I.
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Proof. We first observe that
' my (2)

1) : |bor — bzl < ¢l oI

in fact,

1
!bzl_b:ﬂ = ]Tﬂ;f {b(w) — bor}de

1
<mﬂf 1b (0) — by &

u My (21)
<2 ”bu*_—lé—ll_~ )

To prove the lemma, note that the left side of the conclusion is bound-
ed by ¢ times :

. i
@) > flb(w)—b,]de.

k=0 skp
‘We have

)
f b (@) —byldw < f [b_(a:)——bzkl{dw-i—z 19 11D 5, — by

2k skr =1
) ,
i e M (271)
< 1bls [m.,,(z I)+Z o e ]

Using this estimate shows that (2) is bounded by

) k
t
clibll« § W—r E o=, (27T).
j=1

k=0

Interchanging the order of summation gives a bound for (2) of
cliblls ‘2 T My, (2°1).
=1
Since w satisfies the doubling condition, (27 1) < em,, (2'I —2771I), and
the last sum is at most
cliblle w(z)

L E—
i"'+1 — n+1
1 irosi-r T 1z —ag

The lemma follows immediately from the fact that w satisfies B,y -

We also need a result about the modified Riesz transforms Ejf
defined in the introduction. ‘
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Levma 2. Let w & Ay, iy, ond let g/w be bounded. Then Rfg is in
BMO,, for each j, and

B gl < ellg oo
with ¢ independent of g.

The proof is exactly the same as that in [8] for the case n = 1.
We will now show that if f €%, then R;fe?%,j=1,2,...,n. One

j=1,2,...,m,

way to see this is to begin with the known fact that (Ejf)“(w) = i% f(m)

a.e. Since f € %, the right side here is in &, and so equals g for some ge &.

Since R,f is continuous, it follows that B;f = ¢ everywhere. Hence, R;f € &,
- @~

(B;f) (@) = i]w_jl f(@) everywhere, and the result follows. This allows us

to conclude, as mentioned in the introduction, that € = H,if wedyp -
Tt is also useful in deducing the convergence of virious integrals which
arise below.

LEvMa 3. Let w € A, yiym, 9/w be bounded, and f € €. Then

[ Bf@g@)do = — [ f@)Efg@ds, §=1,....n.
E"

E"

Proof. We first claim that both integrals converge absolutely. This

" ig a corollary of Lemma 1 since f, R;f € and ¢, Rfg e BMO,, (for g, this

follows from the definition of BMO,, and for Rffg, it follows from
Lemma 2). )

If g e L?(B™), 1 < p < co, we have the well-known formula

[Bif-giw = — [ f-R;fdw;
B "

this is easy to prove by the Fourier transform when p = 2, and then
follows for 1 < p < oo from the boundedness of By on I?. Now let g satisfy
the hypothesis of the lemma, and seb g = §¥wi< E=1,2,.. Since
w is loeally in P for some p>1 (see [7]), g, L (BE™) for some p> 1.
Hence, the last formula holds for each g;. From this and the dominated
convergence theorem,

[ Bif-gaw —lim [ Bif-gydo = —Im [ £ Bygpio.
koo k00
b " E"

Bince R,y exists a.e., it differs a.e. from Rifg, by a constant. There-
fore, since [ fdw =0, '
En

ff'Rjgkdm = ff~Rf‘gkdm.
o) B
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Hence,

J Bif-gdo = —lim f IR guda.
BT

To complete the proof, it remains only to show that

[ f-Bf g do—~ [f-Bfgde
oo E"

for a sequence of ks tending to co. Let N and I be integers greater than 1,

and let ¥ = N'. Then

|[ 7-Bfgaa— [ f-Bf guio)
E™ E®

is bounded by the sum of

@ [ 1f-Bfg—gldw
ZI<N
and
@ [ 1f-BHg—ado.
) l2l>N :
I zI< N,
IBf (9—g0) (@) = f{.,___?’f_jL g(y)dyl
wiss P ym I?IITHL1
¢ x| f w[n-i-x y\kn-ﬂ fw(y (2| < N),
=k i<k

since-w satisties B, iy, However, since w €Ay iy, it also satisfies
B, for some u < (n-1)/n. Hence,
1

way<o [ o) <o,
¥ ol

_r
1+ [y

m
k2<lyi<k
so that by the doubling condition,
() : o[ w@ay <o
i<k
Combining estimates and choosing I sufficiently large but fixed, we have
- ¢N ¢
®) BF(0—0)@)| < gr <5 (2l <),

Therefore, (3) is bounded by ¢N ' [|f|dr, which tends to 0 as N-—-co.
. En
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Now consider (4). From the definition of g;, and Lemma 2, [|BF (g —g5)ll«
is bounded by a constant independent of k. Letting

e(N) = sup
lel=N

firta W}

we therefore obtain from Lemma 1 that (4) is bounded by

'ae(N)[N—“'f \R¥ (g —gi)|do+ N " fwdm].

lzl<N lzi<N -

Using (8), (6) and the fact that Ne(N)—0 as N—oco, we see that (4) tends
to 0 as N—>co. This completes the proof.

Proof of Theorem 3. We will first show that H, is complete
it w e 4, for some p. Let {F® (s, ?)}7_, be a Cauchy sequence with re-
spect to Hl Il}. By a result of Hardy—-Lmtlewood (see [3], Lemma 2, p. 172),
given § > 0, there exists a constant ¢ such thab

PO, )~ P (o, 0 < [ LFO(E 1)~ PO, )i dedy

|6—z|<t/2
tf2<n<3tf2

|F®) (&, ) — B (£, n)I*dE.

— | <tf2

< T sup
" >0 15

Letting s = lﬂip and applying Holder’s inequality with exponents p and
Py Ljp+1[p’ =1, we get

P (2, 1) — B (@, 1% < OB [ w(gyeDag"”.

[g—zxl<t/2

Since w=®=1 ig locally integrable for any w € 4, it follows that {F("}
converges uniformly on compact subsets of 3+ to a limit F. By standard
arguments, F is a Csuchy—Riemann system. Also, since given &> 0,
we have

[ F®@, 8 —F™ (@, 1) (@) do
B :

< |IPE—F™)) < e

if % and m are large enough, Fatou’s lemma implies that H]F FM| < e
for large m. This shows that H;, is complete.

Next, letting w e dyp_, and identifying systems F(v,1) € H,,
with thelr boundary values F(z, 0) = (f(#), fi(®), -, [x (m)), we §ee from
the completeness of H., and 'bhe equivalence of ||F||| and |F(», )]|
that H. is a closed subspace of LL® ... L. Zy

5 — Sindia Mathematica T.RTIT 1
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Now let I be any continuous linear functional on Hy,, w € Apyyym-
By the Hahn-Banach theorem, § has an extension I to all of I, ® ... ©L,.
Hence, there exist ¢, ¢y, ..., @, in I® such that

Ufyfur oo fa) = f{ftp-l- Zf,-qoj} wdz
1

B"

for any (f,f1s...,fp) i L}‘,@‘... @®L,. In particular, if fe %,

Uy Bafy ooy Baf) = [{fo+ D) Bif i} wia.
BN 1
Letting g = ew, g; =@w, j =1,...,m, and writing I(f, B,f, ..., B.f)
= 1(f), we obtain by Lemma 3 that .
Wn = [flg— > Efglde, fes.
E" 1

By Lemma 2, the function b = g— > Bff g; is in BMO,, with [l < ¢{llplle+
n 1

+ 3 lig;lle}. Thus, |ibll is bounded by a multiple of the norm of I as a econti-
1

nuous linear functional.
To complete the proof of Theorem 3, we must show that the function
b above is unique up to an additive constant. If § € BMO,, and

[foaw = [f8do
Eﬂ.

En

for all fe %, then the Fourier transform of b—pg (as a tempered distri-

bution) is supported at the origin, since f is any element of &% which van-
ishes near @ =0. Thus, b—f is a polynomial. Since it is also in BMO,,
it must be constant (Lemma 1).

§ 3. Theorem 2. In the proof, we will use the results stated in the
next four lemmas. :

Levwma 4. If f € €, then its Poisson integral Pf(s, 1) belongs to & (BT,
This is stated in [9], p. 231; the proof is computational, but straight-
forward.

Lmvva 5. Let w satisfy Byypym. If b(z)(L+iz)""" e TMB") and
fe %, then

a a
[rop@a =4 [ [ 1= pie,0 - oo, naas.

B -1
By
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Proof. Note that Pb(w,1t) is well-defined since b(z) (1+jal)™"" is
integrable. The integral on the left side of the conclusion above clearly
converges absolutely. To show the same for the one on the right, note that

the simple estimate tl—%l’b(w,t) < 6P (b)) (x,t) and Lemma 4 give

the bound

/]

Ei‘l‘l .
. 1 1]
’ dwdip d
‘ <e f[b(y)]{ ff (1+|w[+t)N tn+l+|m_y!n+1 d} Yy
) B o

where N can be taken arbitrarily large, and ¢ = ¢(n, V). An elementary
computation with N = 2n-+2 shows that the expression in curly brackets
is bounded by 2 multiple of (1-+ ly))~""!. The resulting integral there-
fore converges. . . )

The conclusion of Lemma 5 is standard if b eI’ (see, e.g., p. 85
of [9]). For any b, choose {b;} with b,—>b pointwise, |b| < [bl, by eI’

Then
0 i
= — —_ L.
ffbkdw 4 ff t(at Pf) (01, Pb,c)dwd
E" gl

Letting k—oco and noting that |fb,] < |f?] e I} (E™) and

F) |
—iﬁl’f{l’(]bl)dmdt

0 0 R
EPflP(ibkl)<c & T P (1b1) e (B

lij
tlEPfl

9 |

(as shown above), we obtain the desired formula.
TEwMA 6. If w e Ay, there exist positive constants 61 and ¢, depending
on w such that

1
¢ P loB)(,t) <= wiy)dy < GEGPtlog‘w)(z,i) .

lz—yl<t

Proof. We claim that if » e BMO (unweighted), then

¢
(7 gPh(x,t) < — eh(")’dy .
lx—vl<t

This will imply the lemma, as we now show. If we A, then logw e BMO
by [5], Lemma 5, so that (7) gives

[+
SPlogued) — w(y)dy.

lz—yl<t
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Applying this to w™" (which also satisfies 4,), we get

4
¢~ PO <

1 ot
o tay<o(y [ wa)

le—yl<t le—yl<t

by A,. This is the opposite inequality to that above.
To prove (7), let # e BMO (unweighted) and write

Fhd) — exp{ fh(y)P(w~y, t)d"./}7
E"’

where P(w, t) is the Poisson kernel. If 4, denotes the integral average
of h(y) over lz—y| <#, then

[ 2@ P@—y,)dy = 4o+ [ [b¥)—4,)P(@~y, 1)y,
E" En

so that
BN — o {f[h(?/)— Ay AP (w— y,t)dy}
E"
a:fexp{ f]h

E*

—4,,|P(@—y,1)dy}.

By Jensen’s inequality,

eAa:,t < " f eh(y) dy,
te—yl<t

and by Lemmsa 1 (with w =1, b =h), flh(y)— i P@—y,0dy is

bounded by a constant independent of =, . Thls implies (7) and completes
the proof.
Lemma 6 is true if w € A, for any p; for a proof, just apply (7) to

logw and log(w VFY) = ~ pl

need this fact.
Finally, we need the following result from [8] about BMO,,.
Levua 7. Let w € A, and b € BMO,,. Then there is a constant ¢ such that

1 logw (see also [11]). We shall not

j (@) —bs w(w) " dw < e |blEm, (I).

Proof of Theorem 2. Fix fe% and b5 eBMO,, wed, -
Since b(z)(1 4+ |zl) ™" is integrable by Lemma 1, Lemma 5 gives

(8) ’Eifbdw‘ 4”

n+1

— Pf(z,1)

} watldfvdt
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Let I',(x) denote the 45°-cone with vertex « and height 2:
@) =y, 0): ls—yl <t 0<t<h,

let I'(@) = I'n(®), and let

a i2 12
h(z) = sup lh: (ff t""‘—a—t—Pb(y,t)1 d?ldt) <01HbHM(w)],
Ty()

where ¢, is a constant to be chosen. Note that the integral above is a

" truncated version of the Lusin area integral

S(0) () =(fft1 n

Since b(y)(L+ gyt is mtegrable, standard Lebesgue point arguments
show that Pb has non-tangential limits a.e. on E”. Therefore, by [9],
p. 206, Theorem 4, any truncation of 8(b) is finite a.e.

‘We will show that the right-hand side of (8) is bounded by

@ ([

E* Thriz)®)

2 1/2
= PP )!dydt) .

]
—a;Pb(?/:t)

d
= 21w, ) dydt)dm.

This will imply the theorem, as we now show. By Schwarz’s iriequa.lity,

(9) is at most
Sl s

Tz

Pb‘ dy dt) do

<¢ [ B @aPhko) .
En

However, by the results of [4], IS( f)HL1 < ¢llfl ”Hl , and the theorem follows.
w w

To show that (9) majorizes the right-hand side of (8), note that (9)
equals ¢ times

[

n—H

ad
'_'"-Pf ?/; E;Pb(ys t)l !Eu,t[d?/dt’

where

Evt = {.’,D ) EF]L(:C)("‘U)}'

Tt suffices then to prove that 1B, | > ¢, ¢ > 0, or that given (y,1) e B%H,
h{z)>1t on a subset of {#: [z—yl | <t} Whose measure exceeds & ﬁxed
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multiple of ¢*. In fact, we will show that if 1 is large enough, then for any
cube I

(10) l{w el: (fftl ’L‘ Pb(y, )[ dydt)1/2<2}[bil*w(m)}

To(@)

= 3,

where.g and z, denote the edge-length and center of I.
Fix I and let F be the subset of I complementary to the set on the
left of (10). Integrating over B and changing the order of integration gives

R blEm, (B) < f(fftl ”l——Pb(y, )r dydt) w(z)dz

E Ly@)
[

<[]+
where B(I) =1Ix (0, diamI). Consider the la.rger expressmn

B(sI)
(11) f [ &= |7Pb(y, )P ( f w(w)“ldw) dy dt.

B(sI) lz—-m<t

9y
i b(y,1)

(a;)-ldw) dy dt,

Iz— vi<i

We will show that (11) is bounded by o|p|im,(I) (with ¢ independent
of I and b). This will give 2’m,,(B) < em,,(I). Choosing 2 sufficiently large
and using the fact thatw € 4,,, we then get [B| < }|T |, thereby proving (10).

To show that (11) is bounded by ¢[b|fim, (1), let J = 10I and write

VPb(y, 1) = [[b(e)=b,VP(y—2, Hde= [ + [ = Bi(y, ) +:(y, 1),
E" J J

say. First consider the contribution made to (11) by B,. For y €bl,

Baly, DI < o f ()~ 1,1 {y_d:}m <elblle m“ﬁ)

by Lemma 1 and the doubling condition. The oorrespondmg part of (11)

is at most
oIBl I) f f 1-"( f (@)~ ldm) dyds.

lz—yl<t

Performing the integration with respect to.y shows this is bounded by

2
may(I) _ % (D)my (1
oW T f (fw 1dw)dt<ol]b]|*——#)

by the doubling condition for w™'. Since w e 4, (in fact, we d,..,)
the last expression is at most clbifzm,(I), as desired. renmes
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Next, consider the contribution of 8, to (11). Note that g, = VPby,
where b, = (b—b;)xs. Hence, by changing the erder of integration, we
see that the part of (11) in question is at most

(12) [ (86,2 (@) (@) dw,
b
§b, being. the area integral ( f f 1" |VPby (y, 1) 2 dy &2,
. Since w e 4, it follows tha.t wle d,. Therefore, by the results
of [4], (12) is bounded by
o [ Bi(@)w(a) " do.
- oEm

. Observe that

[B@w(@)do = [ [b@)—bslw@) " d < olblimy(J)
" J )
by Lemma 7. Combining estimates and using the doubling condition, we
obtain the desired bound. This completes the proof of Theorem 2.

§ 4. Theorem 1. Let w € A,. Note that Theorem 1 is trivial if % =0 '
a.e. Hence, we may assume that w is positive in some set of positive
measure. In this case, we claim that for any fe Lj, :

f(@)l
/ Aty @<t
bl

In fact, since w*(®)>e(l+|e)™™ and w(w)> ew*(x) a.e, We have
w(@) > ¢(L+ o)~ a.e., and the claim follows immediately.

TEMmA 8. Lot we A, and fell. If peP and p,(a) = 8"y(do),
8> 0, there is a constant ¢ independent of f and & such that

Hf*%“L1 < al!fIIL1 .
Moreover, if f pdw =1, then |I(f*ys) —fll; 1—->0 as 8~o0.
Proof. By Fubini’s theorem,
Wepal, < [ 1F@)1] [ 9@ 1ps(@—y)lda} dy.
Yo g b
Since the expression in curly brackets is < ow*(y), the first part of the

lemma follows immediately from the fact tha.t wed,.
For the Second part, we have (since fzp,, (y)dy =1)

Wrewa) =, < [ [ 15 lfmwy)—f(m)l Ivs(9) dy) 0(2)do
W gnogn

=+ [ J+ [ [ =atbtr

o [YISN  |@l>2N <N lz]<2N <N
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It is enough to show that if 6, NV > 1, there is a constant ¢, independent
of f, 4, and N, such that

a<olfi( [ Ivldy+57),

ly|>oN

B<e [ If@)|w(z)ds,

|z|>N

and that for any W, y—>0 as §—co. Clearly,
o< [( [ 1fle—9)l ps@ldg)o@ds+ [ [ 1

En WI>N En WI>N

= [ [ w@ls@—yidaa+ii, [ wolay.
E" W ly|I>N

le—-y|>N

@)t (9)lay)w(0) 2

The second term is fif] , [ |¢(y)|dy, and the first.is less than ¢ times
Ly yi>eN

E{ ([ oot

) dy .
lz—yl>1

The inner integral here is at most 6”1-cw*(y). < ¢67'w(y), and the estimate

for o« follows. Next, note that

p< [ ([ 1f@—9) os(a)] dy) w(o)do+

ZI>2N Wi<N

+ [ [ 1@ m@)dy)we

lz|>2N Wl<N

* The second term is at most ¢ J 1f@)lw(z)de, and the first equals
Izl >2N

ff If(y)!l%(ﬂa'—y)l@y)ﬂ;(w)dm

2]>2N le—ul<N

The inequalities [»|>2N and |z—y|< N give |y|> N, so that the
last expression is at most

J Ify)l(f

@) lys (@ —y) | da) dy
Wwi>N

<e [ If

>N

Fly)lw*(y)d

The estimate for § now follows from the fact that w e 4,.

Finally, to show that y—+0 as §—co, fix ¥ and & and choose a conti-
nuous ¢(x) such that

[ 1f@) —e@)w(@)de < ¢

lzj<3N
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Write |f (@ —y) —f (@)} <|f(@—) — 6(a— )| + e (@ —y) — o()] + le(@) — f (@)1,
and consider the corresponding three contributions to y. The first of
these is

f@—y)—o(@—9)| Ivs(v)|dy) w(@)do

ZI<2N i<V

< [ 1t —o@)l( [ @)y, (@—y)do)dy
En

lvl<anN
< [ i) —o@)lwr(y)dy < s

[yl<3N
The third is at most

| 1f@=c@l( [ m@ty) w@ds =c [ |f(@)—o(@)w(@)ds < ce.
lzl<aN B lzl<2N
Finally, for the second, choose 7 so that |e(z—y)—ec(@)| <e if y| <7p
and |#| < 2N. Then the integral is at most

([ etwstwlay+ [ 2(max le(@)]) vy (9)ldy) w(a)dn

|zl<2N lyl<n n<iyleny  l2l<

<( [ w(@)ao)(es+2maxio@) [ ni y)ldy)

lx|<eN wl>n
The lemmsa now follows from the fact that [ [1,(y)|dy tends to 0 as d—oo.
wi>n

For the remadinder of the section, ¢ is a fixed function in & satisfying
0<$<1, ¢ =1mear 0,9 =0in [o/>1, and [pde =1. Of course,

o
¢ e & too, and the properties of ¢ imply that [ede =1 and @(0) = 1.
Consider the convolution E"

= (frgo) (@) = &" [ fla—y)p(y)dy,

E"

LEvmA 9. Letw € Ay If f e LLnL and [f(x)de = 0, then Ty(1—T,)f
&

(13) (T5f) (@) 6>0.

converges to f in L} norm as N-—>oco, e~0.
Proof. We have

HTN(l-—Ta)f~fllL1 = |Txf—TyTef=fl 1 <
w w
|1TNf—-f|I 1"0 2§ N-—»oco, and ”TNTxf" 1 < ol Tefl,
“w
Hence, it is enough to ShOW that |, f]l : —0 as s—0. Since f fdy =0,

n

—«p(gw)] dy.

“TNf“f”Ll ‘{‘"TNTafﬂL}D .

By Lemma 8,

(T.f) (@) = & [ f(¥) [«p(s(m—y))
En


GUEST


74 » B. Muckenhoupt and R. L. Wheeden

Therefore,
WA, < [1FO)I (e 9)dy,
Y. g

where  I(e,y) =" [|g(e(o—y))— o (en)|w(2)do
En
Since feLLNI}, the dominated convergence theorem will imply that
[lT,fuLin-A) it we show that I(¢,y)—>0 as &0 and I(s,y)<c{w(y)+
+ [ w(w)dw} ae. uniformly in & 0 <e<1. Since p e,
lzl<1
ely|

()] < GW’

lp(ew—~ey)—g ly| < 1/e.

Hence if |y| <1/,

az
I(e,y)<eclyl fmw) —
"

& 1+ imln-{-l -
Since w € By, the last expression is at most

[ w@)ds.

Jaf<s™ L

If I and J are cubes, or balls, with I < J, it follows from the fact that
(1/[1])fwdw is equivalent to esgyinfw that fwdm< e(|J]/1I]) fwda;

Applymg this to the mtegral above, we get
I, ) <elyle [ wda.

lzl<1

Thus, I(e, y)—>0 a8 ¢—0. Next, observe that

Al 1
f[1+(a T TG P

e Iyl 8ﬂ+1

Ie,y)<oe

so that as above

I(s,y)éc&"[ f

jo—yi<e—?

w(z)do -+ f dm]

lzl<e—1

w(x)do+ f w(w)dw].

lzi<1

<6

lz—yl<1 )
This completes the proof since [ wz)de < w*(y)
lz—yl<1

< ew(y).
Levra 10. Let fe Ly, we Ay, and M™ [ w(z)dz—0 as M->oo.
lzl< M
Then Ty(1—

T,)f conwverges to f in L, norm as N->co, e—0.

icm
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Proof. By Lemmas 8 and 9, it is enough to show that the class of
f in ILnI* with ff(m dr = 0 is dense in T.,. Given fe Ll and £> 0,

choose Mo 50 largo that [ |flwdw <e Since M [ wde—0, there
M,

zl<M

is a sequence {z,;} with ]mM|—>oo and [ wde—0. Choose M, so large
l:z—zM|<1
that {o: [@—ay ) <1} lies in {z: |v| > M,} and
wiv<e( [ Ifl m)

|1—3:Mll<1 el<M,

Define
g =fx[x|<M0-76( f fd”) Hiw—apg 1<
|zl <M,
where k= 1/[{n: lo—ay] < 1}].

Then g € LL,NI* (£ is locally integrable since f € L, and o is locally bounded
below by a positive constant), and [gdo = 0. Moreover,

Eﬂ
Jif—glwie = [ |f—gwis< [ [flwdet+ [ lglwde
" || > o} >My lz|> M,
<et+k [ Iflim [ wis<etl.

lel<My - le—z gy, <1

This completes the proof.

Lemma 11. If fe H.,, we Ay, then Tyl —T)f~f and Tx(l—
—=R;f,j =1, ..., n, in L, norm as N—>oco, e->0.

Proof. If the averages M~ [ wdwe—0 as M->oo, the result follows

lel<M
from Lemma 10. If the averages do not tend to 0, there exist {M;}—>oco

and 6 > 0 such that M;" [ wdn>é. Therefore, w > 6 ae., and the hy-
(i< My,

pothesis that f, R;f e L}, implies that f, B;f e I Hence,
[fdo = ijfdm =0

b

T, x) ij

(see [10], for example), and the conclusion follows from Lemma 9.
LEM:MA 12. If feHy, wed,, then R,Ty(1—1T,)f = Ty(1—T,)R,f,
i=1,
Proof. Fix ¢ and N, and write Tx(1—T,)f = k«f. Then k e &, and
we must show that B;(k*f) = k+R,;f. Fory € B, t > 0, let @,(y, t) denote
the jth-conjugate Poisson kernel. We claim that

#(kxf) = kx(Q;*f).
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By Fubini’s theorem and the estimate |Q;(y, t)| <
to show that

c(t+ lyD™", it is enough

ff]fm: 2)| k(= )]—~ — dedy < + co.
EAES (L+1y1)
Performing the integration in v and wsing |[k(z—y)| <e(l+ |z—y)) 2"

gshow that the lagt integral is bounded by

[ 17—
B
This is finite since fe L}, and w(2) = ¢(1-+|2)7".
To complete the proof, let —0 in (14). The left-hand side converges
ae. to R;(kxf). By [10], @;*f converges to R,f in L},. Hence, by Lemma,

_ ! %
1+ )"

8, the right-hand side converges in I, to k+R;f, and the lemma follows. -

Note that if feL}, then Ty(1-—T,)f is infinitely differentiable.
Moreover, it is slowly increasing, as can be seen by noting that its oth
derivative equals K +f for a suitable K € & (a, N, ¢ fixed), and

(Exf) ()] < !!fll ! {supw )THE (s —9)[}
X4y "
< ellfl }DS“yP m < Gllf”L}”(l“}- J])™.

In order to obtain a funetion in %, we must modify the growth of
Ty@—T,)f for large |z|. Given fe L., let

{18)

: @2
9=0.5 =Ty =T, 0 =0nr= tp(%) g.

LrMma 13. Let f € Ly,, w € Ay, and let g, be as in (15). If k > k(e, N),
then gy, € €; in fact, for such k, supp g is contained in & fized compact set
containing 0 which depends only on & and N.

Proof. Clearly, g, €& since g is slowly mereasmg and ¢ e&. Fix
cand N. If fe L', then ge I' and

o =)

Therefore, by the properties of ¢, suppg is contained in a compact set
not containing 0 and depending only on s and XN. From the formuls
gy = @(z/k)g, we have

G = K" (ko) g,
SUpp gy = {#+y: x e suppp (ke), y € supp§}-
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Since supp¢ (k») is contained in the ball of radius 1/%k and center 0, it
follows that, for sufficiently large &, supp g, is a subset of a fixed compaet
set not containing 0. We stress that this set is independent of f and
k> k(e, N).
Now assume that fe L.,. Choose fe LLNL' such that |jf— fuzl <.
W

With ¢ and & fixed, let § and 7, denote the corresponding functions ¢ and

gi- Then for & > k(e, N), supp ng is contained in a fixed compact E, 0 ¢ B.
However,

1§ —Glzes < llge— Guls = “ %[g—ﬁ]"
xLl

<”¢ ‘7; w(z)™

Fixing k, letting #—0, and recalling that ¥ is independent of 7, we obtain
that suppg, = B if &k > k(e, ¥). This proves the lemma.

LemMa 14. Let fe Ly, we Ay, and let g and g, be as in (15). Then
gi—>g and R;g—~Rig, j =1, ..., n, in I, norm as k—oo.

Proof. Fix ¢ and N. By definition, g = T (1—T,)f and g, = p(/k)g.
Since p(0) =1, g,->g in L. norm.

By Lemma 13, there is 2 compact ¥ depending only on & and N such
that 0 ¢ B and supp gy, < H for large k. Choose M; e & with M;(x) = ia,/|x|
for # ¢ . Then Mg, = R;g, for large k, which can be seen by checking
Fourier transforms (recall that R;g, € ¢ since g, € %). Since g;,—¢ in L,
norm, Lemma 8 implies that M;*g,—~M,+¢ in L., norm. To show that
R;q,—~R;g in I, norm, it is therefore enough to show that

l=gl,2 < eellf=fll s <o

bl

B;g = M;xg.

If fe&, then g e &, and this follows by checking Fourier transforms.
For general feLl, choose f™ ¢ with [f™ -—fﬂ 1—>O If ¢“ denotes

the function g corresponding to f™, Lemma 8 gives [[g‘m)—gn : -0, 80 that

by [1], R;9™ converges in w-measure to K;g. But also, R, g(’"’ = M +gt™
—M;*g in L}, and the desired relation follows.

Proof of Theorem 1. Let fe H,, w e 4,. By Lemmas 11 and 12,
given 5 > 0, there exist ¢ and ¥ such that the function g = Ty (L—T,)f
satisfies

' ”f_g”Ll <7, |lef—Rj9”L1 <mn j=1,..,n.
w Hw
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With.g,, defined as usual, Lemma 14 then gives
=gl o <m IR —~Bigil 1 <7
Lw Lw

for large k. Since g, € % for large k& (Lemma 13), the proof is complete.

§5. Proof of Theorem 4. To prove part (i) of Theorem 4, note that
any function of the form g+ > R¥g;, where |g|, |g;] < ew, s in BMO,, by
Lemma 2. Conversely, if b e BMO,,, then by Theorems 1 and 2, the linear
functional defined by
(16) Ufy Bafy oy Baf) = [f@)b(@) e, fe,

"

extends to & continuous linear functional on HY . It then follows from The-

orem 3 (or, more precisely, the proof of Theorem 3) tiha,t b has such a

representation. This proves part (i)
For part (i), let b(w ) (L4 2]) ™ e

w(z)™!), the integral

19

eL(E™. By Lemmsa 6 (applied to

f [ t|7PbPe s dy ds
BD
is equivalent to

[f# ey, 0 [ w(m)-ldw) dy dt,

B(I) lz—yl<i
which is essentially the integral in (11). In the proof of Theorem 2, we
showed (11) to be at most ¢|blim,(I). Hence, we conclude that (17)
satisfies the same estimate. Conversely, if (17) (or its analogue with V re-
placed by a/0t) is bounded by ¢m,,(I) for all I, then (11) is also bounded
by om,, (I) for all I. Thus, by retracing the argument of the proof of Theorem
2 between (8) and (11) (with |bll. deleted in all the estimates), we obtain

| [f@b@)| w<olflz, feb.
En

It then follows from Theorems 1 and 3 that b € BMO,,. This completes
the proof of Theorem 4.
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