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Beweis. Seien X der Banachraum {(#,},.v: @, € X,,, suplfz,l < oo}
und 8, e B(X) mit 8, (2,), = (0unTn®,),- Die S, sind kompakt und her-
mitesch mit S ¢ H,, und wegen 1.3.(a) kann [T/l = 18,,[l =27™ ange-
nommen Werden Weiter kann fiitr die Elemente a, a.us 3.2 |a,ll =1

angenommen werden. Dann gilt mit 1.3.(b), (e): T = ZS,,, ist kompakt

" und hermitesch. Aber: m=1

sup {llexp (in1%) (a,),1: 7 € B}
= sup {llexp (inT2) a,)l: 7 € R, n e N} > sup {nila,l: n e N} = oo,
dh:, T2 ¢H,,.
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Duality of kinear operators in locally convex spaces
by
GERHARD GARSKE (Hagen)

Abstract. Let T: E—F be a linear non-continuous operator between two locally
convex spaces. Facts valid for continuous operators are applicable to T by either strength-
ening the topology of E or weakening the topology of F. The same point of view for
the dnal operator leads to a diagram which topological properties are examined for
various topologies of the dual spaces.

1. Let T: E-F be a closable linear operator between two locally
convex spaces with demain D(7') dense in E. In order to apply methods
available for continuous operators to the treatment of T, there are two
obvicus possibilities: either to strenghten the topology of D(T) by the
graph topolegy or to weaken the topology of F by the finest locally convex
topology that makes T continuous. Let B, and FT be these new spaces.
They are isomorphic to G(T), the graph of T, and to (D(T) x F) /G (—1T),
respectively. Let ip and ¥ be the corresponding continuous injections:

1) ET—?EﬁF—rFT

For a loeally convex space X, let #y always denote a neighborhood
base of 0. Then {7 [UnT (V ]l Uey, Vedy} is a neighborhood
base of 0 for By and T [T{U)+ V] U e %y, V.e ¥y} and {zT(F[T YoVl
U ey, Ve¥y) are neighborhocd bates of 0 for FT. Here I'M is the abso-
lutely convex hull of the set M. For a linear operator § we always write
N (8) for its kernel and R(S) for its range.

Browder [1] implicitly uses the space Ey to examine closable operators.

Kothe [6] characterises openness and nearly-openness by relations
of the equicontinuous sets of the dual spaces and in doing so implicitly
uses the space FT.

In Section 2 we consider questions arising from the dual line of (1).
The results are applicable to the examination of state diagrams like
those of Loustaunan [7] as well as to the examination of relatively con-
tinuous cpcraters (Chilana [2], Forster [31). This will be carried out in
Sections 3-and 4.

2. If in (1) we pass to the dual§ and use for T’ the notations just
intreduced fcr T, we get the diagram
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Er E F Fr
(Er) Fy

\ 7 \/

Jjov, is the bijective mapping arising canoniea.lly from the algebraic iso-
morphy of the spaces Fy. (1"), G(—T)', ((D(T) x F)/¢(—T)), and (F7)".
The mapping j* is defined by §%° = (ip)’ o(iT') and in general it is only
injective because (ip)’ is not surjective.

We are examining the topological properties of j, and j7°: The dual
spaces are equipped with polar topologies and we consider the cases in
which B', B, (By), and (FT)' have the weak topologies o, the Mackey
topologies 7, the polar topologies of the precompact sets x, and the strong
topologies f. In the sequel we always write £ for one of these four types
of topology. Correspondingly, a &-set is a finite, a weakly compact and
absolutely convex, a precompact, or a bounded set, Tespectively.

It is obvious that we cannot expect openness of j,. if we take the top-
ology for B' from F and not from D(T): Let D be a dense subspace of
B, ¥ = D, and let T be the identity. Then FT = F and B’ = F’. For
E=0or & =1 £(E',E) is strictly finer than- £(#’, D), supposed that
D # B. . has §(B', B), (F7) has £(B', D). So jp is not open.

Counterexamples for & and § are available by specializing H. On the
other hand, if jp is continuous if B’ has &(E’, D(T)), it is continuous,
too, if B has &(F', E), hecause Fy has a stronger topology in this case.

To prove that j, is open we have to show: for £-sets K < D(T),
M < F there exists a &-set N = FT such that

3) N g jo lig o T (E") nig! (M°)].

For arbitrary operators S: @—H between locally convex spaces and arbi-
trary sets 'Q < D(8) we have

(4) 8T = [S@TND(S),
(3) QRS =S (S@QT).
Since (FT) = D([" oTY), we therefore have for K < D(T)
Jp ligho T~ (E) mvig! (39)]
= (") ITHE) M) = (To T) (B n(ET) (M)
= [T T(E)n[i® (M) = (7 [T(E)yuM]).
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Hence (3) is equivalent to
(7 ‘ ¥ < ((TT(E) M.

In view of (5), to prove the continuity of j;, it is sufficient to show that
for any &-set N < FT there exist &sets K = D(T) and M < F such that

(8) (FITERYOM]) s N or (TLTE)+M]) = N

TagorEM 1. For the types o, T, =, and § let B', ', and (FT) simul-
taneously have the same type of lopology from D(T), E, and T, respectively.
Then jo is open.

Proof. For & #7 set N = T[T E)UM] and for ¢ =7 set N
= F( T [T(K)uM ]) then (7) is valid. Tt follows from the continuity of
ZoT and T that N is a &seb in both cases.

If the topology for B is to be taken from E and not from D(Ty, we
have to- strengthen the topology of (FT)':

THEOREM 2. For the types o, 7, m, ond § let B', ', and (F*) simul-
tomeously have the sams type of iopology from E, F, and (B x F)[G(-T),
respectively. Then jp- is open.

Proof. FT is isomorphic to (D(T) x F)|G({—T); let #* be the mapping
that maps FT isomorphically into FT (E x F)JG{—T). Then we extend

FoiTo T continuously to a mapping T defined on all of B: since i FoifoT
maps & E_D(T) on the coset [(0 Tm)] = [(=, 0)], set Ty = [(@, 0)] for » c E.

Sinee wT(FT) is dense in FT (FT) is LBOI‘!IOI‘phlG to (FTy and we show that

(PT'Z')' ojip is an open mapping from Fy. to (FT Y: As for (7), we see that
it ig sufficient to show that for &-sets K < B, M < F there exists a &-seb
¥ < B with N'< [T(K)w i (M)P. Take N =T (K)ui¥oi (M) for
E#7and N = P[T(K)ui“’om”(M)] for & = 7.

THEOREM 3. Let B and (FT) have the topologiss o (F' ; F) and o{(FFY, 7T
and let B' have any topology. Then jp is continuous.

Proof. Set in (8) K = {0}, M = (i) 1 (¥).

For the strong topologies we generally cannot expect that jr is
confinuous.

This is a counterexample:

TLet X = CVNB and let F be the Banach space of those elements
of X that have a finite sup-norm. For € X we always use the represen-
tation @ = (#)iev gy LE P1y Pas -+ 18 the sequence of prime numbers,

we set for € X and » e N: ¢, (2) = ZlmkpiandE {z| ® € F, /\ 2, (®)

< oo}. Let 4 denote the metnzable topology of E generated by the
0, let o denote the norm topology of F, and let T be the identical mapping
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from B into F. It is easy to verify that T is closed. Let w denote the top-
ology of the inductive limit of ¢ and y on F. A neighborhood base of 0 for
wis {8(U+V,)] >0, ne N} with U ={| zeF, o<1}, V, = {&|
zeF, q,(#) <1} Let N = {glm) J e N, m € N} with

joi I<j+m,

26m i = Hl.m_l»fm‘ JH<

0  otherwise.

le w-bounded: Forn € N,m e N, ,j € N,and j > nwehave g, («"™) = 0,
because '™ = 0 for those i that are divisible by P For j < n we have
%™ = j. Therefore, N < n(UUV,). We now show: There exist no
two sets K < B, M = F, K y-bounded, M o-bounded, with N < I'(KuM)”.
It is sufficient to take absolutely convex K and M. Then this inclusion
implies ¥ < K+M+ U+ 7V, for all n. Let ¢,(K)<¢,, M| <e Take
7> 2¢+4 and take m such that 2¢, < nm. Let ™™ = y+z+u-v for
yekK, eeM, ueU, veV,. There. exist exactly m indices ¢ that are
divisible by p,, with 2{™™ = n. Since g, (y) < $nm, there exists one 4 among
them such that ly;| <jn. For this ¢ we must have |e;+u;+v)>n
and, since Ju;| <1, In;] <1, also Jz;] > §n—2 > ¢. This contradicts [] < e.
This shows that j;. is not continuous in this case, for, since B = D(T),
we would have to fulfil (8) and that is impossible, because passing to polars
within ((FT), F¥) yields ¥ < N < I{i"[T(K)uM]) form (8).

Here F is representable as a closed subspace of a countable product
of Banach spaces and hence is a Fréchet space. F is a Banach space.

8o we can expect j,. to be continuous only if we make restrictions
on the spaces E and F or on the operator T.

TEEOREM 4. If B, ¥, and.(FTY are furnished with n(B',B), =n(F', F),
and x((FTY, F), respectively, and if B and F are meirizable, then jp is
continuous. This is already valid if B' has = (E', D(T)).

Proof. First we show: Let G be a metrizable locally convex space,
H < G aclosed subspace, »: G—G [H the canonical homomorphism, ¥ < G/H
Pprecompact; then there exists a precompact set @ < G such that ¥ < I'v(Q).
Since G/H is mefrizable, too, there exists a null sequence {#,} in G/H
with ¥ < I'{#;| ke N}. Let {U,} be a neighborhood base of zero for B with
U, 2 U, 2...; then {»(T,)} is a neighborhood base of G/H. So for each
i€ N there exists & k; € N such that for %> k; we have %, e»(U,). For
k; <k < Ky choose @y, €3y, with @, € Uy, {&,} is a null sequence so that @
= {m| k € N} has the desired properties. We apply this to G = D(T) x
xF, H = G(—T)so0 that k = p(Q) and M = g(Q) are precompact if p
and g are the projections from D(T)x F onto D(T) and F, respectively.
Now it follows from the construction of the canonical homomorphism
u from D(T) x F onto FT that u(Q) < ¥ [T (K)+M]. This implies (8).
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THEOREM 5. If ', F', and (FT)' are furnished with p(E', B), B(F , F),

and B((FTY, FT), respectively, and if B and F are metrizable nuclear or
matrizable Schwartz spaces, then jp. is continuous. This is already valid if
E has B(E', D(T)).

Proof. Subspaces, products, and quotlents modulo closed subspa,ces
of nuclear spaces are nuclear, so FT is nuclear. Since in nuclear spaces
the properties precompactness and boundedness coincide, the assertion
follows from (4). The same conclusion applies to Schwartz spaces.

TerOREM 6. If H', F', and (FT) are furnished with 8(¥ , B), (¥, F),
and B((FTY, B7), respectively and D(T) and F are (DF)-spaces, then jp. is
continuous. This is already valid if B has B(E ', D(T)).

Proof. It follows from the permanence properties of (DF)-spaces
that F7T is a (DF)-space, too. Each bounded subset of FT lies in the closed
hull of the canonical image of a bounded subset of D(T) x F. Asin Theorem
4 this implies the assertion.

Since every normed space is a (DF)-space, j is continuous in the
normed case. .

THEOREM 7. For the types z, =, and Blet ', F', and (FT) simultaneously
have the same type of topology from D(T) (or B), F, and FT, respectively.
Let T be open and suppose that N (T) and R(T) have topological complemenis
in B and F, respectively. Then jp- is continuous.

Proof. Let H and L be the topological complements of N(T) and
R(T), respectively. Since T is open {iT[T(U)+Vi]| Uedly, V,e¥}
is a neighborhood base of zero for F*. Therefore the mappings (T{pn~g) " 0
ouo(i7)~! and vo (47)~! are continuous if » and v are the projections from
F onto R(T) and I, respectively. So for a £-set N the sets K = (T|pmnr) 0
ouo (7)1 (N) and M = po(i¥) }(N) are &-sets with N <7 [T(K)-+M].
This implies (8). -

COROLLARY. jp 48 continuous for v, =, and p if T is a Fredholm ope-
rator and if E and F are Fréchet spaces or, more gmeml are spaces for
which the open mapping theorem applies.

‘We cannot expect that j7° is open if we take the topologies for B from
F because By is bijectively mapped onto D(T') and not onto E. To prove
the continuity of % we have to show: For each &-set J = Ep there exist
gsets K< B, M cF such that j7 (I'[i¥ (E°)UiT o T'(M")]) = (i) (I[E°U
UT'(M"]) = J°. In view of (4) we therefore have to show

9) F[K"UT'(M“)] < Lig()T.

To prove the openness of ¥ we accordingly have to show: For any twc)0
Esets K = D(T), M < F there exists a &set J = By such that lip(d)]
< I'[R VT (MY)] or

(10) lir()]° = B+ T (M°).
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THEOREM 8. For the types o, T, =, and B let (By) , By and B’ simultaneously
have the same type of topology from By, D(T) (or E), and F, respectively.
Then §T° 4s continuous.

Proof. Set K = ip(J) and M = Toip(J). Both are &-sets and (9)
follows from (8): I ([Toip(]))’) = [in ()N R(T). )

TEEOREM 9. Let (Hy) and E' have the topologies o((Bp), By) and
o(B', D(T)), respectively, and let F* have any topology. Then j*° is continuous.

Proof. Set J = i7" (K).

THEOREM 10. For the types =, =, and f let (By), B, and F' simul-
tameously have the same type of topology from En, E, and F, respectively.
Let T be open and suppose that N (T) and R(T) have topological comp-
lements in E and F, respectively. Then jT is open. )

Proof. Let H and L be the topologica.l complements of N(T) and

B(T), respectively. Since T is open, {iz'(U,+[T " (V)nH])| U, E”Z/N(T);
Ve QZF} is a nelghborhood of zero for E,. Therefore the mappings iz os
and i7'o (T)g) "o w are continuous if s is the projection from E to N (T)

- and u is the projection from F to R(T). Sod = I'(iz' [s(K)U(T|z) "ou(M)])
is & &set if K < B and M < F are &sets. Sinee T is open, we have
N(TY = R(T"), so B and F' are representable as direct sums: E' = R(T")
+H', F' = R(T)"+I°. Now it is easy to check that (10) is valid. Note
that K really may be taken from #, not only from D(T) here.

CoROLLARY. j7° is open for =, =, and § (from By, B, and B, respectively)
if T' is a Fredholm operator and B and T are Fréchet spaces or, more general,
are spaces for which the open mapping theorem applies.

3. Loustaunan [7] presents under very restrictive conditions a method
to reduce the study of state diagrams for closed operators to the study of
state diagrams for continuous operators. Such results follow from the facts
developped above:

The following lemma shows that the operators Toiy, T, and iToT
always have the same state.

Levwa. If one of the operators Toiq, T, and i¥o T has oneé of the following
properiies so do the others, too:

(i) ingectivity,

(ii) surjectivity,

(iii) openness,

(iv) denseness of the range in the range space.

Proof. Let R(ioT) be dense in FT. Then we show for y ¢ F and
V e%p: (y-+V)NR(T) # @. From the assumption follows ¥ [y + T(U)+ V]
NE(i*oT) + @ for U e %y; hence there exist e U, ve V, © e B such
that y+TPu+v = Tw; hence y+V = T(x—u)eR(T) and (y+ V)N
NE(T) + @. 80 B(T) is dense in F.
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The other implications are clear immediately.

Since ¥ i3 continuous and defined on all of F, we have (:ToT)'
=T'o(i") =T'oipojz. The state diagram for continuous operators
informs about the possible states of i¥oT and (iToT). T has the same
state as iToT, T’ has the same state as T oiy.. Hence in those cases in
which jp is & topological isomorphism the state diagram for continuous
operators is valid for T, too.

4. Chilana [2] and Forster [3] examine relatively continuous operators
for applications in pertubation theory. An operator 4: E—@G with
D(T) = D(A) is called relatively T-continuous if for any continuous semi-
norm 7 -on @ there exist continuous seminorms p on E and ¢ on F such
that for # € D(T)

r(dz) < plw) +q(L).

The operator B: G—F is called relatively T-co-continuous if for any two
neighborhoods of zero U < ¥, V. < F there exists a neighborhood of zero
W < @ such that

AWy T(O)+ V.

Using the diagram (2), we equivalently have: A is relatively T-continuous
if Aod, is continuous. B is relatively T-co-continuous if 7o B is eontinuous.
It we extend (2) accordingly we easily get the results from [2] and [3]
with the following thought:

/\

Er Fr
(Er ) ir)" iy

/\/\

Under suitable assumptions for the topologies of E, F, and G we have:
o B is continuous if and only if (i”o B) is continuous. Since ("o B) 0
= B'a(i") 0jp = B'oip, relative T-co-continuity of B and relative
T'-continuity of B’ are equivalent in those cases in which j is a topolo-
gical isomorphism.

If Acip is continuous so does (iy)cA’, since (ig) oA < (doig) .
Now (77) e (ip) 0 A" = %0 A’, so that relative T-continuity of 4 implies
relative T'-co-continuity of A’ in those cases in which (7)™ is continuous
and hence §7 is open.

(Fr)
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On local ergodic theorems for positive semigroups
; by
RYOTARO SATO (Sakado)

Abstract. For a one-parameter semigroup I' = {Tj; ¢> 0} of positive linear
operators on Iy of a o-finite measure space which is assumed to be strongly integrable
over every finite interval, the following local ergodio theorem is proved: Ifo<fel,
and [ifll; > 0 tmply supliTyflly > 0, then for any f e Iy the limii

£>0

1]

1

lim — f Tyfdt

bot0 b g

exists and is finte almost everywheré. Under the assumption that I' is locally bounded,

ie., sup [[Tfls < oo, a necessary and sufficient condition is given for the possibility
0<i<l

of completing I'to & strongly continuouns semigroup on [0, o). A local ergodic theorem
for the adjoint semigroup I'* = {T7; ¢ >0} of I" is also considered.

1. Tatroduction and theorems. Let (X, #,u) be a o-finite measure
space with positive measure g, and let L, (X) = L,(X,#, w), 1< p < oo,
denote the (complex) Banach spaces defined as usual with respest to
(X,#, p). All sets and functions introduced below are assumed to be
measurable; all relations are assumed to hold modulo sets of measure
zero. If A is a subset of X, then 1, is the indieator function of 4 and L, (4)
denotes the Banach space of all L,(X)-functions that vanish on X—A.
Algo, I (A) denotes the positive cone of L, (A) consisting of nonnegative
I, (A)-functions. A linear operator T on I, (X) is called positive it T (L3 (X))
< L} (X), and & contraction if | T, < 1. It is well known that if T is positive,
then [T}, < oo. The adjoint of T' is denoted by T

Let I' = {T,; ¢ > 0} be a one-parameter semigroup of positive linear
operators on L, (X), i.e., all the T; are positive linear operators on I, (X)
and T,Ty = T, forall ¢, t > 0. In this paper we assume that I"is strongly
integrable over every finite interval. This means that for each f e L,(X)
the vector-valued funetion ¢—T,f is integrable with respect to Lebesgue
measure on every finite interval. It then follows from Lemma VIIL.1.3 of
[4] that I" is strongly continuous on (0, oo), ie., for each feLl, (X) and
each s> 0 we have lim | T, f — T,.fl, = 0. Hence, by an approximation argu-

]

ment (¢f. [13], Section 4), we observe that for each f e I, (X) there exists
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