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Lévy’s probability measures on Banach spaces

by
K. URBANIK (Wroctaw)

Abstract. The purpose of this paper is to discuss limit laws of certain normed
sums of independent random variables with values in & real separable Banach space.
We characterize these limit laws in terms of their decomposability semigroups and
obtain a representation theorem for the characteristic functionals.

1. Notation and preliminaries. Let X denote a real separable Banach
gpace with the norm ||-|| and with the dual space X*. By <-,-> we shall
denote the dual pairing between X and X*. Further #(X) will denote
the algebra of continuous linear operators on X with the norm topology.
Given a subset F of 4(X), by Sem(F) we shall denote the closed multi-
plicative semigroup of operators spanned by ¥#. The unit and the zero
operators will be denoted by I and 0, respectively. By a probability
measure p on X we shall understand a countably additive non-negative

. set function u on the class of Borel subsets of X with the property that
w(X) =1. A sequence {u,} of probability measures on X is said to con-
verge to a probability measure u on X if for every bounded continuous
real-valued function f on X [ fdu,~> [ fdu. The characteristic functional

X X

of y is defined on X* by the formula
aly) = [P pido)  (y € X7).
X

Given an operator 4 from #(X) and a probability measure g on X, we
denote by Au the probability measure defined by the formula :Au(H)
N

= u(47'(B)) for all Borel subsets B of X. Evidently, du(y) = n(4%y)
(y € X*) and A, p,~>Au whenever 4,~A and u,—>pu. We call a probability
measure on X full if its éupport is not contained in any proper hyperplane
of X. Purther, by &, (# € X) we shall denote the probability measure
concentrated at the point .

In the study of limit probability distributions [14] the author in-
‘troduced the concept of decomposability semigroup Z(u) of linear oper-
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ators associated with the probability measure u. Namely, Z(u) consists
of all operators A from #(X) for which the equality

po= Apuky

holds for a eertain probability measure ». The asterisk denotes here the
convolution of measures. It is clear that 2(u) is a semigroup under multi-
plication of operators and 2(u) always containg the operators 0 and I.
Moreover, 2 (u) is closed in the weak™ operator topology. It has been
shown in [14], [15], [16] and [17] that some purely probabilistic
properties of u are equivalent with some algebraic and topological proper-
ties of its decomposability semigroup 2 (u). The main aim of this paper
is to characterize a class of limit probability distributions by a cer-
tain property of their decomposability semigroups. We note that A e
D(p) if and only if ‘
E(y) = w(dyply) (yeX®)

for a certain probability measure » on X,

By a projector P on X we mean an operator from #(X) with the
property that P* = P. The following propositions will be used repeatedly,
and for further reference we state they here.

PROPOSITION 1.1. Let P be a projector belonging to D(u). Then
I+P cP(u) and

# =Ppe(I—P)u.

For the proof see [17], Lemma 1.

PRrOPOSITION 1.2. Let Py, Py, ..., P, be commuting projectors belonging
to Z(u) with the property P;P; =0 for all indices i + j. Then for every
collection Ay, A,, ..., A, from D(u) satisfying the condition A;P; =P, A

n

(1.=1,2,...,n) we have Y P;A; e D(p).
=1
Proof. First we prove the formula

oy B =PuxPoux ... *Pny*'(I—Z’Pj),‘

j=1

by induetion with respect to n. The case n = 1 follows from Proposition
1.1. Suppose that for an index % (k< n) we have the formula

k
(1.2) #=PipxPop* ... xPyu *(I—- ZPf)”'
=1
By Proposition 1.1 we have also
B=Pyu *(1—Ppyi)pe.

k
Applying the operator I —jE P; to both sides of the lagt equation, we
=]
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get -
k41

k
(1= B} = Pryopun (I—JZ Py)u
j=r =1

which, by virtue of (1.2), gives formula (1.1) in the case # = k-+1. This
completes the proof of (1.1). Further, we have the decompositions

u=duxy;  (f=1,2,...,m).
Thus
Py =P; A;pxPivy (§=1,2,...,n)
and, by (1.1), .
(1.3) po=PiAuxPyAsux... xP A, uxv,
ghles;'e v = Pyp#Powy ... xPywy sl ——15;1’1);&. Put B :jganjAj. Then, by

By = BP,pxBPyus ... xBP,ux B(I— 3P| u
j=1
=P, A, uxPy A ux.. %P, A u
and, consequently, by (1.3)
u = Buxy
which completes the proof.

The following consequence of Numakura Theorem ([10], Theorem
3.1.1) will be widely exploited.

ProproSITION 1.3. Let A € #(X). If the monothetic semigroup Sem ({4})
is compact, then the cluster points of the sequence {A"} form a group %.
Moreover, ¢ is the minimal ideal of Sem({A}) and Sem({A}) contains
exactly one projector P, namely the wnit of 4.

2. Statement of the problem. A triangular collection of probability
measures g,; (j=1,2,...,k; 7% =1,2,...,n) on X is called uniformly
infinitesimal if for every neighborhood U of 0 in X

lim min g (U) =1.

n-c0 1<i<hy, ™
It is easy to check that the collection gy (=1,2,...,k; 7 =1,2,...)
is uniformly infinitesimal if and only if u,;, — 8, for each choice of j,,
1< < By :

In terms of random variables, the problem we study can be formu-
lated as follows: suppose that {£,} is a Sequence of independent X-valued
random variables with the probability distributions {u,} and assume
that {4,} and {z,} are sequences from %(X) and X, respectively such
that ’
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(%) 4, are invertible,
(#+) Sem ({4, 4;:n =1,2,...
the norm topology of #(X)),
(##%) the probability measures A, pu; (j =1,2,...,%; 8 =1,2,..)
form a uniformly infinitesimal collection and the distribution of

,m;m =1,2,..}) is compact (in

Aﬂj’ £]+mn
=1

converges to a probability measure u; what can be said about the limit
measure u? In the one-dimensional case this problem has been solved
by P. Lévy: the class of all limit measures in question coincides with
the class of all self-decomposable probabiliby measures ([8], p. 195, [9],
p. 319). Therefore the limit measures p will be called Lévy’s measures.
Thig paper is an outgrowth of my work [14] concerning Lévy’s measures
on finite-dimensional spaces. All that has been done so far for infinite-
dimensional spaces is to describe the limit measures when all operators
4, are multiples of the unit operator. In this case A. Kumar and
B. M Schreiber proved in [7] an analogue of the Lévy characterization
theorem and obtained a representation of the characteristic functional
for some Orlicz spaces.

We note that for full Lévy’s measures on finite-dimensional spaces
the compactness condition (%) can be omitted ([14], Proposition 3.3).
The same is true for non-degenerate measures on a Banach space when
A,, are multiples of I.

3. Norming sequences. We say that a sequence {4,} of operators
from #(X) with properties (=) and (%x) is a norming sequence corresponding
to a Lévy’s measure u if there exist sequences {u,} and {z,} of probability
measures on X with property (#s#x) and elements of X, respectively,
such that A, (uy*pa*. . % p,)* 6, converges to p.

ProrosiTION 3.1. For every norming sequence {4,} corresponding to
a full Lévy’s measure we have A,—>0.

Proof. Suppose that 4,,%d, —u where u is full and v, = py*py*
cokp, (n=1,2,..). By eondmon (xx), Bem({4,: n =1,2,...}) is
compact. Let A b‘e an arbitrary cluster point of the sequence {A,,,} and
A"-—>A where n,~>cc. Since for each n,n <

Ay vy ¥ 6,:”1}: Ay ke Ay (i ga® oo %y )% 6%;, and
Ay, p; =8, for each j when k->oo,
we have
(3.1) p=Ayxp (m=1,2,..).

icm
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Further, by condition (#x), Sem ({44 }: k =1,2,...}) is compact. Let
B be a cluster point of the sequence {AA;,:}. Passing, if necessary, to
a subsequence we may assume without loss of generality that AA;,-:—>B.
CQongequently,

(3.2) A =DBA.
By (3.1) we have the equation

(8.3) w=AA; (Ank'unk* 6%%

where u, = —Aa, . Since the sequence {4, } is conditionally compact

([11], Chapter ITI, Theorem 2.1), we may assume without loss of generality

Y px Oy

that 8,,~>6,. Then (3.3) implies
' U = Buxuxd,.
Consequently,
la@) = Bu@)l- @)l (yeX¥)

which yields |Bu(y)| = 1 in a neighborhood of 0 in X*. Thus By = &, for
a certain # € X ([b], Proposition 2.3), But thiz is possible for the full
measure g if B = 0 and & = 0. Now, by (3.2), we get 4 = 0 which shows
that 4,—0.

Lemva 3.1, Let n, < my (k=1,2,...) and n—>oc. Then for every
norming sequence {4,} corresponding to a Lévy’s measure u all cluster
points of the sequence {AmkA;kl} belong to D (u). :

Proof. Suppose that A,v,+0d, —u, where v, = pxugx..

(3.4) A, *5”"% =A

M "M

A p,. Then

-1
mk—Ank (Ank"’nk* 6“’1%)* Wy

Where wk is a probability measure. Let 4 be a cluster point of the sequence
{Am,A}. For simplicity of notation we may assume that {4, 4., 11 is
convergent to 4 ‘and, moreover, the sequence {w,} being condlmonally
compact ([11], Chapter ITI, Theorem 2.1) converges to a probability
measure o. Then (3.4) yields the equation

u=Auxw

which shows that 4 e 2(u).

Given a probability measure x on X, by o (u) we shall denote the
subset of 2 (u) consisting of all operators A with the property p = Auxd,
for a cerfain # e X. It is clear that o (u) is a closed subsemigroup of 2 (u)
and I e (u).

Levma 3.2. For every morming sequence {A,} corresponding to a full
Lévy’s measure pu

(3.5) o (u)nSem ({4, A7

is @ compact group containing all dlusier points of the sequence {4, a4

n=1,2,...,m;m=1,2,..1)
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Proof. The compactness of set (8.5) is evident. Suppose that 4 iy
a cluster point of the sequence {4, 4,'} and 4, ,,4-'—+A. From the
equation

_ -1
Ap1Ppga* aa:,,_,_] = Ap Ay (Ayryx 5%) # Ay 1 g1 ® Ou,,

where Vp = Pk lip¥ o ¥y and Uy, = mn+1_-An+1A;1a,’n we getl by virtue
of (#%x), y = Aux6,. Thus A /() and, consequently, 4 belongs to
set (3.5).

Suppose now that B is an element of set (3.5). Consider the momno-
thetic compact semigroup Sem({B}). By Proposition 1.3, the cluster
points of the sequence {B"} form a group . Moreover, ¢ is the minimal
ideal of Sem({B}) and Sem({B}) contains exacfly one idempotent P,
namely the unit of ¥. Hence it follows that # contains an element ¢
with the property

(8.6) BC = (B = P.

Of course P and € belong %o set (3.5). Thus p = Puxd, for' a certain
zeX. Since g is full and P is an idempotent; the last formula yields
PX = X. Thus P = I and, by (3.6), 0 = B! which completes the proof.

PROPOSITION 3.2. To every full Lévy’s measure there corresponds a norm-
ing sequence {A,} with the property

(3.7) Ay AT

Proof, Let {B,} be an arbitrary norming sequence corresponding
to a full Lévy’s measure g,

(3.8) B, v,* 6%——:’/1,

Y = % % ... %y, and the collection By, (j = 1,2, ...,m5n =1,2,...)
is uniformly infinitesimal. Put

@ = of (g)nSem({B,B;: n =1,2,...,m; m=1,2,...}).

By Lémma 3.2 ¢ is a compact group containing all cluster points of the
sequence ‘{B,,HB;I}. Consequently, we can choose 2 sequence {C,} of
elements of ¢ with the property

(3.9) 0;*~B,,,B;'>0.

Put 4, = B; and 4, = 0,0;-... 0, B, (n =2,3,...). Obviously, 4,
are invertible and Sem({4,4;': n =1,2,...,m; m =1, 2,...}) being
a closed subsemigroup of Sem({B,B;": n =1,2,...,m; m =1,2,...})
iz compact. Further, by the assumption, B,“ujﬂ—->60 for each choice of
Jny 1< Jn < m. Since the sequence {C,0;-...-0,} of elements of ¥ is
conditionally compact, the last relation yields 4, 44,08, Thus eondition
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(%) is fulfilled. Moreover, the conditional compactness of {C,0, ... C,}
implies the conditional compactness of the sequence {Aprx 8y}, where
uy, = 00y oo Oy @y (0= 2,3,...). By (3.8) each cluster point of
{4, 7,8, } I8 of the form Cu, where C is a cluster point of the sequence
{€,0y..."Cp}. But 0c¥ and, consequently, u = Ouxd, . Hence it
follows that we can choose elements v, in X in such a way that

A x 0y —p.

Thus {4,} i a norming sequence corresponding to u.
To prove condition (3.7) we observe that the norms of elements of
the compact set ¢ are bounded in common, say by a constant b. Thus

1, A7 — I = 10,0 -+ -On(Bpn By = 0 01 02 .. O
< b2 "Bn+1B';1— 0;1“
which, by (3.9), implies (3.7). Proposition 3.2 is thus proved.

4. Decomposability semigroups of full Lévy’s measures. In this section
we shall give a characterization of full Lévy’s measures on X in terms
of their decomposability semigroups. Lef u be & full Lévy’s measure.
By Proposition 3.2 we choose & norming sequence {4,} eorresponding
to u with the property A, A>T We fix this norming sequence for
the remainder of this section and for simplicity of notation we put

& = D(u)nSem ({4,451 0 =1,2,...,m; m = 1,2,..}).

Let P be a projector belonging to & and
Fp =Fn{d: AP =PA = A}.

Tt iy clear that &p is a compact subsemigroup of 2(u). Further, by 9p
we denote the subset of &p consisting of those operators A for which
Py = Auré, for a certain s e X.

Lmva 4.1, 9p is a compadt group with the wnit P.

Proof. It is easy to check that ¥p is a cloged subsemigroup of ¥p
which implies the compactness of ¥p. By the definition of %p the pro-
jector P is the unit of 9p. Let 4 € ¥p. Then the monothetic semigroup
Sem ({4}) is compact and, by Proposition 1.3 contains a projector @ and
an operator B with the preperty

(4.1) AB =BA =Q.

Of course, PQ = QP = @ and Pu = Qux4, for an élement 2 € X. Since
u is full, the lagt formula yields PX = @X. Consequently, P =@ and,
in view of (4.1), ¥p is & group.

Tevua 4.2. If A ¢ &p and P eSem({4}), then A € 9p.
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Proof. Let A*»—P. Of course, without loss of generality we may
agsume that k, > 2 and the sequence {A*~1} is convergent to an operator B.
Then we have AB = P and for some probabiliby measures » and 1

(4.2)
(4.3)

because 4, B € 9(u). From (4.3) we get Ay = Pux A Hence and from
(4.2) we obtain the equation u = Puxdixv. Consequently, Pu = Pux
* AlxPy or in terms of the charaeteristic functionals

b= Apxy,
u = Buxi,

~ AT
Pu(y) =Pup) ALy Pr(y) (yeX").

N
Thus |Py(y)| = 1 in a neighborhood of 0 in X* which implies Py = &, for

a certain # e X ([5], Proposition 2.3). Now taking into account (4.2)

we have Pu = Aux 8, which completes the proof.

Levma 4.3. For every non-zero projector P belonging to & the semigroup

" &p contains a one-parameter semigroup PexptV (>0, V E%’(X)) with

PV = VP = V. Moreover, ¥ contains o projector @ with the properties
P£Q, QV = VQ and i )

Iim(P—Q)exptV = 0.
o0

Proof. By Lemma 4.1 the group %p is compact. Put
Gy = min {|P —HA, A7'P||: H € 9p}.
Obviously,
(4.4) Gy =0 (n=1,2,..),
and, by Proposition 3.1,

(4.5) lima,,, = (Pl>1 (n=1,2,..).

Since the semigroup & is compact, all its elements have the norm bounded
in common by a constant b. Consequently, for m > n
Gy 1 < MIN{|P — HA, AP+ |H (A A7 — 1) A,, AT P): H € 95)
< Gom +b2 “Am+1A1—1;1"'I" '
which implies for m > n,

(4.6) Hmsup (ay,,,me1— @
M—>00

nmm) =0.

Given a number ¢ satisfying the eondition 0 < ¢< 1, we can find, by
virtwe of (4.4) and (4.5), an index m,>« sueh that Gn,m, < ¢ and

icm
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Gy ¢ (0 =1,2,..). From (4.6) it follows that a,, —c. By the
conditional compactness of the sequence {4,,, A"} and the compactness
of @p, we can choose & cluster point 4, of {4, A7’} and D,e%p such

that
|P—D,A,P|| = ¢ = min{|P—CA.P|: Ce%}.

By Lemma 3.1, 4,e&. Consequently, setting B, = D AP we have
B,e¥p and

(4.7) |P—B,|| = ¢ = min{||[P—0B,|: € %5}
which yields

(4.8) B e ¥p.

Put

b

e = min{|P—CBy||: O e gp}.
By (4.7), we have
(4:9) bl,c = 0.

Consider the semigroup Sem({B,}). By Proposition 1.3 if contains a pro-
jector P,. Of course,

(4.10) limgupb,,, > min {|P — OF,||: Ce%}.

n—»o0

Since P, € #p, P—P, is also a projector and, by Lemma 4.2, P, # P.
Thus

(4.11)
Put

1P —P=1.

& = int{|P—CP,|: C €%, 0< 0<1}.

‘We shall prove that & > 0. Contrary o this let us assume that ¢ = 0.
Then, by the compactness of #p and ¥p, we can find an element D of
%, and 2 cluster point B of {P,: 0 < e<1} with the property P = DE.
Since R is also a projector and B € ¥p, we have R= ITR = DR =_P.
Consequently, P is a cluster point of {P,: 0 <6< 1} which contradicts
‘(4.11). Thus ¢ > 0 and, by (4.10),

(4.12) limsupb,, .= o> 0

n=—>r0
for every ¢ (0 < o< 1). Further, taking into account that all elements
of the ecompact semigroup & have norm bounded by a constant b, we
have, in view of (4.7),

busr,e < Min {|[P — OB} + | 0(By —Br)li: O 9p} <buot be.
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Oonsequently, for any sequence {m,} and ¢,—0 we obtain

(413) HI0SUD (B, 33,0~ Do) = 0

N—>00
Let 0,—0. Given a number d satisfying the condition 0 < d < a4, we can
find, by virtue of (4.9) and (4.12), an integer m, such that b,,, o < @
and by, 4,0, > 4. From (4.13) it follows that by, .,—d. The sequence
{Bom} of elements of &p is conditionally compact. Let B, be its cluster
pomt Then

(4:14) min{|P—CE,l: Ce %} =4 (0<d<a)
and, consequently,
(4.15) Eie9% (0<d<a).

The set {Hz: 0< d< o} is also conditionally compact. Let E, be its
cluster point when d—0. Then, by (4.14) and the compactness of ¥p, P
= 0, B, for a certain element O, of the group %p. Since E, € #p, this
implies E, € ¥p. Consequently, by Proposition 1.3, there exists a positive
integer ¢ such that

1P — Bg) < %.
Taking a positive number d, with the property
18§ — Byl < &,
we put
(4.16) W = Ef .
Then
(4.17) IP—Wi< %
and, by the definition of the operators H;,
{4.18) Bp—->W

where 7,~oc0. From (4.7) and (4.17) it follows that the operators B, and
- W can be represented in an exponential form

(4.19) B,, = PexpU,, W =PexpV
where U,, Ve#(X), PV =VP =V,PU,=U,P=1,,
{4.20) WV =T7W,

and, by (4.18), .

(4.21) 7, U~V

Let ¢ be an arbitrary positive real number. Then, by (4.19) and (4.21),
BI1»PexptV,

icm
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where square brackets denote the integral part. Since B, %p, we infer
that the onc-parameter semigroup PexpiV (i 0) is contained in &p.
Consider the semigroup Sem ({W}). By Proposition 1.3, it contains a pro-
jector @. By (4.20), @ and V commute with one another. Moreover, by
(4.16) @ e Sem ({E,}). By (4.18) and Lemma 4.2, we have the inequality
P =+ Q. Obviously, @ €& and the set {(P—@)exptV: 1> 0} is conditio-
nally compact. Let H be its cluster point when t»oo Then for a se-
quence {t,} tending to oo we have

(4.22) (P—Q)expt, V—>H.

Pagsing to a subsequence, if necessary, we may assume without loss of
generality that both sequences {Pexp[f,]1V} and {Pexp(?,—[f,]) V} are
convergent to H, and H,, respectively. By (4.19) H, is a cluster point
of the sequence {W"}. Consequently, QH, = H,Q = H,. Thus (P—Q)H,
= 0, because H, € ¥p. Furthermore, by (4.22), H = (P—Q)H,H, which
implies H = 0. Thus we have proved that

lm(P —Q)exptV =0
t—»00

which completes the proof of the lemma.
LEMMA 4.4. Suppose that u is & probability measure on X and 2(u)
contains & one-parameter semigroup exptV (¢ > 0) and limexptV = 0. Then
{—00

for every positive integer m there emisis a jproba,bzhty measure w,, such that
for every t >0 expitV e @(ym) and p = ™, where the power is taken in
the sense of convolution.
Proof. We use arguments similar to that given by A. Kumar and
B. M. Schreiber in [7] (Theorem 2.6). Put T, = expuV (u>0). Then
p=T,uxmw,

and, by iteration,

PSR SR SR VS AE Y N
Setting
’ Vo = T RTINS R Y/ T
we have p = #, ,* T, p. By the assumption T',,~0 which yields T, y—> ;.
Consequently,
(4.22) T Ve
Given a positive integer m, we pub

}‘n,u = "u*TmuVu*TZmﬁ'”u* e *T(n—l)mu”u'
Then
(4.23)

An,u*Tuln,u*TZu;*n,u* . *-T(-m—l)u'ln,u = VYnm,u

6 — Studia Mathematica LXITI,3
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and the right-hand side of the last equation’ converges to u as m—oo.
Consequently, the sequence {i,,} is shift compact, i.e. there exists
a sequence {z,} of elements of X such that {4, .,* 6%} is conditionally
compact ([11], Chapter ILI, Theorem 2.2). Let A, be a cluster point of
{An,u% 6, }. Then for a subsequence 7y < 7, < ...

(424) gpyu* Oy Ay

where y, =, . From (4.22) and (4.23) we get the formula

(4.25) A Ty Ak Loy do oo Ly gy Ay 8, =
for a-certain element z, of X. Now let  be an arbitrary positive integer.

Then for every % we have the formula

(4-26) 1’1&*1":7111""1;* . *T(r—l)myvu* Trmuln,

= }*ﬂ,u*Tnmu"’u*T(n-H)mu Py¥ eee *T(n+r~—l)mu"’u‘

Clearly, the sequence

{Tnmu"’u*T(n+l)mu”u* e *T(n-i—r—l)'mu”u}

converges to d, as n —oo. Consequently, by (4.24), the right-hand side of
(4.26) is shift compact. Thus the ‘se.quence

(4 27) ‘{"’u*Tmu"’u *-T(r-l]mu u}

is also shl.ft compaet ([11], Chapter III ‘Theorem 2,2). Hence and from
(4.24) and (4.26) we get, a8 n = n;—>o0,

(4.28) Au = Trmulu* Oru

where the probability measure g, , “is a cluster point of tramslates of
(4.27). Let {u;} be a sequence of positive numbers converging to 0. By
(4.25) {4} is $hift compact. Passing to a subsequence, if necessary, we
may assume that for a sequence {#,} of elements of X the sequence
{Au, *6%} converges to a probability measure 4. Moreover, by (4.25) we
hawe XM, = ufor a certain x e X, Further, let ¢ be a positive number
and 7, = [t/mu;]. Then r,mu,—1t. Set # =1, and u = 4, into (4.28).
‘We can argue as above to conclude that there is probability measure
¢; such that

A =TAxgq.
Setting p,, = A% d,,, we get the assertion of the lemma.

The relation g = gy means that u is infinitely divisible. Since for
every y e X* p(ty)(—oo< < o) is the characteristic funetion of an
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infinitely divisible probability measure on the real line ([9], p
have the following corollary,

COROLLARY 4.1. If Z(u

p. 297) we

) contains a one-parameter semigroup exptV

(t>0) and limexptV =0, the'n, #(y) # 0 for every ye X*.

i—>00

COROLLARY 4.2. Suppose that for every ¢ > 0 we have a decomposition

(4.29) o= exptV‘u*vt

where limexptV = 0. Then v, is infinitely divisible.

{—>00
Proof. The probability measure u fulﬁls the conditions of Lemma
4.4. Consequently, for every positive integer m there exists a probability
measure u,, such that ui™ = u and 2(u,,) contains all operators exptV
(¢t = 0). Thus u, can be written in the form

(4‘30) B = eXptVHm*"m,“
where »,,; is a probability measure. By Corollary 4.1, 4(y) # 0 for all
y e X*. Consequently, 4, (y) = 0 for all y e X*. Since j,,(y)™ = fi(y), we
have, by virtue of (4.29) and (4.30), 'f:m,t ()™ = v,(y) which implies
Thus » is infinitely divisible.

Now we are ready to prove a chmaetenza,tlon theorem for full Lévy’s
measures on X.

THEOREM 4.1. A full probability measure on a real separable Banach
space X is a Lévy’s measure if and only if ils decomposability semigroup
contaims a one-parameter semigroup exptV (1= 0) where V € B(X) and

*1m
Yt = Vmte

limexptV = 0.

i—00

- Proof. We start by proving the necessity of the assertion. Suppose
that u is a full Lévy’s measure. By Proposition 3.2 we choose a norming
sequence {4,} corresponding to u with the property A4,.,A4;'—I. By
Lemma 3.1, I e%. By consecutive application of Lemma 4.3 we geb
a gystem of projectors P, =I,P,,...,P, and a system of operators
Vi, Vg, ..., V, with the following properties: .EPPj containg the one-para-
meter semigroup PyexptV;y, (62 0), PV = Vi By=V;4, Py € 8p
P Vi = V0P, Py Py andtlim(Pj—Pj+,)expth+1 =0{(j=0,1,

..,7—1). Moreover, we may assume that P, = 0 because in the opposite
case we would have a sequence {P,} of different commuting projectors
belonging t0 & and, consequently, satistying the inequality |[P, — P, [l > 1
(n.#m; n,m =1,2,...) which would contradict the compactness of &.
Further, the condition P;_, €Fp, yields P,P;, , =P; ,P; = P;. Thus, by
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Proposition 1.1, the projector @Q; = P; ;, —P; = P;_,(I—P;) belongs to
D(u). Moreover, ifQj =1, Q;V; = V;Q;, the one-parameter semigroup
Q;exptV; (1= 0) 7i?eontained in 2(u) and lim i Q;exptV; = 0. Applying
Proposition 1.2, we infer that ZT' QjexptV?; 5(1,4) Setting V =é Q;V;,
we have éxptV =.2: Q;exptV; g}lﬂch completes the proof of the n]e=cleﬁsity.

1= .
To prove the sufficiency let us assume that 2(u) contains exptV for
t>0 and ‘

limexptV = 0.
1—+00

Setting B, = exp (1/2)V (n =1,2,...), we have the formula

(4.31) u =B uxl,.

By Corollary 4.1, z(y) % 0 for all y e X~ Consequently,
: & (y)

(4.32) nly) =24
" #(BrY)

From (4.31) and the relation B,u—>pu it follows that the sequence {1,}
is condjtiona;]ly compact ([11], Chapter IIT, Theorem 2.1). Since, by
(4.32), 4,(y)—~1, we infer that 1,—>8,. Put

n
1
4, = expg—j—V w=1,2,..))
and
(4.33) o= AT g,
It is easy to check that .
{exptV: > 0}U {0} = Sem ({4, 4;%: n =1,9, ceymy mo=1,2,..}).

Hence it follows that the sequence {4,} fulfils the conditions () and ().

We observe that 4,0 and, consequently, A, u;,—d, whenever the

sequence {j,} is bounded. Tf j,—oo and j, <n then, by (4.33) Ay =

A;,IA,T“‘Z," {j,=2) and the relation An,u,n—w‘, is a consequence of '%he

. conditional ompactness of the sequence 4,45 ' and the relation A,— 6,
Consequently, the condition (x*x) is also fulfilled. Setbing v, = p % py*. ..
- *fi,, We have, in view of (4.32) and (4.33)

w =A7N (n=2,3,..).

/\ n
Auna(y) = [ [ s 429) = iu(y)

=1

and, consequently, 4,v, = u which shows that # is a Lévy’s measuré.
The theorem is thus proved. '
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5. A representation of Lévy’s measures. An analogue of the Lévy—
Khinchine representation of infinitely divisible probability measures on
Banach spaces and even on more general algebraic structures has been
studied by A. Tortrat in [12] and [13] and by E. Dettweiler in [3]. Recall
that for any bounded non-negative Borel measure F on X vanishing
at 0, the Poisson measure ¢(F) is defined by '

o(F) = e"“X’Z%F“,

k=0

where F*® = §,. The measure F is called a Poisson ewponent of e(F).
Let M be.a not necessarily bounded Borel measure on X vanishing at 0.
If there exists a representation M = supF,, where ¥, are bounded and
the sequence {¢(F,)} of associated Poisson measures is shift compact,
then each cluster point of the sequence {e(F,)+ 3.} (@, € X) is called
a generalized Poisson measure and denoted by &(M). Clearly, §(M) is
uniquely determined up to a translation, i.e. for two cluster points, say
paand p, of {e(F,)+ 6, } and {¢(F,)+ 4, }, respectively, we have u, = p,* 5,
for a cerfain 2 € X. Further, the measure M is called a generalized Poisson,
exponent of é(M). Clearly, M has a finite mass outside every neighborhood
of 0 in X. Let MM (X) denote the set of all generalized Poisson exponents
on X. It is easy to check that M(X) is & cone, i.e. for each pair ¢, ¢, of
non-negative real numbers and each pair M, M, from M(X) we have
oy M, 40, M, e M(X). Moreover, for any operator 4 e #(X) and
M eM(X) we have AM eM(X) and 46(M) = é(AM). Further, if M e (X)
and M > N >0, then N eM(X) and M — N eM(X).

By a Gaussian measure on X we mean such a probability measure
o on X that for every y € X* the induced measure yo on the real line is
Gaussian. We refer to X. Fernique [4], J. Kuelbs [6], and N. N. Vakhania
[18] for discussions of Gaussian measures on Banach spaces. In this
paper we shall consider symmetric Gaussian measures only. For such
measures the characteristic functional is of the form

0(y) = exp(—3<y, Ry)) (yeX")

where R is the covariance operator, i.e. a compact operator from X*
into X with the properties: {yy, Rys) = {¥., Ry,) for all y,,y, e X*
(symmetry) and <y, Ry) > 0 (non-negativity) ([18], p. 136, [2]). By #(X)
we shall denote the set of all covariance operators of Gaussian measures
on X. If R, is a symmetric non-negative operator from X* into X and
ER,— R, is non-negative for a certain operator E,c#Z(X), then also
R, e #(X) ([18], p. 151). Clearly, if R is the covariance operator of ¢ and
A € B(X), then ARA™ is the covariance operator of 4o.
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A. Tortrat established in [12], p. 311 (see also [3], p 22) the following
representation of infinitely divisible laws.

PROPOSITION 5.1. A probability measure u on X is infinitely divisible
if and only if .
(5:1)

where o is a symmetric Gaussion measure and M eIM(X). Moreover, the
decomposition (5.1) is unique. .

LimnmA 5.1, Suppose that p = ox & (M) where o is a symmetric Gaussian
measure with the covariance operator B and M eMM(X). If A € D(u) and
u = Auxv, where v is infinitely divisible, then A € D(0) and A e 2 (¢(M)).
Moreover, R — ARA* € #(X) and M — AM eM(X).

Proof. By Proposition 5.1 the measure y has the representation
v = g, #%é(M,), where g, is a symmetric Gaussian nieasure with the cov:
ariance operator R, and M, e(X). Hence it follows that u = Ao*g *
#&(AM +M,). Consequently, by the uniqueness of Tortrat representation,
o =Agxp; and M = AM+4M,, which yields é(M) = Aé(M)«é&(M,) and
R = ARA™ + R,. The assertion of the lemma is a direct consequence
of these equations. :

" THEOREM 5.1. Let V e Q(X) and hmexptV =0, Then D(u) contains

>0
the one-parameter semigroup . exptV (t>0) if and. only if u = oxé(M),
where ¢ is a symmetric Goussian measure with the covariance operator R
and M I(X) such that the operator VR-RV*.is non-positive, i.e.

Y, (FR+RVYy><0 for all yeX*
and M > (exptV) M for all

Proef.. Suppose that Z(u) contains the semigroup exptV (¢ 0).
Then, by Lemma 4.4, x is infinitely divisible. Moreover, by Corollary
4.2, for each >0 u = exptVu*v;, where v is also infinitely divisible.
Thus, by Proposition 5.1 and Lemma 5.1, x4 has arepresentation u = ox6( M),
where p is a symmetric Gaussian measure with the covariance operator
R and M eM(X). Moreover, for each t>0

R—(exptV)R(exptV*) and M —(exptV) i

belong “to #(X) and MM(X), respectively. In particular, the measure
M - (exptV)M is non-negative. The operator E— (exptV)R (exptV*) that
i§ " covariance operator iz non-negative, too. Taking into account the
expansion in & neighborhood of 0

R—(exptV)R(exptV*) = —i(VR+RV* +o(t),

we infer that the operator VR-+RV* is non-positive ‘which completes
the proof of the necessity.

u = ox&(M),

1= 0.
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To prove the sufficiency let us assume that M eM(X), M, =
M—(exptV)M >0, Re(X) and VR+RV* is non-positive. Clearly
M, eM(X) and .

(5.2) &(M) = expiVeé(M)=é(My).
Given 4 e X*, we put o
1) = <?/, (R_

By a simple calculation we get the formula

(exptV)R(exptV*))y) .

P .
—d?fu(t) = —exptV*y, (VR+RV") exptV*y)

d .
which implies. the inequality —_ f,,(t) > 0. Taking into account the initial

condition f,(0) =0, we get the mequahty fy(8) =0 for all £>>0 and all
g € X*. Thus the operator R, = (exptV)R(exptV*) is non-negative.
Since R~ R, is also non- nega,twe, we have R, e #(X). Let ¢ and g, be
symmetric Gaussian meagures with the covariance operators B and Ry,
respectively. We may assume that

(5.3) ¢ = expiVoxg.

Sotting x4 — o#&(M), we have, in view of (5.2) and (5.3),

4= exptVusy  (120),
where v, = g*é(M,;). Thus P(u) contains all operators exptV ( 0)
which completes the proof of the theorem.

Our next aim is to give a representation of the characteristic functional
for probability measures whose decomposability semigroups contain
a one-parameter semigroup exptV (¢ > 0) where V e #(X) and limexptV

>0
= 0. We fix this semigroup {exp¢V} for the remainder of this section
and we pub for simplicity of notation T, = exptV (—oo <t << oo). It is
easy to check that |7, < ae~(t = 0) for some positive constants «” and b.
This fact implies the following lemma. ’ o
LeEMuA 5.2. Let f be a complex-valued Borel measurable function on
X and |f(@)| < g(lzl) (e X) for a real-valued fu'n,ctwn g samfymg the

condition f gloe™™) @t << oo for every positive aw,mbe'r c. Then f J(T) dt

8 finite for every @€ X.
A continuous real-valued function @ on X is said to be a weight
Sfunction on X if the following conditions are fulfilled:
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(a) @(0) =0 and P(x) >0 for all z # 0,

(b) @ (z) converges to a positive limit as ||lz{—o0,

(c) & (2) < ci]m[]“ for a certain positive constant ¢ and all zeX,
fQ) z) M (dx) < oo for every M e (X),

(e) lf M, eM(X), &
a certain z e X.

The weight functions will play a crucial role in our considerations.
Tt is well known that if X is a Hilbert space, then as a weight function
on X we can take @(x) = |lz|?/(1+|zl®) ([11], Chapter VI, Theorem
4.10). In this case condition (e) can be strengthened. Namely, M e (X)
. . Jlz|f®
if and only if Xf T M (do) < oo and M ({0}) = 0.

PRrOPOSITION 5.2. For every X there ewists a weight function on X.

Proof. We note that the space X* is separable in the X-topology.
For an arbitrary sequence {y,} dense in the unit ball of X* in the X-to-
pology and for all # in the unit ball of X we put

<ym m>”
27lv

&M, )—>y and f@ M, (dz)—>0, then p = ¢, for

@) =

T om=l

Olearly, () < |lo]* and () = 0 if and only if ®# = 0. Moreover,

(8.3) Yy 2D < 2%p(2)

for all @ with o] < 1. Set O(z) = p(s) it |2]< 1 and B(z) = ¢ ({;—”) %
1 1

XM+ ———"m—" otherwise. It is obvious that @& fulfils conditions: (a),

(b) and (e). In order to prove condition (d) assume that M e9i(X). Then
(5.4) GNP = exp f (cos<y, x> —1) M (dw)

(see [3], p- 25). It is well known that the unit ball in X* is compact in
the  X-topology. Sinece the characteristic functional is comtinuous in the

X-topology of X* and does not vanish for infinitely divisible probability
measures, we infer, by (5.4), that the supremum

s = sup{ [ (1—cos<y, 2)) M(do): Jy) <1}
X

ig finite. From the elementary inequality 1--cost
‘where ¢, is 2 positive constant we get

[ <, @ M(dor) < s

LKL

ol (1<)

(n=1,2,..).
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f D(w) M(dw) < oc. Sinece M has a finite mass outside
every nelghborhood of 0 in X and & is bounded, the integral f D (w) M (dw)

Consequently,

is finite. Condition (d) iz thus fulfilled. Suppose now that M, eM(X),
&(M,)—>p and jd)(m) M, (dz)—-0. By (5.3) we have the mequahty
<2%d(@) if

$Ye, @ llell <1

and

a2 . .
{yyy ) = ||wn“<yk, ”w”> <2"+’¢(”w“)<2’“+ﬁ¢(w) i 1< |ol<2

On the other hand, @(¢) > % if |z > 2. Taking into account the in-
equality 1 —cost << 6,12 for all ¢ with a certain positive constant ¢,, we get
finally the inequality ‘

1—c08 <Yy, # < 0, P (w)

for all # € X, a;, being a positive constant. Hence and from formula (5.4)
it follows that |&(M,)(yx)l -1 as n—>oo (k =1,2,...). Consequently,
|2(y,)] =1, and, by the density of {y,} in the unit ball of X* in the
X-topology, |z(y)] = 1 if ly|| < 1. But this fact yields g = ¢, for a certain
»eX ([6], Proposition 2.3). Thus condition (e) is also satisfied which
completes the proof.
Given a subset B of X, we put 7(H) = {Ti: v e B, —oo <1< oo},
It is clear that for any compact set F Wlth the property 0 ¢ ¥ and for
any pair 7, <<, of positive numbers the inequality r,<|T, z,|<7e
(@, € B) implies the boundedness of the sequence {t,}. This simple fact
yields the following lemma.
LeMumA 5.3. Let E be a compact subset of X and 0 ¢ B. Then for every
Ppair ¥, < 1, of positive numbers the set {w: 7, < |lol| < ri} 0z (B) i3 compact.
. LEMMA 5.4. For every M e (X)) there exists a sequence {E,} of compact
subsets of X such that 0 ¢ B, (n =1,2,...),v(B,)n7(E,) =B if n #m

L
) and M = D' M,, where M, is the restriction of M to

n=1

(n,m =1,2,...
v (B,).
Proof. Let @ be a weight function on X. By condition (d), the meagure
N(B) = [ &(») M(dw) is finite and, consequently, tight on X ([11],
B

Chapter II, Section 3). Consequently, there exists a compact subset
B, of X such that N(X\F;)< 1. Since N({0}) = 0, we may assume that
0¢B,. Of cowse, ¥ (X\v(},)) < 1.By Lemma 5.3, the set X\ (z(H,)u

U{O}) is open and, .consequently, the measure ‘N restricted to this set
is tight. We can now find a compact subset H, containing in X\z(B,)
such that 0 ¢ B, and N(X\ (v(By)VE, )< §. Clearly, v(By) nv(By) = &
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and N (X\(v(B) V(B ) < 3. We proceed in this manner step by step
and finally we obfain & sequence {H,} of compact subsets of X {0} such
that (E,)nt(E,) =@ whenever n 7 m and

N(X\er

k=1

1
(5.5) Ek)) <

Let M, be the restriction of M to r( ) and Q, = M — 2 M,. Then

@, eT(X) and f b () Q,(dw) =N (X\U 7(Hy)} which 1mp11es, by virtue

of (5.5), [ B(x) Qn(dm)—>0 Moreover, E(M = &(Q,) *6(2 M,). From this
4

we conclude that the sequence {&(@,)} is shift compact ([11], Chapter IIT,
Theorem 2.2). Since the generalized Poisson measures ¢(@,) are determined
up to a translation, we may assume without loss of generality that the
sequence {6(Q,)} is convergent to a probability measure, say u. By con-

dition (e) u is concentrated at a single point which shows that M = > M.
The lemma is thus proved. . - n=l
Suppose that M eM(X) and M = Ty M for all £> 0, It is clear that
for -every Tj-invariant set U (—oco<<t<C o) the restriction M to U,
denoted by M| U, belongs to M(X) and M|U = T,(M|U) for all ¢>0.
Consequently, from.Lemma 5.4 we get the following corollary.

COROLLARY 5.1. Let M eﬂR(X and M =T, M for all t>=0. Then
there exists. a decomposition M = 2 M,,, where M eMX), M,>TM,

n=1
for all 1> 0, M,, are concentrated on disjoint sets ©(X,), 0 ¢ B, and B, are

compact.’

This corollary reduces our problem of examining measures M e N (X)
with the property M > T, M (¢ > 0) to the case of measures concentrated
on v{H) where ¥ is compact and 0 ¢ E. We denote this class of measures
by 8z. Our method of examining consists in finding a suitable compacti-
fication of 7(¥) and determining the exitreme points of a certain convex
set formed by probability measures on this compactification.

Let [ —oco, o] be the unsual compactification of the real line -and
E be a compact subset of X such that 0 ¢ B. Then B X [ — oo, oo] endowed
with the product topology becomes a compact space. We define an equiv-
alence relation in B x[—oo, co] as follows: (@, 1)~(2,,%,) where
%y, %, € B and #,,1, € [— o0, oo] if and only if there exists a real number
¢ such that Ty, = @, and {, = {;,—s. In order to prove the continuity
of this equivalence relahﬁn, suppose tha:b (@5 1) ~ (@, 1) (0 =1,2,...)
and the sequences {(s,,1,)} and {(«,,%,)} converge to (x,t) and (),
respec‘mvely Then for some real numbers s, we have T nln = x, and
i, =t,—s,. By the compactness of F and the assumption 0 ¢ B we infer
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that the sequence {s,} is bounded. Clearly, for any its cluster point s we
have T4’ = and ¢ =t—s which implies (#,%)~(2", ). Thus ~is
continuous. Hence it follows that the quotient space B x [ —oco, o]/~
denoted by #(H) is compact ([1], p. 97). The element of 7(H), i.e. the
coset containing (#,1) will be denoted by [, t]. Bach element of z(B)
is of the form T,x, where # ¢ B and # is & real number. In general this
representation is not unique. Bub T} #; = Ty,x, if and only it (my, %)~
~(y, t5). Thus the mapping T,z—[z, ] is an embedding of z(E) into
a dense subset of ¥ (H). In other words, 7 (F) is a compactification of ().
In what follows we shall identify elements T,» of v(F) and corresponding
elements [#, 1] of 7 (E). Further, we extend the functions 7, (— oo < § << o)
and ||| from (E) onto 7(E) by continuity, i.e. we put T,[z, —oo]
= [#, —oo], Tg[», o] = [, o], |[2, —°°]“ = o0, [[[#, co]l] =0 for 43']-1
¢ € B. Then we have the formula
T.[w,t] = [, t+5]. .
Let @ be a weight function on X. By Lemma 5.3 and condition (b),
@ is bounded from below on every set {: |z]| > r}nz(H) with r> 0.
Fnrther, @ can be extended to z(E) by assuming &([x, co]) = 0 and
D ([, —oo]) = lim &(z). Let N be a finite Borel measure on z(H). Put

Jlzll—+o0
f du)
D(u

for every subset U of z(E) with the property inf{|ul: e U} > 0. This
formula defines a o-finite measure My on {u: [l > 0}nT(H). Let Hy
denote the class of all finite measures N on #(#) for which the corre-
sponding measures M, fulfil the ~condition My > T;My for all i3> 0.
It is easy to check that the set $y is closed and convex. Let us consider
meagures M from 8z as measures on 7(E). Set '

(5;6)

(5.7) : NM(U) = | @(w) M(du)
A /

for all Borel subsets U of z(F). It is evident that M €8y if and only if
N* e$y. By I; we denote the subset of §; consisting of probability
measures. Clearly, 3 is couvex and compact. We shall now find all its

extreme points.
. o0
By Lemma 5.2 and condition (¢) [ &(T,#) ds << oo for every real
[

number ¢ and # € X. For every 2z € v(H) we put

(5.8) Ny (U) = C(Z)f 1g(Te2) B(Ty2) dt,

o«
where 07} (2) = [ & (T,2)dt and 1U denotes the indicator of the subset
0

*
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U of z(B). Moreover, N, are probability measures on z(F) concentrated
on z({w}) and for every subset U of z(E) with the property inf{ju|:
we U} > 0 and 2 = T,z we obtain, after some computation,

My, (U) = 0(z){a: [#,0]e U, a1t}
and
My (U) = C(2)l{a: [#,0]e U, a>t+s},

where || denotes the Lebesgue measure of a subset W of the real line.
Hence we conclude that M. N, = T.M. v, (8>0) and, -consequently,
N, ey (zc7(H). We extend the definition of N, to zez(B)\v(H)
by assuming N, = §,. In this case we have also N, ¢ 3. Moreover, the
mapping 2—>N, from z(F) into Iz is one-to-one and continuous. Con-
sequently, it is a homeomorphism between z(F) -and {N,: z € 7 (H)}.

LeMMA 5.5. The set {N,: z € 7(E)} is identical with the set of extreme
points of Ig. ‘

Proof. For any Borel subset B, of F the sets v(H,), {[z, —oo]:
zeB} and {[#, oc]: # € B} are invariant under all transformations
T, (—o0< 8$< o). Hence if N € §j;, the restriction of ¥ to any of these
sets is again in $p. This implies that every extreme point of I must
. be concentrated on orbits of elements of z(H), i.e.-on one of the following

sets T {w}), {[#, —oco]} and {[#, oo]} where z € E. Obviously, all measures

"N, (2 e7(B)\v(B)) are extreme points of Jy. It remains to determine
extreme points concentrated on sets v({z}) (= € E).

Let ¥ be an arbitrary probability measure concentrated on v({z}).

It is clear, that N € 3 if and only if My(U)> T, M (U) for all >0

and all sets U of the form U = {[#,t]: e <i< b} (—c0o< a< b < o).

Setting hy (b)) = My({[x, t]: t< b}), we infer that ¥ e Sy if and only if

(5.9) by (8) — (@) — by (b —8) +hy (a—s) > 0
for every *mipl'et a,b,s of real numbers satisfying the conditions a << b
> 0. Substituting b = a-¢ into (5.9); we get the inequality
Hhy(@+5)+hy (a—3))

a.nd 8=
Chy(a) <

for every real number o and s > 0. Thus the function %y satistying (5.9)
is convex. Sinee it is always monotone non-decreagsing and vanishes at
—oco, we have an integral representation

hy(t) =

where the function g, is non-negative and monotone non-decreasing.
Of course, we may assume that g, is continuous from the left. Tn this
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case gy is uniquely determined by N, Moreover, by a simple computation,
we get the formula .

b
(5.10) N({Im 1]: a<t<b}) = [ O([, t]) gy (1)dt

which yields

(5.11) [ (e, gy at = 1.

Conversely, every non-negative monotone non-decreasing continuous
from the left function g, with property (5.11) determines by formula
(5.10) a probability measure N concentrated on z({z}). Moreover, the
corresponding function hy fultils inequality (5.9) which shows that N e .
Hence we conclude that a measure N from S, is an extreme
point of I if and only if the corresponding function g, cannot be decomposed
into a non-trivial convex combination of two functions 9w, and gy
(N1, Ny e p). But this is possible only in the case gy(t) = 0 if t<to
and gy(¢) =e¢ if ¢>1, for some constants t, and ¢. By (5.11), ¢

= [ &([w,t]) dt. Taking into account (5.10) and the definition of
i -

meaomsures X,, we conclude that the set of extreme points of Iz concen-
trated on 7({z}) consists of all meagures N, with # € v({s}). Consequently,
the set of extreme points 3 coincides with the set {N,: z e 7(H)}
which completes the proof of the lemma.

Once the extreme points of Iz are found we can apply a well-known
Krein—Milman—Choquet theorem ([12], Chapter 3). Since each element
N of H5 is of the form ¢N, where N, € 35, we get the following prop-
osition. ’

PRrOPOSITION 5.3. A measure N belongs to Sy if and only if there
exists a finite Borel measure m on 7 (H) such that

[f@ Nm) = [ [ flu) ¥.(du) m(d)
E) TE) H(EB)
for every continuous funetion f on T(E). If N is concenirated on v(E),
then m does the same. :
From this proposition, by virtue of (5.7) and (5.8), we get after some
computation the following corollary.

OOROLLARY 5.2. Let M be a measure from M(X) concentrated on t(E).
Then M e Ly if and only if there exists a finite measure m on v(H) such
that

[ f(a) H(dw) = [

(&) AE)

C(2) ff(.’l’,z) dt m(dz)
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for every M-integrable fumction f on ©(H). The fumetion C is given by the
formula

(5.12) oY f O (T,2) dt.
We now turn to the consideration of arbitrary measures M belonging
to M(X) and satistying the eondition M >T,M for ¢>0. By Corollary

5.1, there exists a decomposition M = 2 M, where M, e (X)), M, >TM

for > 0, M, are concenfrated on dlS]omt sets 7(#,), 0 ¢ B, and B, are
compaet. Let m, denote a finite measure on z(H,) corresponding to
M, in the representation given by Corollary 5.2. Then

[ flo) Maw) = 3 [ © f F(T,2) dtm, (@2)

p-g n=11(Ep) 0
for every M-integrable function f. Substituting f = @ into this formula,
we get the equation

Zm (B,))-

[ flw) M(da
X n=1

’ o
Consequently, setting m = >'m,,, we get a finite measure on X satistying
=1
the equation

(8.13) f & () M(ds)= f Oz f (T,2) dt m(dz)
for every M-integrable function f on X. Moreover, m ({0}) = 0.

The Lévy-Khinchine representation for the characteristic functional
of ‘infinitely divisible probability measures on complete locally convex
spaces has been studied by E. Dettweiler in' [3] ('I‘heorem 2.6). From
these results we conclude that

§(0) () = exp (i<y, oo+ f E (@, y) M(dw))

for a certain element x, € X. The kernel K is defined by the formula
C K(a,y) =690 —1-igy, 2 15(0),

where 15 denotes the indicator of the unit ball in X. Given a weight fune-
tion @ on X and V e #(X).with limexptV = 0, we put

i->00
£Y

=0 [ E(T,y) dt

Q

(5.14) Koy, 9)

icm°®
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where- the function € is defined by formula (5. 12) and Ty = exptV. By
Lemma 5.2 the kernel K, 5 is finite for @ = 0. Moreover, by (8.13),

fK @, y) M(da) wa (@, y)m(da),

which, by Theorem. 5.1, yields the following theorem.
THEOREM 5.2, Let @ be a weight function on X, V € &(X) and limexptV

= 0. Then 2(u) contains the one-parameter semigroup T, — exp?Vm(t =0)
if amd only if there ewist an eloment m, € X, am operator R e #(X) for which
the operator VR +RV* is non -positive, and & finite measure m on X van-
ishing at O such that

i) = expli <y, ) — 1<y, B>+ [ Ko pla, y) m(da)
X

for all y & X*. The kernel K, is defined by formula (5.14).
Suppose that X admits a weight function @ with the following prop-
erty: M e M(X) if and only it [ &(a) M(dr)< oo and M({0}) = 0.
X

A Hilbert space X with the weight function & (z) = |z} /(L + [le[?) is an
example of such situation. Then, by virtue of (5.13), we can easily check
that each finite measure m on X vanishing at 0 is a representing measure
in Theorem 5.2,

Combining Theorems 4.1 and 5.2, we get a representation theorem
for full Lévy’s measures on a real separable Banach space X.

THEOREM 5.3. Let @ be o weight fumction on X. A full probability
measure on X is a Lévy's measure if and only if there ewist an operator
V e #(X) with limexptV =0, an element x, € X, an operator R e #(X)

t00 .
for which the operator VR-- RV™ is non-positive and a finite measure m on
X vanishing at 0 such thai

in(y) = exp (i<y, 20y — 4y, Ry> + [ Ko,p(®, y) m(da))
X
for all y e X™. .
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