

Finite dimensional subspaces of L_p

by

D. R. LEWIS * (Columbus, Ohio)

Abstract. If $1 and <math>E \subset L_p(\mu)$ is an n-dimensional subspace, then $d(E, l_2^n) < n^{|1/2 - 1/p|}$; further, there is a projection u of $L_p(\mu)$ onto E with $||u|| < n^{|1/2 - 1/p|}$.

For convenience only real normed spaces are considered. The notation and terminology is standard; we mention only that the p-absolutely summing, p-integral and L_p -factorization norms of operators are denoted by π_p , i_p and γ_p , respectively (cf. [13], [12], [7]). The main result of this paper is the following.

THEOREM 1. Let E be an n-dimensional subspace of $L_n(\mu)$, $1 \leq p < \infty$.

(1) There is a basis $(f_i)_{i \le n}$ of E so that for all $x \in l_2^n$,

$$n^{-1}\|x\|_2^2 = \int \Big|\sum_{i \leq n} x_i f_i\Big|^2 |f|^{p-2} d\mu, \quad ext{where} \quad f = \Big(\sum_{i \leq n} |f_i|^2\Big)^{1/2}.$$

(2) If $(h_i)_{i\leqslant n}$ is another basis for E satisfying (1), there is an $n\times n$ orthogonal matrix (a_{ik}) such that

$$h_k = \sum_{i \leqslant n} a_{ik} f_i, \quad i \leqslant k \leqslant n.$$

The proof requires an easy lemma.

LEMMA 2. For $1 \leq p < \infty$ and $u: l_2^n \rightarrow L_p(\mu)$ any operator,

$$\pi_p(u) = \left\| \sup_{\|x\|=1} |u(x)| \right\|.$$

Proof of Lemma. The Hilbert space l_2^n is a quotient of an L_q -space, 1/p+1/q=1, so $\pi_p(u')\leqslant \pi_p(u)$ by [7]. Since the domain of u' is $L_q(\mu)$, the Kwapień–Schwartz theorem [6] shows that u=u'' maps the unit ball of l_2^n into an order bounded set of the lattice $L_p(\mu)$, and that $\|f\|\leqslant \pi_p(u')$ for $f=\sup |u(x)|$. The other inequality is obvious.

^{*} Research partially supported by NSF MCS74-06948A02

208

Proof of Theorem 1. By [8] there is an isomorphism $u: l_2^n \to E$ with $\pi_p(u) = 1$ and $i_q(u^{-1}) = n$, 1/p + 1/q = 1. Write $(e_i)_{i \le n}$ for the unit vector basis of l_2^n , $f_i = u(e_i)$ and $f = (\sum_{i \le n} |f_i|^2)^{1/2}$. There is no harm in supposing f > 0 μ -a.e. since the f_i are a basis for E. The operator u^{-1} has an extension $w: L_p(\mu) \to l_2^n$ satisfying $i_q(w) = i_q(u^{-1}) = n$. Let $g_i = w'(e_i^*)$, where $e_i^* \in (l_2^n)'$ is inner product with e_i , and $g = (\sum_i |g_i|^2)^{1/2}$.

It is clear that $f=\sup_{\|x\|=1}|u(x)|$ and $g=\sup_{\|x\|=1}|w'(x)|$. By the lemma, $\|f\|_p=1$ and $\|g\|_q\leqslant \pi_q(w)\leqslant n$, again by the Kwapień–Schwartz theorem. Since $\langle f_i,g_k\rangle=\delta_{ik}$,

$$n = \int \sum_{i \leqslant n} f_i g_i d\mu \leqslant \int f g d\mu \leqslant \|f\|_p \|g\|_q \leqslant n.$$

Thus $\langle f,g \rangle = n$ and $\|g\|_q = n$. For $1 this clearly implies <math>g = n|f|^{p-1}$ because $\|f\|_p = 1$. In case p = 1, we have g = n μ -a.e. since f > 0 μ -a.e. Also $\sum_{i \le n} f_i g_i = fg$ so that $f_i f^{-1} = g_i g^{-1}$ for $i = 1, \ldots, n$. Combining equalities, $g_k = n|f|^{p-2} f_k$ for each k and hence

$$\delta_{ik} = \langle f_i, g_k \rangle = n \int f_i f_k |f|^{p-2} d\mu,$$

which is enough to establish (1).

To prove (2), let $(f_i)_{i\leqslant n}$ be any basis for which (1) is true, and define u: $l_2^n\to E$, $w\colon L_p(\mu)\to l_2^n$ by $u(x)=\sum_{i\leqslant n}x_if_i$ and $w(h)=n(\langle h,f_i|f|^{p-2}\rangle)_{i\leqslant n}$. Clearly, wu is the identity, $\pi_p(u)=1$ by the lemma and $n=\operatorname{tr}(uu^{-1})$ $\leqslant \pi_p(u)i_q(w)\leqslant i_q(w)$. Notice that $|w'(x)|\leqslant n|f|^{p-1}$ μ -a.e. whenever $\|x\|_2\leqslant 1$. For $1< p<\infty$ this implies $i_q(w')\leqslant n$ and hence $i_q(w)\leqslant i_q(w')\leqslant n$ since l_2^n is a quotient of an L_p -space [7]. In the case p=1, $w\colon L_1(\mu)\to l_2^n$ has norm $\leqslant n$; since l_2^n is a quotient of a C(K) and w has the lifting property, $i_\infty(w)=\gamma_\infty(w)\leqslant n$. In any event the isomorphism $u\colon l_2^n\to E$ which takes the ith unit vector to f_i satisfies $\pi_p(u)=1$ and $i_q(u^{-1})=n$ if the basis (f_i) satisfies (1). Now if $(h_i)_{i\leqslant n}$ also satisfies (1), then $\pi_p(v)=1$ and $i_q(v^{-1})=n$, where $v\colon l_2^n\to E$ maps e_i to h_i . By Theorem 1.1 of [8], $u^{-1}v$ is an isometry of l_2^n and representing $u^{-1}v$ as a matrix with respect to the unit vector basis proves (2).

THEOREM 3. Let $1 , <math>E \subset L_p(\mu)$ and F be an n-dimensional space. Each operator $u \colon E \to F$ has an extension $w \colon L_p(\mu) \to F$ with $\|w\| \leqslant n^{\lfloor 1/2 - 1/p \rfloor} \|u\|$; in case $2 \leqslant p < \infty$ the extension may be chosen to satisfy $\gamma_2(w) \leqslant n^{\lfloor 1/2 - 1/p \rfloor} \|u\|$.

Proof. First suppose 2 and consider the special case in which <math>E = F and u is the identity. Let $f_1, f_2, \ldots, f_n \in E$ and let f be as in Theorem 1; set $d\gamma = |f|^p d\mu$ and let $w = w_3 w_2 w_1$, where $w_1 : L_p(\mu) \to L_2(\gamma)$

is multiplication by f^{-1} , w_2 : $L_2(\gamma) \rightarrow w_1(E)$ is the orthogonal projection and w_3 : $w_1(E) \rightarrow E$ is multiplication by f. Clearly, w is a projection onto E. By Hölder's inequality,

.
$$||w_1(h)|| = \left[\int |h|^2 |f|^{p-2} d\mu\right]^{1/2} \leqslant ||h||_p ||f||_p^{(p-2)/2p}$$

for all $h \in L_n(\mu)$, and hence $||w_1|| \le 1$. Also for $x \in \mathbb{R}^n$

$$\begin{split} & \Big\| \left. w_3 \Big[\sum_{i \leqslant n} x_i (f_i f^{-1}) \Big] \Big\|^p \ = \ \int \Big| \sum_{i \leqslant n} x_i f_i \Big|^2 \Big| \sum_{i \leqslant n} x_i f_i \Big|^{p-2} d\mu \\ & \leqslant \int \Big| \sum_{i \leqslant n} x_i f_i \Big|^2 ||x||_2^{p-2} |f|^{p-2} d\mu \ = \ n^{(p/2)-1} \Big[\int \Big| \sum_{i \leqslant n} x_i (f_i f^{-1}) \Big|^2 |f|^p d\mu \Big]^{p/2} \end{split}$$

by Theorem 1, so $||w_3|| \le n^{1/2-1/p}$. This establishes the special case. More generally, for $2 , let <math>\varphi$ be the norm one bilinear form

$$\varphi \colon L(L_n(\mu), l_2) \times L(l_2, F) \rightarrow L(E, F)$$

defined by $\varphi(a,b)=ba/E$, and also denote by φ the induced linear operator on the projective tensor product of $L(L_p(\mu), l_2)$ and $L(l_2, F)$. After making the natural identification $L(E, F)' = i_1(F, E)$ and $L(l_2, F)' = i_1(F, l_2)$ (possible since F is finite dimensional) the adjoint

$$\varphi'\colon i_1(F,E){\rightarrow}L\big(L\big(L_p(\mu)\,,\,l_2\big),\,i_1(F,\,l_2)\big)$$

is given by $\varphi'(u)$ (v)=vju, where $j\colon E\to L_p(\mu)$ is the natural embedding. For $u\in i_1(F,E)$ the special case proven above shows that there are operators $a\colon L_p(\mu)\to l_2, \, \beta\colon \ l_2\to ju(F)$ with $\|a\|\leqslant 1, \ \|\beta\|\leqslant n^{1/2-1/p}$ and $\beta a\,|\, ju(F)=i$ dentity. For clarity we temporarily write $i_1(\gamma\colon A\to B)$ to denote the i_1 -norm of an operator γ considered as a map from A to B. With this notation,

$$\begin{split} i_1(u\colon F \to \!\! E) &\leqslant i_1(u\colon F \!\to\! u(F)) \\ &= i_1(ju\colon F \!\to\! ju(F)) \\ &= i_1(\beta \alpha ju\colon F \!\to\! ju(F)) \\ &\leqslant \|\beta\| i_1(\alpha ju\colon F \!\to\! l_2) \\ &\leqslant n^{1/2-1/p} \|\varphi'(u)\|. \end{split}$$

Thus $\|\varphi'(u)\| \leq i_1(u) \leq n^{1/2-1/p} \|\varphi'(u)\|$ for all $u \in i_1(F, E)$ so that φ' is an $n^{1/2-1/p}$ — into isomorphism and hence φ , on the tensor product, is $(1+\varepsilon)n^{1/2-1/p}$ -quotient for every $\varepsilon > 0$.

For $u\colon E\to F$ and $\varepsilon>0$, let t_{ε} in the projective tensor product satisfy $\varphi(t_{\varepsilon})=u$ and $|t_{\varepsilon}|\leqslant (1+\varepsilon)n^{1/2-1/p}\|u\|$. Expand t_{ε} as an absolutely convergent series $t_{\varepsilon}=\sum\limits_{k\geqslant 1}\lambda_ka_k\otimes b_k$, with $(a_k)_{k\geqslant 1}$ and $(b_k)_{k\geqslant 1}$ sequences in the closed unit balls of $L(L_n(\mu), l_2)$ and $L(l_2, F)$, respectively, and $\lambda=(\lambda_k)\in l_1$

w is the desired extension of u.

a positive sequence with $\|\lambda\|_1 \leq (1+\varepsilon)|t_{\varepsilon}|$. Define operators $a: L_p(\mu) \rightarrow (\otimes l_2)_2$ and $b: (\otimes l_2)_2 \rightarrow F$ by $a(h) = (\lambda_k^{1/2} a_k(h))_{k\geqslant 1}$ and $b\left((x_k)_{k\geqslant 1}\right) = (\lambda_k^{1/2} b_k(x_k))_{k\geqslant 1}$. Set $w_{\varepsilon} = ba$. Since $\|a\|$ and $\|b\|$ are both at most $\|\lambda\|_1^{1/2}$, $\gamma_2(w) \leq \|\lambda\|_1$. Since $\varphi(t_{\varepsilon}) = u$, $w_{\varepsilon}|E = u$ and combining inequalities shows $\gamma_2(w_{\varepsilon}) \leq (1+\varepsilon)^2 n^{1/2-1/p} \|u\|$. For each $\varepsilon > 0$ choose such an extension w_{ε} . Then $\gamma_2(L_p(\mu), F) = \gamma_2^*(F, L_p(\mu))'$ since F is finite dimensional, so as ε tends to zero the net $(w_{\varepsilon})_{\varepsilon>0}$ closters wk^* to some $w \in \gamma_2(L_p(\mu), F)$. Clearly,

The case $1 follows by duality. By a theorem of Maurey ([10], or [11], Proposition 9.2) the conclusion of Theorem 8 holds for <math>1 if the inequality <math>i_q(v) \leqslant n^{1/2 - 1/q} \pi_q(v)$ is true for every operator v defined on an n-dimensional space F, where 1/p + 1/q = 1. To see this let $v \colon F \to G$ be any map, let C be an injective space containing G isometrically and factor v as

$$F \xrightarrow{a} L_{\infty}(\mu) \xrightarrow{\beta} L_{q}(\mu) \xrightarrow{\gamma} C$$
,

for μ a probability measure, β inclusion and α and γ operators satisfying $\|\alpha\|\|\gamma\|=\pi_q(v)$. Since q>2, the previously proven part of the theorem gives a projection w of $L_q(\mu)$ onto $\beta\alpha(F)$ with $\|w\|\leqslant n^{1/2-1/q}$. Since γ maps $\beta\alpha(F)$ into G, $i_q(v)=i_q(\gamma w\,\beta a)\leqslant \|w\|\,\|\alpha\|\,\|\gamma\|$, which completes the proof.

COROLLARY 4. If $E \subset L_p(\mu)$ is n-dimensional and $1 , there is a projection <math>w \colon L_p(\mu) \to E$ with $\|w\| \leqslant n^{[1/2-1/p]}$.

Proof. In Theorem 4 take E = F and u the identity.

The Banach-Mazur distance between isomorphic spaces E and F is defined as $d(E, F) = \inf ||u|| ||u^{-1}||$, with the infimum taken over all isomorphisms $u \colon E \to F$. The next corollary answers a question raised in [1].

COROLLARY 5. If F is n-dimensional and isometric to a quotient of a subspace of $L_p(\mu)$, $1 , then <math>d(F, l_p^n) \leqslant n^{11/2 - 1/p}$.

Proof. A subspace of a quotient of $L_p(\mu)$ is isometric to a quotient of a subspace of $L_p(\mu)$, so it suffices to consider the case p>2. If $E\subset L_p(\mu)$ and $u\colon E\to F$ is a quotient map, then choosing w as in Theorem 3 shows $\gamma_2(u')=\gamma_2(u)\leqslant \gamma_2(w)\leqslant n^{1/2-1/p}$, so the isometric embedding $u'\colon E'\to F'$ factors nicely through a Hilbert space.

COROLLARY 6. Let $v: E \rightarrow F$ be any linear operator and suppose that one of E, F is n-dimensional.

- (1) For $1 \leqslant p \leqslant \infty$, $i_p(v) \leqslant n^{|1/2-1/p|} \pi_n(v)$.
- (2) For $2 \leqslant p \leqslant \infty$, $\pi_2(v) \leqslant (\pi/2)^{1/2} n^{1/2 1/p} \pi_n(v)$.
- (3) For $1 \leqslant q \leqslant 2$, $i_{q}(v) \leqslant (\pi/2)^{1/2} n^{1/q-1/2} \pi_{2}(v)$.

Proof. The extreme cases p=1 and $p=\infty$ follow from John's Theorem [5], phrased as in [2] to say that $i_\infty(w)\leqslant \pi_2(w)\leqslant n^{1/2}\|w\|$ for

each operator w on or into an n-dimensional space; further, in (2) and (3) the constant $(\pi/2)^{1/2}$ can clearly be replaced by 1. To prove (1) and (2) assume $\dim F = n$, let C be an injective space containing F, and write $v = \gamma \beta \alpha$, where μ is some probability measure, $\alpha \colon E \to L_{\infty}(\mu)$, $\beta \colon L_{\infty}(\mu) \to L_p(\mu)$ is inclusion and $\gamma \colon L_p(\mu) \to C$ satisfy $\|a\| \|\gamma\| = \pi_p(v)$. Choose an extension $w \colon L_p(\mu) \to F$ of $\gamma | \gamma^{-1}(F)$ as in Theorem 3, so that $i_p(v) = i_p(w\beta\alpha) \leqslant n_1^{1/2-1/p}|\pi_p(v)$. For p > 2, Grothendieck's Theorem (cf. [9], or [2] for the constant $(\pi/2)^{1/2}$) shows that $\pi_2(v) = \pi_2(w\beta\alpha) \leqslant (\pi/2)^{1/2}\gamma_2(w)\gamma_\infty(\beta\alpha) \leqslant (\pi/2)^{1/2}n^{1/2-1/p}\|a\|\|\gamma\|$, which proves (2). The case $\dim E = n$ may be handled as in the proof of Theorem 3, and (2) and (3) are equivalent by a standard duality argument.

Remarks. (1) The distance estimate of Corollary 5 is best possible since $d(l_p^n, l_2^n) = n^{l(2-1/p)}$ [4]. The corollary implies that given $p, q \in (1, +\infty)$, there is an a < 1 such that $d(E, F) \le n^a$ whenever $E \subset L_p$ and $F \subset L_q$ are n-dimensional. It would be of interest to determine the smallest such a. In particular, is it true that $d(E, F) \le \max d(l_i^n, l_i^n)$, $r, s \in \{p, q, 2\}$?

- (2) Given $p, q \in (1, +\infty)$, there is a $\beta > 0$ such that if $E \subset L_p$ and $F \subset L_q$ are any n-dimensional subspaces, there is an operator $u \colon E \to F$ with $||u|| \le 1$ and $i_1(u) \ge n^{\beta}$. This follows by composing the isomorphisms given by Corollary 5, since the identity on l_2^n has 1-integral norm n.
- (3) The norm estimates of Theorem 3, Corollary 4 and Corollary 6 (1) are asymptotically best possible. Sobczyk [14] has shown that for n a power of 2 and any p, there is an n-dimensional subspace S of l_p such that every projection onto S has norm at least $2^{-1}[(2n)^{|1/2-1/p|}-1]$. By Maurey's Theorem [10], if Corollary 6 (1) is true with $n^{|1/2-1/p|}$ replaced by constant c, then Theorem 3 is also true with constant c. The estimates of Corollary 6 (2) and (3) are also asymptotically best possible. Garling and Gordon [2] show that $i_p(u) = \pi_p(u) = n^{1/p}$, $1 \le p \le \infty$, for u the identity on l_∞^n .

References

- [1] T. Figiel, J. Lindenstrauss, and V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), pp. 53-94.
- [2] D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), pp. 346-361.
- [3] Y. Gordon and D. R. Lewis, Banach ideals on Hilbert spaces, Studia Math. 54 (1975), pp. 161-172.
- [4] V. I. Gurariï, M. I. Kadec, and V. I. Macaev, Distance between finite dimensional analogs of the L_p-spaces, Math. Sb. 170 (1966), pp. 481-489 (Russian).
- [5] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Interscience, New York 1948, pp. 187-204.
- [6] S. Kwapień, On a theorem of L. Schwartz and its application to absolutely summing operators, Studia Math. 38 (1970), pp. 193-201.

212

D. R. Lewis

- [7] On operators factorisable through L_p -spaces, Bull. Math. Soc. France, Memoire 31-32 (1972), pp. 215-225.
- [8] D. R. Lewis, Ellipsoids defined by Banach ideal norms, to appear.
- [9] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L_p-spaces and their applications, Studia Math. 29 (1968), pp. 275-326.
- [10] B. Maurey, Espaces de cotype (p, q) et théorèmes de relevement, C. R. Acad. Sci. Paris, Sér. A, 275 (1972), pp. 785-788.
- [11] A. Pelozyński, Banach spaces of analytic functions and absolutely summing operators, Regional Conf. Series in Math. 30, Amer. Math. Soc., Providence 1977.
- [12] A. Persson and A. Pietsch, p-nukleare und p-integrale Operatoren in Banachräumen, Studia Math. 33 (1969), pp. 21-62.
- [13] A. Pietsch, Absolute p-summierende Abbildungen in normierten Räumen, ibid. 28 (1967), pp. 333-353.
- [14] A. Sobozyk, Projections in Minkowski and Banach spaces, Duke J. Math. 8 (1941), pp. 78-106.

Received October 25, 1976

(1219)