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Finite dimensional subspaces of I,
by
D. R. LEWIS * (Columbus, Ohio)

Abstract. If 1 <p < oo and ¥ < Ly(s) is an nw-dimensional subspace, then
d(B, 1) < nl2—1pl; further, thebe is a projection w of Ly (u) onto B with |ju|| < nit2~Usl,

For convenience only real normed spaces are considered. The no-
tation and terminology is standard; we mention only that the p-absolutely
summing, p-integral and L;-factorization norms of operators are denoted
by =, 4, and y,, respectively (cf. [13], [12], [7]). The main result of
this paper is the following.

THEOREM 1. Let B be an n-dimensional subspace of L,(u), L < p < co.

(1) There is a basis (f;)icn of B so that for all »ely,

nalp = [| Safif (P 2du,  where = ( 31"
i<n i<n
(2) If (hy)icn is another basis for H satisfying (1), there is an nXn
orthogonal matriw (a;,) such that )

by, = Z“ikfn i<k
(R -

The proof requires an easy lemma.
LEMMA 2. For L p < oo and w: lj—L,(u) any operator,

7,

() = [Jsup b (a)l].
i =1
Proof of Lemma. The Hilbert space I7 is & quotient of an L,-space,
1p+1jg =1, 80 m,(w') < m,(w) by [7]. Since the domain of % is L,(u),
the Kwapiefi-Schwartz theorem [6] shows that » = «" maps the unit
ball of I into an order bounded set of the lattice L, (u), and that |f|
< @, (u') for f = sup |u(x)|. The other inequality is obvious.

Jlafi=1
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Proof of Theorem 1. By [8] there is an isomorphism u: Io—~E
with @,(%) =1 and 4,(u™") —'n 1/p+1/g =1. Write (e;);c, for the
unit vector basis of 12, f; = w(e;) and f = (ZI f,P}"%. There is no harm

in supposing f> 0 p-a.e. since the f; are a ba.sis for B. The operator »~!
has an extenmon w: L (p)->1 satisfying i(w) = i,(w™") =n. Let g,
= w'(¢}), where ¢; € (%) is inner product with ¢;, and g = (2'9 ),

isn
It is clear that f = supju(z)| and g = sup|w’(z).
. liall=1 flall=1

Iflly = 1 and Jlgll, < 7, (w) < 7, again by the Kwapien~Schwartz theorem.
Since {fi; x> = 0w .

n _fzftg‘l /"<ffgd,u

i<n

1l lglly < .

Thus <{f,g> =n and |g|, =n. For 1<p< co this clearly implies
g = n|f{P"! because ||ff, = 1. In case p =1, we have g = n u-a.e. since
Ff>0 p-ae. Also -Yfig; =fg so that fif ' =g, for i=1,..,n

i<n

OOmbmmg equalities, g, = n|f|?7*f, for each % and hence

0 = {fi, g = ”ffifk]flpﬁzdﬁ‘;

which is enough to establish ( ).
To prove )y Jet (fi)icn be any basis for which (1) is true, and define u:
LB, w: )_’lz by w(@) = Dlof; and w(h) = n(<hy fiIF P Dicn

i<n

Clearly, wu is the identity, m,(u) = 1 by the lemma and # = tr(uu"?)
< m, ()i, (w) < i,(w). Notice that |w'(w)|<n|fIP" p-ae. whenever
Jells < 1. For 1 < p < oo this implies 4,(w") < # and hence ,(w) < 4,(w’)
< n since I is a quotient of an L,-space [7]. In the case p = 1, w: L, (u)—>1y
hag norm < »; since I3 is & quotient of a C'(K) and w has the lifting property,
T (W) = Yoo(w) < m. In any event the isomorphism u: 17—F which takes
the sth unit vector to f; satisfies m,(w) = 1 and 4,(u™") = n if the basis (f;)
satisties (1). Now if (h;);<, also satlsﬁes (1); then =, (v) = 1and i,(v™") = n,
where v: I7—F maps ¢; to h;. By Theorem 1.1 of [8], ™ v is an isometry
of Iy and representing u“v as a matrix with respect to the unit vector
bagis proves (2).

THEOREM 3. Let 1 < p < oo, B = L,(u) and F be an n-dimensional
space. Each operator u: E—~F has an extension w: Ly(u)->F with |w]|
< M y)ls in case 2 < p < oo the emlension may be chosem o satisfy
Pa () < WP )

Proof. First suppose 2 < p < ‘oo and consider the special case in
which B = F and u Is the identity. Let f;,f,, ..., f, € B and let f be as
in Theorem 1; seb dy = |f{*du and let w = w,w,w;, where w, : Ly, ()—>Ly(p)

By the lemma, -
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is multiplication by =, wy: Ly(y)—>w,(F) is the orthogonal projection
and w,: w, (F}—>H is multiplication by f. Clearly, w is a projection onto K.
By Holder’s inequality,

s (B)l] = [ [1RI1£17=2 8] ™ < I, F 15
<1. Also for w e R

= ﬂz%ﬁzizwiﬁp—_

eIl 1P au = o2 f | Yot i Pau]™

zgn

for all & € L,(u), and hence |w,]|

S
< ﬂ

by Theorem 1, 80 [lwy]| < n**~*?. This establishes the special case. More
generally, for 2 < p < oo, let ¢ be the norm one bilinear form
92 L{Ly(u), b X D(l, F)~L(H, F)

defined by ¢(a, b) = ba/H, and also denote by ¢ the induced linear oper-
ator on the projective tensor product of L(L,(u), 1,) and L(ly, F). After
making the mnatural identification L(E,F) = i,(F, H) and L(l,, F)
= 1, (F, 1,) (possible since F is finite dimensional) the adjoint

)y 02 (F, 1))

¢'t 4 (F, B)~>L(L(L,(w),

‘is given by ¢’ () (v) = vju, where j: H~>L,(u) is the natural embeddiﬁg.

For u e i,(F, F) the special case proven above shows that there are oper-
ators a: Ly (u)—>ly, B2 Ly—ju(F) with e <1, [} < #*~? and pa|ju(F)
= 1dent1ty For clarity we temporarily write 4,(y: 4-—>B) to denote the
4,-norm. of an operator y considered as a map from A to B. With this
notation, '
ii(u: PsB) iy (u: F>u(l))

=4, (ju: F—ju(F))

= i, (Baju: F—ju(F))

< |IBlda (ajus F>ly)

< Wit ! (u).

< iy () < nH2YP o (w)]| for all w e iy (F, E) so that ¢’ is an

#*~1P _ into isomorphism and hemce ¢, on the tensor product, is
(14 g)n*~P_quotient for every &> 0.

For u: E—~F and &> 0, let ¢, in the projective tensor product satisfy

o(t) = u and || < (1+&)n*>~Y? |u|\. Bxpand 4, as an absolutely con-

vergent series ?, = 2 Ay, ®@by, With (@) and (by)s; sequences in the

closed unit bally of L(L (), lo) and L (ly, F'), respectively, and 4 = (&) €Ly

Thus [l¢" («)|
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a positive sequence with [All, < (L+s&)lt]. Define operators a: L, (u)
—>(k®lg)2 and b: (Iglg)g—ﬂ?’ by a(h) = (4@ (h))s; and b (@) =
=1 . 1

(4401, (#4) i1 - Set w, = ba. Since |la]| and [[b}] are both at most A}, »,(w)
< JlAll,. Since ¢(f,) =%, w,|F =u and combining inequalities shows
ya(w,) < (L)' "7 luj|. For each &> 0 choose such an extension w,.
Then y,{Ly(p), F) = y3 (F, L,(u))’ since F is finite dimensional, so as &
tends to zero the net (w,),., closters wk™ to some w & y, (L, (), F). Clearly,
w is the desired extension of w.

The case 1 < p < 2 follows by duality. By a theorem of Maurey
(f10], or [11], Proposition 9.2) the conclusion of Theorem 8 holds for
1 < p < 2 if the inequality ¢,(») < n'*~Yx, (v) is true for every operator v
defined on an n-dimensional space F, where 1/p+1/g = 1. To see this let
v: F—@G be any map, let C be an injective space containing G isometrically
and factor v as

F5 Lo () > L) >0,
for x4 a probability measure, § inclusion and o and y operators satisfying
llell fyll = o, (v). Since g > 2, the previously proven part of the theorem
gives a projection w of L, (u) onto fa(F) with |w| < n'*~Y% Since y
maps fa(F) into &, 4,(v) =i, (ywpa)< [wllialllyll, which completes
the proof. ‘ ’

COROLLARY 4. If B < L,(u) 45 n-dimensional and 1< p < oo, there
is @ projection w: L,(u)—~F with Jw| < n2-12!,

Proof. In Theorem 4 take F = F and w the identity.

The Banach—Mazur distance between isomorphic spaces B and F
is defined as d(H,F) = inf|ul/ju~"|, with the infimum taken over all
isomorphisms %: B->F. The mext corollary answers a question raised
in [1].

COROLLARY 5. If F is n-dimensional and isometric to a quotient of o
subspace of L,(u), L<p < co, then a(F, 1)< nH2-12

Proof. A subspace of a quotient of I, (x) is isometric to a quotient
of a subspace of Ly, (u), 5o it suffices to consider the case p > 2. It E < L, (u)
and w: E—F is a quotient map, then clioosing w as in Theorem 3 shows
72 (W) = () < yo(w) < 017, 50 the isometric embedding w': B —F’
factors micely through a Hilbert space.

COoROLLARY 6. Let v: E—F be any linear operator and suppose that
one of B, F is n-dimensional.

(1) For 1< p < o0, i,y(0) <02 Molg (),

(2) For 2 < p < o0, my() < (/2) 20107 (1),

(3) For 1< g<2, i,(v) < (m/2) 20t g, (v),

Proof. The extreme cases p =1 and p = co follow from John’s
Theorem [5], phrased as in'[2] to say that io(w) < m,(w) < n'2w) for
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each operator w on or into an n-dimensional space; further, in (2) and (3)
the constant (7/2)Y* can clearly be replaced by 1. To prove (1) and (2)
assume dimF =, let ¢ be an injective space containing ¥, and write
© = yfa, where u is some probability measure, a: H-Ly(u), f: L. (z)
~Ly(p) is inclusion and y: L,(u)—>0 satisty |||y = m,(v). Choose an
extension w: Ly (u)—F of |y~ (F) as in Theorem 3, 5o that p (V) = i,(wha)
< Y, (v). For p > 2, Grothendieck’s Theorem (cf. [9], or [2] for
the constant (w/2)/%) shows that m,(v) = m,(wha) < (m[2) 95 (W) y (Ba)
< (7/2)* 02~ |l {ly]], which proves (2). The case dimE — n may be
handled as in the proof of Theorem 3, and (2) and (3) are equivalent by a
standard duality argument. .

Remarks. (1) The distance estimate of Corollary 5 is best possible
since d(ly, 1) = n"*~Y! [4]. The corollary implies that given p,q e
(1, +o0), there is an a <1 such that d(H, F)<n® whenever F L, and
P < L, are n-dimensional. It would be of interest to determine the smallest
such a. In particular, is it true that d(B, F) < maxd(l?, 1), r, s e{p, q,2}?

(2) Given p, g & (1, +oo), there is a f> 0 such that if B < L, and
F < I, are any n-dimensional subspaces, there is an operator w: H—F
with |lul] < 1 and 4, () > »f. This follows by composing the isomorphisms
given by Corollary 5, since the identity on I2 has 1-integral norm .

{3) The norm estimates of Theorem 3, Corollary 4 and Corollary 6 (1)
are asymptotically best possible. Sobezyk [14] has shown that for =
a power of 2 and any p, there is an n-dimensional subspace S of 1, such
that every projection onto 8 has norm at least 271[(2r)"?~¥#!_1]. By
Maurey’s Theorem [10], if Corollary 6 (1) is true with #'Y/*~1#! eplaced
by constant ¢, then Theorem 3 is also true with constant c. The estimates
of Corollary 6 (2) and (3) are also asymptotically best possible. Garling
and Gordon [2] show that 4,(u) = m,(u) = n'?, 1< p< oo, for u the

_ identity on 1%.
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