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STUDIA MATHEMATICA, T. LXII. (1978)

A topological version of some ergodic theorems
by
G.C. TAYLOR (Sydney)

Abstract. The theorem given in Section 2 is a consolidation of known results
in that it shows that some known weakly ergodic theorems are corollaries of a single
theorem concerning topological semigroups. In Section 4 the characteristic differences
between these results and results not covered by the theorem of Section 2 are discussed.

1. Introduction. Since the work of Perron [8] and Markov [6], the
present century has witnessed a considerable amount of investigation
of ergodic properties of certain types of matrices. The bulk of this work
is neatly summarized in the-recent book by Semneta [9]. Various types

. of ergodicity have been established for infinite products of matrices.

Under some conditions the products converge to a fixed matrix (e.g. Bern-
stein [2]); under other conditions to the set of rank 1 matrices (e.g. Lopez
[5]); under yet other conditions, to the set of rank d matrices (e.g. Taylor
[117).

The aims of the present paper are:

(i) to show that a number of these ergodic theorems are merely
special cases of a simpler general theorem on topological semigroups
rather than sets of matrices;

(ii) to expose the relation between the theorems covered in (i) and
2 number of other known results which do not follow as corollaries of
our general theorem; ‘

(iii) to extend these results to non-matrix applications.

2. A weakly ergedic theorem on topolegical semigroups.

Notation. 1. Let S be a topological semigroup. If {s;} is a sequence
of elements. of 8, let s;; denote the product s;8;,;...s;.

2. For a topological semigroup § and for T < 8, let A(T) denote
the set {t e T: tu =t for some we T} .

THEOREM (weakly -ergodic). Let 8 be a topological semigroup amd
suppose that there exists a sequentially compact subset T of 8 and an integer N
such that 87 < T whenever p > N. Then A(T) # @, and, if {s;} is an arbitrary
sequence in 8, then, for each fized i, the sequence {s,;} converges to A(T).
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Proof. Fix ¢ arbitrarily. Now for j sufficiently large, {s;;} ¢ T and
50, by sequential compactness of T, {s;;} has a convergent subsequence
{814} with limit s e T\ Define #;; = s;, ;5. ., 80 that s, =8, ,.
Without loss of generality we may assume j,.;—Jjp> N. Therefore,
again by sequential compactness, {t;;} has a convergent subsequence
{tin,y with limit ¢ € I. We now have s;;, = S"sfkmti'km7 where both of
the s terms converge to s and the 7 term converges to ¢ as m—occ. By con-
tinuity, therefore, st = s, i.6. s € A(T), and so s;; converges to A(T)
as k—oo. It has now been shown that the sequence {s;;} has a subsequence
convergent to A(T). Starting with an arbitrary subsequence of {s;,}
rather than {s;;} itself, one can apply the same reasoning as above to
deduce that any subsequence of {s;;} has a subsequence convergent to
A(T). The theorem then follows.

3. Ergodic theorems as corollaries. We now see that some key ergodic
theorems follow as simple corollaries of the above theorem. We shall
require the following lemma in which the (i, j)-element of a matrix M
ig denoted by m(i, j)-

LmnvvA 1. Let {M;} be a sequence of nxn matrices over the field of
real numbers and suppose that, for each i, there emists N such that M, ,
=M; M i+l -

maxm,(j, k) < B < oo for each i, where mint denotes the minimum among
ik

, i
oll strictly positive elements, then there evists a number y such that

o<y njlmmtp s k)/maxm,p(a, k)

This lemma is well known. It is essentially proved by Seneta ([91,
p. 71) and in a restricted form by Lopez [5].

COROLLARY 1 oF THE THEOREM. Let {M,} be a sequence of n X n non-
negative mairices for which there exists an integer N such that any product
of N of the M, is strictly positive. Suppose also that there ewist a, B such
that 0 < a<m1n+m :(j, &) and maxmi(j, )< B < oo for each i. Then, for

whenever p > N .

given i, M, , /mm Mip(d, F) con'uerges to the set of sirictly positive matrices
of rank 1 as p—->oo

Proof. Let @ be the set of matrices such that all sequences {M}
in @ satisfy the hypotheses of the eorollary. Now, for each M e @, define
M=M /mm“m( j, k), and let § be the set obtained from @ on replacing

each M by . Then @ can be made a semigroup by the multiplication

rule M, i, = M1 M,, :md this is metrizable ‘with metric d&(If,, M,)

= Hjli]i;x 7 (J, k) —s(j, %)|. Now define § = @ and (sequentially) compact

.M, >0 whenever p=N. If 0< a<<mintm,(4, k) cmd'
1k
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= {M: #®(j, k) <y'}, where y is the number appearing in the above
lemma. The lemma shows that 87 < T for p > N.

Tt is elear that all matrices in T are strictly positive. Now if M e A(T),
then there exists L e T such that ML = M, i.e. each row of M is either
zero or a nonnegative left eigenvector of L. The first of these alternatives
is ruled out by the fact that L > 0 for all L e T, and by Perron’s theorem
there is only one eigenvector (apart from scalar multiples) of L. Such
an eigenvector is strictly positive. Thus M > 0 and has rank 1. This
shows that A (T) is contained in the set of n x n strictly positive matrices
of rank 1. .

Ag a second corollary we can obtain the more general result obtained
by matrix methods by Taylor [11]. We require an extension of Lemma 1.
This is

LevumA 2. Let {M;} be a sequence of n X n nonnegative matrices over.
the field of real numbers and suppose that, for each fiwed i, there ewisis an
integer N and an irreducible nonnegative matriz D with period d such that
M, has the same graph as D?H1=% whenever p+1—i=N. If 0<a
< mm m; (4, k) and maxm (4, k) < B < oo for each i, then there eaﬂ,sts
a number y such that 0 < y< mlkn iy (d, )}%X‘mim(g, k) whenever p > N.

Iy » .

Proof. The result follows easily from Lemma 1 if the index set of
the M, (and of D) is permuted so that M;; ; , assumes ity ecanonical
form.:.

7@ v

0 Y @

where each square block 2% i a primitive matrix.

COROLLARY 2 OF THE THEOREM. Let {M;} be a sequence of n X N NON-
negative matrices for which- theve ewists an integer N and an wrreducible
nonnegative matriz D, of rank d such that, if ¢ > N, then any produdt of ¢
of the M, has the same graph as D% Suppose also that there ewist o, f.such
that 0 < o < mintm,(j, &) and maxm,(j, k) < B < oo for each i. Then, for

ik

ik
given i, M; ,, /mm My, (J, &) converges to the set of m X n nonnegative matrices

of rank < d.
Proof. The wording is exactly as for Corollary 1 down to the defi-

nition of 8. Now define (sequentially) compact 1' = {M graph(M)
= graph (DY for some ¢ N, maxm(y,k <y~ 1}, where. N,y are the

numbers appearing in Lemma 2 The _proof now continues just as for
Corollary 1 except that: :
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1. LeT implies that graph (L) = graph (D? for some integer g,
0<g<d instead of Z'> 0; and

2. LeT implies that L has no more than d distinet nonnegative
eigenvectors (they are not positive if d > 1) instead of no more than 1.

By this means we deduce that A (T) is contained in the set of nx n
nonnegative matrices of rank < d.

In theé remaining corollaries we move away from just matrix - appli-
cations. The next corollary is a natural extension of Corollary 1 to a case
of composition of nonlinear functions.

DEriNiTION. Consider a function f: A->R™, where 4 < R™. If, for
any real constant K > 0 and any z e A, we have f(Kw) = K”f(wx), where p
is some real constant, then we say that f is homogeneous of degree p.

COROLLARY 3 OF THE THEOREM. Lét {f}, 1 = 1,2,..., be & sequence
of -homogeneous self-maps on A, the inierior of the positive orthant of R™.
Suppose that the Jacobian mairices of these functions are such that, for any
sequence {8}, {Dfi(xV)}, i =1,2,..., satisfies the same oconditions as
{M;} in Corollary 1. Defime fi; = f; and f;; = fi(firr ), for j>i. Then
there is a sequence {r;} of rays emanating from the origin, such that for fized i,
and any sequence {u;} in A, the angle between f;;(x;) and {r;} converges
to zero as j—oo.

Proof. Let @ be the set of all functions f; such that all sequences f;

in @ satisfy the hypotheses of the corollary. Now identify functions in Q

which aré merely scalar multiples of each other by defining f; =

fi/inf n}i]€1'1+ Df(j, k) (), and, in the same manner as in Corollary 1, it can be
z j ’

shown that, for p >N, 8% = T, a compact metric space consisting - of
functions f; with Df; always strictly positive matrices. As in Corollary 1,
it then follows that f; ; converges, with increasing j, to the set of homo-
geneous functions which have Jacobian matrices of rank 1 at each point.
It ig clear, from. the fact that homogeneous functions preserve rays ema-
nating from the origin and the rank of the Jacobian matrix, that fiz
converges to the set of functions which map all points of the domain
to a single ray emanating from the origin. :

Such results as this have been extended (Taylor [12]) to the case
of functions f; which are not homogeneous but retain the essential posi-
tivity properties in their Jacobian matrices. Proofs of these results could
also be developed as corollaries of the present theorem.

As a final corollary, we choose a slightly more novel setting, by
proving & central limit theorem of statistics.

COROLLARY 4 OF THE THEOREM. Let X, X,, ... be independent non-
degenerate random variables with B[X,] = p; < co and V[X,] = o} < K,
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a fized real number. Define
Y =( Y% Dwl/( D i=1,2,.
k=1 k=1 k=1
Then- the sequence Y, converges in distribution to a random variable that
is standard normal.

Proof. Define B to be the set of nondegenerate distribution functions
with variance < K. For F, & e B, let F+G denote convolution of ¥, & in
the usual sense. Let [B] denote the semigroup generated by B and x.
This semigroup can be made a metric space by the introduction of the
metric: .
UF, @) = oy~ o}l +swp| [df— [aG|,

de®' 4 A

where # is the Borel o-algebra on the real numbers, o5 is the variance
associated with F, and F is the d.f. of the standardized version of the
random. variable with d.f. F.

Let § = B([B]) be the Stone—Uech compactification of [B]. Now,
if X denotes the space {F: Fe[Bl}, then [B]<= X x R?, where R is the
set of real numbers. Note that the family of measures associated with X
is tight, a faet which follows easily from Chebyshev’s inequality. Tllxere-
fore, by Prokhorov’s theorem, (Ash [1], p. 330), this family is relatively
compact, and so compact in the above topology. Therefore, S = B([B])
c X x B(RY). ‘ S

We now apply the theorem to the compact topological semigroup
8 with * continuously extended from [B], as assured by the Stone-CJech
theorem. Let F; be the d.f. of X;, i =1,2,... Define F;; = FixFy %
...+ F;. By the theorem; F;; converges to A(S)'a.sj—> co. Now if gA(_S),
then there is G e 8 such that Fx@" = F for each n. Taking projection

from § to X, we have I ¥, whence @ is stable. But since & e X,
@ has finite variance and so must be normal. From this and the fact that
F+G = F, it is a simple exercise in characteristic functions to show that F!
is standard normal, thus completing the proof.

Corollary 4 above is a somewhat weakened version of the Lindeberg
central limit theorem (Ash [1], p. 336). One pleagant feature of the above
approach to the proof of this theorem is that it can be extended to vector-
valued random variables with very little offort indeed.

4. Some theorems of a different type. It is interesting to notice t?mt
certain known ergodic theorems are not covered by the. topological
theorem of Section 2. Among these are theorems of Hajnal [3], [4], Paz
and Reichaw [7], and, more generally, of Seneta [10] who demongtx.‘a,te
ergodicity of sequences of stochastic matrices in terms of a coefficient
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of ergodicity, which is essentially a measure of “amount of contraction”
‘fowards the set of matrices of rank 1 which is produced on multiplication
by the matrix possessing the coefficient.

‘When the matter is put this way, the distinction between theorems
of this type and the theorem of Section 2 becomes clear. Both types
of theorem deal with the semigroup of nonnegative n X n matrices, but
whereas the theorem of Section 2 imposes a topology on this semigroup,
theorems involving a coefficient of ergodicity introduce a metric as well.
The coefficient of ergodicity provides a measure of the distance between
the matrix to which it belongs and the set of matrices of rank 1.

In view of this it is not surprising that the results obtainable from
the coefficient of ergodicity type theorems are stronger than the topo-
logical theorem of this paper. Similar remarks apply to a comparison
of Corollary 4, with its uniform condition on the basic random variables,
and the usual form of the Lindeberg theorem.

One other point becomes clearer through the comparison of these
two types of theorem. The uniform maxima and minima required of
the elements of M in Corollaries 1 and 2 have appeared somewhat mys-
terious in the past. It becomes clear from the theorem of Section 2 that
they comprise a compactness condition without which the topological
theorem is false. The theorems based on coefficients of ergodicity show
that once a metrie is introduced into our topological space, the compact-
ness requirement becomes wnnecessary and we can choose ergodic se-
duences from noncompact spaces by reference to the coefficients of ergo-
dicity.
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