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On isomorphisms between certain subalgebras of B(X)

by
H. I BROWN, F. P. CASS*and I. J. W. ROBINSON (London, Ontario)

Abstract. Let X be a non-reflexive Banach space and let B (X) denote the Banach
algebra of all bounded linear operators on X with the norm given by [|T] = sup [||T=|:
Izl < 11, for & e B(X). '

Wilansky [11] introduced two classes of subalgebras of B(X), [2,] and [I],
defined as follows:

2, ={TeB(X): T™wewdX}, weX™ X
and .
Iy ={TeB(X): T™welw)}, weX*

Brown and Cho:[1] have studied the subalgebrag Q,, and I, in the special case
where X = ¢, the Banach space of convergent sequences. In this paper their results
are examined in the case of general X. Where the results of [1] extend, the proofs
are simplified and in one case the result is improved in the case X = ¢. It is shown
that Q,, and I, are the commutants of an operator in B(X) only in trivial instances.
The form of an algebraic isomorphism between I}, and I for w, z € X**\ X is de-
termined, and from this it is shown that the subalgebras I, are not all isomorphic
when X = I in confrast to the case where X = ¢ as shown in [1].

1. Introduction. Let X Dbe a non-reflexive Banach space and let
B(X) denote the Banach algebra of all bounded linear operators on X
with the norm given by |T = sup {||T=]: el < 1}, for T e B(X).

Wilansky [11] introduced two classes of subalgebras of B(X), {Q,}
and {I',}, defined as follows:

) 0, ={TeB(X): T™wewdX}, weX™X
and
(2) T, ={T e B(X): T™we{w)}, weX™

Here X** is the second dual of X, X is the image of X under the natural
embedding of X into X**, T** is the adjoint of the adjoint T* of T, wd.X
= {w+&: A 1is a scalar and & e X}, and (w) = {Mw: A is a scalar}. Tt is
convenient for some purposes to extend the definition of Q,, to elements
weX. We take 2, = B(X) when w e X. This is natural, because for
every T € B(X) we have T**(X) c X.

*This paper was written while the second author was the reclplent of an award
from the National Research Council of Canada.
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Our notation dﬁfers from that of Wilansky, in that we write Q,
instead of I'y, but our notation agrees with that of Brown and Cho [1],
who had previously introduced these subalgebras in the case where X = ¢

(the Banach space of convergent sequences with [jg]| = sup|»,], for z e ¢).
n=l1

When w e X**\X, define g,: 2,~+C, where C is the field of complex
numbers, by the equation

(3) Tw = g (TYw+&, Tef,.

In [11] it is shown that for w EX**\X, 0, 18 a closed subg}lgebra,
of B(X) and p,, is & non-zero continuous scalar homomorphism. Of course
if w0 efY, (3) makes no sense; in fact, it is shown in [2] that B(c) does
not support a non-zero continuous scalar homomorphism. It is obvious
that I, is a closed subalgebra of B(X) for every w e X**.

We now state some results established by Brown and Cho [1], which
are valid for the speela,l case X =¢. Let ¢ be the sequence {x,} where
@, =1 for all n, and ¢ be the sequence {z,} where @, =1 and », =0
forn # & k =1,2,8,... We make the usual identification of ¢** with m,
the Banach space of bounded sequences with |iz{ = sup|»,|, for z e m.
(See [10], p. 102.) Under this identification ¢ is identified with those
convergent sequences which converge to their first term. Now ¢t e ¢\ ¢,
I'a = I' the algebra of conservative matrices, and 2,1 = Q the algebra
of almost matrices; see [1] and [2]. The following results are established
in [1]. The identity operator is denoted by I.

L. Ifw ¢é,then 2, = Q,if and only if 2 & (w@é)\é. {[1], Theorem 5)
II. we¢ if and only if Q, = B(d). ([1], Lerama 3)
I I, = I' if and only if z = we' with u #%0. ([1], Theorem 13)

IV. MHQy: we ™} = <ID@K, where K denotes the two sided ideal
of compact operators. ([1], Corollary 11)
V. N{ly: wed™} =<, ([1]), Theorem 12)
VI If w,2zeé, then 2, is isomorphic to £, and I, is isomorphic
to T,. . ([1], Theorem 10)
Our prinecipal purpose in this paper is to examine these results in
B(X). Where they extend, our proofs are simpler than those of Brown
and Cho. Summarizing, we find that for general X: I and IT are false
(Theorem 1); IIT is true (Corollary 4) and even improved in B(c); IV is
true if the compact operators are replaced by the weakly compact oper-
ators (Theorem 5); V is true (Theorem 6); VI is false if we take X =1,

‘the Bamach space of -absolutely convergent series with [z = 2 [l
for # el (Theorem 10).
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2. The James space. In [7] James givesan example of a non-reflexive

Banach space X for which X has codiiension 1 in X**. Thus, if w e T\ X,
we have X** = w®X so that 0, — = B(X). This establishes the following
‘rheorem

TeeoREM 1. There is a non-reflewive Banach space X for which

= B(X) for every we X*™\X.

Rema,rk 1. If a Banach space X has 2, = B(X)for some w ¢ X\ X,
then B(X) supports the non-zero continuous sealar homomorphism 0w
defined by (3). This is in contrast to the case of B(e). See [2].

Remark 2. It is a consequence of Theorem 5, that for the James

space X, every I e B(X) can be uniquely expressed ag the sum of a weakly.
compact operator and a scalar multiple of the identity operator.

3. Simple properties of the subalgebras. The identity operator on X
ig denoted by I and the kernel of o, by gf.

THEOREM 2. Let X be o ‘non-reflevive Banach space. Thfm

() IeT, and T, < Q, for we X*;

(b) Iy = B(X);

(e) if zew@X then Q,, < Q,;

(@) zf ze (W®X)\X, then Q, = 2,;

€) 9, = <IDDot for we X*\X.

i

4. One-diménsional operators in B(X). The one-dimensional operators
in B(X) reveal a lot of information about the structure of the subalgebras
02, and T,. For ze X and fe X* we define 2®f e B(X) by

(4) (z@f)o = f(2)z

The range of 2 ®f is at most one-dimensional, so it is a compact operator.
It is clear that if T' e B(X) and its range is at most one- -dimensional,
then T =2 ®f for some ze X and feX*
We now state a lemma and give three simple consequences.
Levua 1. Let we X*, fe X* and ze X. Then

(8) (e ®f)**w = w(f)2,
where & is the image of = wnder the natural embedding of X into X**.

COROLLARY 1. Let we X*™*\X and 2 ;é 0. Then z® fe " if and
only if w(f) = 0. )

COROLLARY 2. If w e X and w — 8 then 2®f e I, for every f e X*.

OOROLLARY 3. Suppose w € X w =Y 70 and » ¢ (yd>. Then m®f¢ r,
whenever f(y) # 0.

8 — Studia Mathematica LXTIIIL.2
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Remark 3. In Corollary 3, we are assuming that w 5 0, so that
y # 0 and wt = {feX*: w(f) =0} = X*. Thus, there are functionals
feX* for which w(f) =y(f) =f(y) +0.

5. Further properties of the subalgebras.

THEOREM 3. Let wy, W, e X*,

(8) If w;, = paw, where u # 0, then Pw]=1’w2. -

®) If w; 0, i =1,2, and w; ¢ {ws), then le\rw2 @ and
NIy, #9.

(¢) If wy # O, then I, +# B(X).

The proof of Theorem 3 is & routine application of Corollaries 1, 2,
and 3.

COROLLARY 4. [, = Iy, if ond only if there is o number u % 0 such
that w;, = pw,.

We can sharpen Theorem 3 (c¢) to the following

TrmorEM 4. If w e X*™ and w +# 0, then T, # Q. (OF vourse, we
always have I',, < Q,, by Theorem 2 (a).)

To facilitate the proof of Theorems 5 and 6, we observe the following
lemama and corollary.

Levwma 2. Let TEO{Q"’: we X™\X}. Then o,(T) has the same
. value for every we X*\X.

COROLLARY 5. ({2, w EX**\X} =DM {eg: we X**\X}.

Let W denote the two-sided ideal of weakly compact operators in
B(X).

THEOREM 5. (a) W = (" {on: w eX**\X};

(b) (DDEW = {2y w e X**\X}.

Proof. (2) In [3]3 p. 482, Theorem 2, it is shown that T e W if and
only if T*(X™)c X, from which (a) follows simply. Conclusion (b)
follows from (a) and Corollary 5. See [11] (Theorem 3) in connection with
Theorem. b (2).

Rfamark 4. Since weak and strong sequential convergence are equiv-
alent in ¢* (=1), it follows that in B(c) the weakly compact operators
and the compact operators are the same. Thus Theorem 5 includes ag
a special case [1], Corollary 11,

TrEOREM 6. () {I: we X*™} = (N {I,: we X*\X} = (I>.

6. Some results concerning commutants. For T ¢ B(X i

. def: e
comautant of T, ComT by = (%), define the
ComT = {8 e B(X): TS = 8T}.

It is clear that ComT is a closed su‘balgebra of B(X).

icm
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TaEoREM 7. Let w e X** and T e B(X). If T commuies with every
{one-dimensional) compact operator in I, then T e (I, and ComT = B(X).

Proof. Suppo§e that T ¢ (I). Choose an z 5= 0 such that Tz ¢ {(w).

Let w e X™\X. Now w™ is total over X (see [10], p. 104, exercise 2)
so that there is a functional few! with f(#) % 0. Then 2 ®f e I, but
2®f ¢ ComT. ‘ )

Tor we X use Corollary 2 and the Hahn-Banach theorem.

COROLLARY 6. (a) ComT = B(X) if and only if T e<I}.

(b) £, is the commutant of an operator if and only if Q,, = B(X).

(¢) T, s the commutant of am operator if and only if w = 0. (Use
Theorem 3 (¢).)

(@) If w'e 6**\¢, then 2, is not the commutant of any operator i B(o).

(Since 2, % B(o), see [11)

7. The nature of isomorphisms between certain subalgebras of B({X).
Let 4, and A, be subalgebras of B(X). We say that A, and A, are iso-
morphic as algebras, and we write A, o A,, if a bijective linear trans-
formation ¢: A,—4, exists which satisfies @(8T) = ¢(8)p(T) for all §,
T e A,. Such a transformation ¢ is called an algebra isomorphism.

We wish fo determine the form of an arbitrary algebra isomorphism
@t I'y=>T,, where w, z € I*\X. We first show that  is necessarily con-
tinuous, and hence, by the open mapping theorem, & homeomorphism.
We give a definition and three lemmas. .

Let X be a Banach space and & a total linear subspace of X*. For
ve X, define |olly = |6 | 7|l = sup{If(@): [fI <1 andfe} I g is
equivalent to the original norm in X, we say that & is norming. See [10],

 p. 105, exercise 24. .

TmEvia 8. Let X be a non-reflewive Banach space and let w e X*™\X.
Then w* is norming. . . : ‘

Proof. Now w' is total, because for » e X with » 0, we have
wi\ot o @. Also X@w' is closed in X™, because X is closed and w*
is one-dimensional, Here wt = {g e X**: ¢(f) = 0 for all f ew}. The
result now follows from [10], p. 201, exercise 20.

LeMmA 4. Suppose that {y,} is o sequence in a non-reflemive Banach
space X, y,ll—c0 as n—>co, and w e X**\X. Then there is a functional
few® such that limsup |f(y,)| = oo

n—+00

Proof. Suppose sup|f(y,) = sup lin(f)] < oo for all few'. Now U
.zl n=1

regtricted to the Banach space w> is & member of (w)*. The Banach—
Steinhans theorem shows that sup [y,ll,L < co. Bub since wt i§ norming,
nzl
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we must have ||y,[,L—>oco because [y, [|--o0. This contradiction yields the
result.

The next lemma is a modification of Lemma 1 of [4].

LemMA 5. A set H < I, is bounded if and only if the following con-
dition is satisfied. For every S e I, there is a number o> 0 such that,
if A is a real nwmber satisfying || < a and U e H, then I—28U has an
inverse in I,.

Proof. Necessity: Suppose |Ull<< M for all UeH and let Sel,.
We may suppose § = 0 sinee I iz invertible. Put o = 1/M|§|. Then
ST < allS| M =1 for |\ < e and U e H, and hence I— 28U has an
inverse. See [10], p. 259, fact (ii).

Sufficiency: Suppose H is not bounded and let {U,} be a sequence
of elements of H with |U,[—+o0. The Banach—Steinhaus theorem implies
the existence of z,e X such that Im||U,(z,)] = co. Lemma 4, with

Y, = U,(#,) now gives a function f e " with limsup| f(Un(xo))} = oo,

Choose a > 0 arbitrarily, let A, = 1/f(U,(s,)), choose an integer N
such that |Ay| < a, and let § = z,®f. Then § € I', by Corollary 1. Since
(I—2y8Ux)®, = 0, and @, = 0, it follows that I — i, 8 U, has no inverse.

TuEOREM 8. If ¢: I',—~TI, is an algebra isomorphism, then ¢ is con~
tinuous.

Proof. Let H be a bounded subset of I',. Then, by Lemma 3, for
every S € I',, there is a number « > 0 such that if 2 is real and M] < a,
we have I—A8U invertible for every U e H. Hence ¢(I)—Ap(8)p(U)
= I —g(8)e(U) is invertible in I',. It now follows from Lemmzn 5 that
@(H) is bounded in I,. Thus ¢ is continuous.

We now give the following modification of Lemma 2 of [4].

LEMmA 6. Let X be a non-reflevive Banach space and w e X*\X.
An operator Uy e, s ot most one dimensional if and only if for every
U eI, there is @ scalar A such that

(6) (OU,? = AU,

Proof. Necessity: It is clear that for any zero-dimensional or one-
dimensional operator V, there is a scalar 1 such that ¥ = AV. But U,
being an at most one-dimensional operator, UU, is always at most one-
dimensional so (6) follows.

Sufficiency: Suppose that the range of U, contains two linearly
independent elements y, and y, with

Ugty =41, Ugty =45, &:,8,9;,YX.

Now w, §,, and §, are linearly independent vectors in X**. It follows
from [10], Theorem 3, p. 39, that §i- 3 wt Nj,. Thus we can choose f, € X*

icm
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such that f; e (wNJ;)\g,. Thus, after replacing f, by a suitable constant
multiple of f;, we have

w(f) =0, fily) =0 and fi(y) =1
Similarly we ean choose f, e (wNj&)\gi- 5o that
w(fs) =0, folyy) =0 and fe(y) =1

But
U = '1’1®f1+w2®f2'

Corollary 1 shows that U e I',. Now we have UU,w, = @, and UU,z, = By
hence, on setting V = (UU,)’, we have Va, = @,. But (6) implies Va,
= AU[Uy#,] = A2,. Thus, @, = Az,, consequently y, = Ay, contrary to
the assumption that y, and y, are linearly independent.
‘We are now able to prove the main theorem of this section.
THEOREM 9. Leét X be a non-reflexive Banach space and let w, z € X*\X.
If : I,~TI", is an algebra isomorphism, then there s a linear homeomorphism

. TeB(X) such that

) p(U) = TUT"  for Uell,.

Proof. We determine T just as in [4], Theorem 2. Choose f, e wt
and 2, e X such that f,(z,) =1. Put

Uyt = fo(m)2, = (2,®@f) for = zeX. M

Thus U, e I',. Consider V, = p(U,). Since U, is one-dimensional, we
have by Lemma 6 and the properties of @ that ¥, is a one-dimensional
operator in I7,. Say

(8) Voy = go(9)yo = (i‘/o®Qo)I’/ for yedX,

where y, e X and g, € X*. Since U, # 0, we have V, == 0, hence y, 5 0
and g, # 0. By Corollary 1 we also have z(g,) = 0. We define the operator T
as follows: Let v ¢ X ; we choose an operator U e I, (for example, Q)
such that Uz, = 2 and set Tw = Vy, where V = ¢(U) and y, is deter-
mined by (8). Bxactly as in [4] we have that T is well defined, bijective,
linear, and continuous. 7' is thus a linear homeomorphism in B (X). More-
over, just as in [4] we have (7) holds.
CoroLLARY 7. Let X be a.non-reflevive Banach space and let w,z

induces an inner automorphism @:

z

B(X)—>B(X) such that $(2,) = 2,.

Proof. If T is the linear homeomorphism constructed in Theorem 9,
we show that T%*w = wz for some u #0. For if T*w ¢ (2), then
T (2) ¢ (w). Let w, = T**(2) where w, ¢ (wd. Choose few'\w;
and @ # 0. Then z®f e I, but ™ (@@f)™T™ " (2) = T™w,(f)d ¢ (2.
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8o T(@®f)T™* ¢, ie., g@®f) ¢TI, which is a confradiction. Thus

T*w = puz and g =0, because w # 0 and I™* is an isomorphism. Now

et SeQ, and S™w =g (S)w+s Then (F(8)* =T8I (2)
A\

= 0,(8)2+To. So §(8) € 2,. Similarly, §~(2,) = £,. Thus, #(R2,) = Q,.

8. The subalgebras 2, and I', for B(l). We make the usual identifi-
cation of I* with m (see, for example, [10], p. 91); then I** is identified
withm*. Nowitt = {;} e land s = {®,} ¢ m, we have t(w) = m(t) = 3 2.

B=1
Thus if ¢ == 0 so that &, = 0 for some & we have @ (¢*) =1, % 0. Hence
we have proved the following lemma. X

Lesya 7. If f 1™ and f(o) = lime for m e, then fel™\1.

We now give some examples of functionals in T**\I. Let BN denote
the Stone-Cech eompactification of the natural numbers N. (For ex-

positions on ¥, the reader is referred to [5], [8] or [12]) Let t e N\N
and ¢ em. Now 2 can be regarded as a bounded continuous complex

function defined on N. Thus 4 has a unique extension # to fN. Define.,

9) Limyw = &(t).

Tt is elementary to show that Lim, em* and that Lim,z = lime for
2 ec (see [10], p. 270). Thus Lim, e™*\] by Lemma 7. It is also clear,
ginee BN is a compact Hausdorff space, thast for 4, 3, € BN \N with ¢, 7 1,
we must have Lim, # 7 Lim;, z for some & e m- However, Lim, # = Lim, »
= limg for T e so that Limy and Lim, are linearly independent mem-
bers of I**\I. The cardinality of AN\ is 2° where ¢ denotes the cardi-
nality of the continuum (see [5], p. 139, 90). Thus the cardinality of N\
is at least 2%

The Knopp-Lorentz theorem [6] shows that every T e B(l) is given
by an infinite matrix {a,;} in the following manner.

Ta ={ jankrsk}, zel,
k=1

where |} = sup Y |@,] < co. Thus the cardinality of B(I) is c.
k=1n=1
The above considerations together with Theorem 9 and Corollary 7

yield the following result.
TEEOREM 10. There are points w,2 e ™\ such that T, is mot iso-
morphic to I,. _
- We can also give a ‘positive’ result. Let f: BN—BN be a homeo-
morphism. Then f induces a permutation = of N. Define ¢: B(l)—=B(l)
as-follows. If T e B(l) and T is given by the matrix {a,.}, set ¢(T) =8

icm
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where S is given by the matrix {b,,} with b,, = a where ¢ = 7!

X N i n o(n)o(k) o .
It is easy to check that ¢ is an algebra isomorphism which is also an iso-
metry. It can also be checked that if #; e BN\ and ¢, = f(4,), then
?(Puimy) = Pvimy, 04 @(Ivim,) = Iywy, where Lim, and Lim,, are
defined as in (9). )
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