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A version of the Harris—Spitzer ‘‘random constant velocity” model for
infinite systems.of particles

by
WOJCIECH SZATZSCHNEIDER (Warszawa)

Abstract. In this paper a one-dimensional system of infinitely many elastic
particles is considered. If the initial positions and velocities are independent random
variables, then the actual motion of the 0th particle converges to the Gaussian process,
which is in general non-Markovian.

0. Introduction. We shall consider a system of particles with equal
masses (point masses) on the real line. This system will be one with a
“random. constant velocity”, ie. the position z,(t) of the kth trajectory

at time ¢ >0 (if the particles can penetrate each other) is described by
the formula

() = m+ vt for

where {1, —k}T%, {v,}12 are independent systems of independent random
variables 1dentlcaﬂy distributed in each of the systems.

‘We shall consider the billiard-ball case, i.e. whenever two partlcles
meet we assume that they collide elastically, that is, the collision con-
serves the energy and momentum. This implies that they simply exchange
trajectories.

If Elz,—%] =0 and E[v,] = 0, we define, by the deterministic
theorem of Harris [6], the actual motion of the kth elastic particle v, (t).

We restrict our attention to the trajectory y(¢) = 4,(t). In this model,
which we call model D, we shall prove the convergence of the finite-dimen-
sional distributions of the processes Y, (f): = y(At)/4AY, t> 0, to the
joint distributions of the Gaussian process X (f), as A-—>oco, with

BLX(5)] =0,
X(s)] = min(t, s) v

k=0, +1,...,t>0,

B[X @) — Bmin (tu~, sv™) +-min{iu*, sv+)];
here v and v are independent random variables, with the same distribution
law ag v,’s, and

a”:= —min(0, a), a*:=max(0,a).
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The process X(t), ¢ e [0,1], can be realized on Cy y.

In the case of symmetric distributions of the variables z;, —% and v,
we shall prove, moreover, that ¥ ,(-) = X() in the interval [0, 1],
where = means weak convergence in the space of measures on the space
of continuous functions on [0, 1]. In this symmetric case the correlation
funetion of the process X (-) is simply

min t, 5) B{lo|]— 42 [min[t|ul, s ol 1]
The process X (-) then has the following structure:

(B0 W (1) = X(t)+27"Z(1),

where Z({t, 0) = [ Y(tp], w)P(dv), and the processes ¥(-), W(:) are
standard Browman motions, the processes X (-) and Z(-) being indepen-
dent. Physically, weak convergence gives the convergence of the obser-
vables.

In some cases covariance can be marked out explicitly. We shall
do this when the distribution of velocities U is normal. -

‘We shall also discuss the non-Markovian character of the process
X(-) and we shall prove the non-differentiability of its trajectories.

Finally we compare this model with the model of Harris—Spitzer [6],
in which. {#,}*% is a Poisson system.

This paper is an extension of the author’s lecture given at the 4th
Probability Winter School in Karpacz [11] and was inspired by the note
of Frank Spitzer in [9].

The author wishes to express his deep gratltude to Professor Zbigniew

Ciesielski for his kind interest and help during the preparation of this

paper. The author wishes also to thank Dr Joachim Domsta for many
valuable discussions.

1. Definition and existence of collision processes. Let us assume that

(D1) @, vy, By, Uy, By, V_y, ... are independent random variables.

Let the distributions .47, of the random variables x,—% and the
distributions %, of the random variables vy, k =0, £1, 42, ..., satisfy
the following  assumptions:

(D2) =4 for k = L1, £2,..., where E[z,—k] =0 and 4, is
concentrated at-the origin.

D3) U =% for k =0, £1, 12, ..., where B(v,) = 0.

(D4) The equality P (vt = 2;+0;-8 for some interval [0, T]) =

holds for -all pairs @ = j, z,j =0, +1,.
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Our model will be realized on the probablhty space of the initial
conditions
+o0

H (R*, B, v1),

Je=—c0

(2,%,P) =

Where B iy the Borel field in the plane R? and y, = 4P @%, where
A is the distribution of =,.

We restrict our attention to 2y = Q such that for every w e 2, and
, n=01,2,... we have

-1

D) #l@+ o l> —n) < +oo and D@+ 1< n) < +oo.
k=—o00 k=1 " .
But it follows from the finitness of the expectations B [z,]

=Ba]+k =k
and E[v,] = E[v] = 0 that

o0

ZP(wk—l—@k‘l< n) = ZP(m+v~l~n< —k) < + o0,

k=1 k=1

where # and v are independent random variables with the distribution
laws A" and %, respectively. Similarly,

2 P(wp+o,- 1> —n)< + oo,

k=—o0

Hence, from the Borel-Cantelli lemma, We immediately infer -that

P(Ry) = 1. It is easy to see that the set U {#;(»)} has no point of con-

k=—w0

cenfration for any w € £2,. Let us order by < the points of {&,}:

o< Ef [m, < oor (w, = and K <j)].

Since the set {w,(w)}i ., has no point of concentration for any o e 2,
the order < allows such a numbering k->n(k) that

KB KB =05, <.,

where
Byt = thyy o for k=0, +1,...

Let us write 4, = Uy f0r k =0, £1, ..., and define

Bp(t) = &+ 0,0t for 1=0.
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For every e, the family of continuous functions #,(t), ¢ 0,
satisties the following assumptions of the deterministic theorem of Harris
[6], ie. )
#;(0) < B1,.,(0) for £ =0, £1,... and @,(0) = 0.

(H1)
(H2) For sach i and T > 0, inf &;(t) and sup &(t) are finite and satisfy
o<IST o<i<T .
lim inf #(#) = +o0, lm sup &(t) = —oo.
o0 0IST Tr—o0 0IST )
(H3) If % 37, then {t: (1) = & (t)} does not contain a (non-degenerate)
interval.

It remains to proire only (H2). In our model, (H2) is equivalent to

the conditions: :

Hm min (#,(T), &(0)) = +oo,

k>0

Hm max (&, (f), #(0)) = — oo.

k—+—o0
But this follows immediately from the definition of Q,. Following Harris
[6], if we define y;(t). by the limit y;(f) =]immed(w,~w,,,(t), ey w“,,(t))

" N—>00

where med is the median of the 2n--1 trajectories @;_, (%), ..., Z;.a (1),
then y;(), ¢ = 0, £1, ..., is the unique set of functions with the following
properties:

(Y1)  9:(0) = 2;(0) for ¢ =0, ;i:lA,
(Y2) Y:(8) < y€+1(t) for 10, =0, +1, e
(Y3) . For each t>0
lim inf y,(r) = oo,
00 0<T<Y - -
lim sup y;(7r) = —oo.
00 0TSE t
(Y4) The union of the graphs of the y,(-) is identical to the union of the
grophs of the x;(-).
(Y5) For i +#j, the set {t: y;(t) = y;(t)} does not contain any interval.
(Y6) The y;(-) are continuous at t.

The functions ¥;(f) may be viewed as an actual motion of the ith
(after ordering) elastic particle in a one-dimensional chaotic bath formed
by the remaining. particles.

2. Convergence of the joint distributions. Let y() = y,(t) be the

“particle” under observation. Assuming that conditions (D1)-(D4) are
satisfied, we shall prove the following
#
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THEOREM 1. The finite-dimensional distributions of the processes
Y, (1) = y(45)[A, £ = 0, where A—>oo, converge to the joint distributions
of the Gaussian process X () with
BIX®]=0 for t>0,
BIX(#)-X(s)] =min(?, s) & |v] — E [min (fu~, sv~) +min (¥, sv*)1, 1, s >0,
where uw and v are independent random variables, with the same distribution
law U (cf. (D2)).

Proof. Following Spitzer [8], it suffices to show that for every
melN = {1,2,...} the distribution of the random vector with m com-
ponents,

718

A—m{

?

—1
2 £ (@, + 5, A1, < A qy) -, 2 % (B + B At > AW ai)} -
- f=—o00
1<i<m,

approaches the m-dimensional Gaussian distribution with the mean and
covariance matrix as above corresponding to (t15 -, ty). Bub an asympto-
tical behavior of this random vector on £, is the same ag that of the
random vector with s components

-1

2 2 (B 0 At > A ai)} —a;.

f=—co

A“I’Z{Z 2 (@ + v, At < AMVap) —

k=1

Thus we shall work on sums of independent random vectors. We use
the following multidimensional central limit theorem:

For every & =1,2,...,4, lb (X®P) = (X0, . X0 pe inde-
pendent random vectors. If

in
(C1) . B(XMRy__ g 0
DB i) 1<f<mk§ & . )= b2
i, .
2 A n,k) k) __ (n, k)
(c2) [é’/l 1d, l<m /2;}'{ ((XJ E(X} ))(X£ By )))Z:.? itz
'[7l,
g (1, k; k) |2 0,k
(@)Y S| By X~ B > ) 0,
then

i . . o
’:2 (XOH—b) = N(0,[oz]).
=1
Let v

XY = (g + v Aty < AL ) A,
X = — y@ vy Ayl > AL a) - AT,
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k =1,2,..., and let' 4, tend to infinity. First we shall check the cor-
responding conditions (01)%, (02)®, (03)® for the infinite systems (X{™*,
k=12,..)n>1

(C3)™ is obvious. ‘
(C1)® means: For every real number a, 0 <<,

.A““”‘{ [Z;; (2,0, A1 < AM2q)

k=1

i (Z (@ + v At < A¥? a) —1)]} —a
k=—oo

as A->oo.
We shall write [-] as an integer part and use the notation
it limA~Vg, = lim A7Y2f,.

A—>oo A—o0

9a < fa
We have

{Zx(a;k—i-'vat < AYg) 2 x(mk+vat < AWq)— 1)]
f=—oc0
[4124)+1 o
D Plhtotodi>APa)+ P
ko k=[4}2a]41
422 14124)
+ P(k—.—a)+1;At>A"2a)+ D' P(k+a+odt< Aq)

k=1 k=1

Pk+o+0vAt'< A a)+

< —

< AMg+ 2P(m+vAt< — k)~ 2P(w+w{t> k)
k=1 k=1

o APat B{z+0dt)"}—Biz+vdt)T} < AV a.
Now we shall prove (02)°. Here we shall use the notation

iff  HmAd7(g,) = hm A_l (o).

A0

44 = f4
‘We have to prove that, for every a, 8, 0<%, s<1,

(D P@itvdt < A a, 2y v As < 47 6)+
k=1
_‘1
—+ Z P +v, At > A a, o+ o, As > A”ﬁﬁ)) —_

k=—o0

—{ X P+, 4t < 4P (@, + 0,45 < 4 B+ -

k=1
-1
+ ) Plop+udi> A" a)P @+ v ds > A" /3)}
k=-00

—-1ain (¢, §) & o] — E [min (fu~, sv7) +mi‘n(tu‘f, svt)]

Harris-Spitzer model for infinite systems of particles

as A tends to infinity. Assuming «, y, 4, v to be independent random
variables, #, ¥ have the distribution ./ and %, v have the distribution #%.

Now the expresion in the parentheses () is equal to:

ZP(w—I—vAt—AI/Za < —k,m+vds— AV < —k)+
k=1
+ Z.P($+UAt—.A1/2a> by w+vds— AV 8> &)
k=1
= ) P(max™ (s+04t—4a, s+ 0ds— A7) > k) +
k=1 B

+ Y P(min* (04 vAi— 4" a, -+ vds—A120) > F)
k=1

< Blmax~ (g +vdt— AV a, g4 vds— A¥ )]+
+ Emin*(z 4+ v4t— AP a, 5+ 045 — A )]
< B[max~ (vAt, vAs)+mint(vAt, vAs)] < Amin(t, s)-Bo|.
The expresion in the braces {-} is equal to:

©

ZP(m—l—vAt——Allza <

k=1

—k)-Plot+ods—A¥f < —F)+

+ Y Po-+odt—A"a>k)-P(a+ods—A"p > k)
k=1

= ZP(ma,x‘ (+udt— A" a, y+vds— A" B) > k) +
=1

+ D Plmin* (@4 udt— A" a, y +v4s— AV p) > k)

k=1
< Bmax~ (5 +udt— Ao, y+vds— AVp) -+
+min*t (z+udt—AVa, y+vds
< A -B[max~ (lu, sv)+min™ (tu, sv)]
= A-H[min({u", sv~) +min(tut, svt)].

—47p)]

From the definition of 2, let i, be such that, for every 1<j<m,

n=1,

co

2 F

]c=
and for every 1<Cj, I<m, n=1,

('n k) =+ 0)

cov (X0, Ximh) < =,
St B n
£
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Then for i""k), k=1,...,4,, the assumptions (01)-(C3) are satisfied
with the same mean and ecovariance function. But

P(_gj i("’k)—— i’ i("’k) = 3) < m-1/n.
=1 =1

Hence > i(“””') is asymptotically mormal, as stated by Theorem 1, if
E=1
n—>o00, X
3. Weak convergence.
THEOREM 2. Let us assume that the A~ and % defined above in (D2)-(D3)
are symmetric distributions. Then

Y0 = X(®)

as A-—>oo.

Our proof is based on the tightness argument, and although we do
not have the “stationarity properties” of the point processes {yy(t) —y (%)},
we use Spitzer’s ideas [8]. According to Spitzer [8] and using the symmetry
of our model we shall prove Theorem 2 whenever we show that for each
6> 0:

n
lim Hmsup ZP[ sup
nsoo Ao jTy  bEllpelpia]
where #, = A(k—1)/n, k = 1,2, ..., n+1. It will be clear from the proof
that we may set § = 1 without loss of generality.
Notice that

() —y () > VAS/4] =0,

limsup S’P[ sup Y1) —y(h) > VA4
Ao oy tellplpyr)

k3

ZP[ sup ¥ () —
f=1  Ueltptrgal

< limsup Y(t) > VA4 and y(t) < (n*—1) VAT+

A—so0

+lim SPlytt) > (i —1) VA,

A-ro0 377
According to Theorem 1, the second term on the right side tends expo-
nentially to zero while n tends to infinity. We shall show that the first
term on the right-hand side in the last expression is O(n~4).
Let us consider the motion of our process ¥ ,(?), ¢+ > 0, on the co-
ordinate-plane 0xt, the position » e R, and time % e [0, co).
Construct the intervals I;(4) « R

Iy =1In_,(4) := (30—1) V4, }-1V4),

Iy =Iy(d) 1= (— $VA, }(~1+1)V4),

icm
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for 1 =1,2,... Let I be the smallest positive integer such that I,,,N
— YA, n#YA) = @. Then T < 20n'%. Let K,(t,) be the number of
particles in the interval I, at time #,. Then for every £ =1,2,...,m,
1=1,2,...,L we have
iim 8- AP B[K,(1)] = 1.

From the Tchebyshev inequality we have
Hm P (K, ,(4) < 1071 4Y) =0
A—roo

for every k =1,...,m, I =1, ..., L. Therefore it remains to show that

lim sup ZP{ sup y(t)—y(tk)>}/2/4,

Ao Loy Elbptpal
Y(t) < (0 = 1)VA, Ky ey am(te) > VA/10}

where K,y (f) is the number of particles in (4, b) at time i. Following
Spitzer [8], for the event in the braces in (1) we get, for each &,
{-re{ sw @z 1V4},
teltyo gy 1)

Whero By = By(@) = y(ty, ) -+VAI4, Qa, () := Lp, (1) ~Bp, () and Ly, (0
and Eg, are equal to the number of trajectories hlttmg the line z = B,
from the left and from the right, respectively, in the time interval [3, ¢].

Letusputgy =0, ¢, = [m-a " PVAI+1,m =1, ..., My §_, = —Gum;
where [-] is the integer part and M is the smallest positive integer such
that gy, ¢ [0, n*VA]. It follows that M < 3Vn for A> 2.

Now, for every m =0, &1,..., +M, k =1, ..., n, we easily infer
that

)

=0 (n~ 1“) ’

> VA0, y(t,) < (n*—

Hm P{W,,(t,) > VA /40] = 0,

A0

where W,,(t,) is the number of particles in [g,,, G +1] at time ¢ = 7.

Therefore we may agsume that for everym = 0, 41, . :{;M E=1..,mn
we have W,, . < VA /40. Then
L) < Ligane )+ Wingoie < D (1) +V A 40,
Byw) ) 2 Biguylt) = Wiy (0) > B, (1) —VA4 40,

where L, ,.(2) (Rm,k(t)) is the number of trajectories hitting the line z = g,,
in the time interval [t,,t] from the left (right) and (w) = m, il m,
< By (w) < my,,. To show (1) it is sufficient to ascertain that

n nst
(2) limsup 2 2 P[ SUP (Lo (1) — By i (1) > VAJ20] < =
Ao =1 me—Id ’k’tk—l-l] I/;;
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By using the Tchebyshev inéqua.lity once more, it is easy to ascertain
that there exists a ¢ > 0 such that, for every & =1,2,...,, .

lim P(V,(t) > ¢ Afn) =0

A->c0
uniformly in m = 0, £1, ... (cf. the definition of g,’s, where V,,(t,,)
= m,k(tlc-}—l) + Rm,lc(tk+l))'

Thus it remains to prove

(3) limsup 3Vn ZP[ Sup Qo) > VA 30, Vo) < 04 n]

A0 F=1 teltp,tp 1]
< const/Vn,

where @ (1) : = Ly (t) — By (t). In the further considerations for o e 2
and » > 0 we shall neglect ““collisions” from #_,, and , if #_, >0 or 2, < 0.
Hence, Theorem 2, in order to complete the proof of it suffices to prove
that

@) Pl sup  Qou(t) > VA[30, Viltey,) <
teltp, g1l

¢A [n] < const/n?,
the universal constant depending on ¢ only.

‘We shall show that, for every A >0,k =1,2,...,n, and N < Ae¢/n,

"
P sup Qoult) > VABO Voltin)) =N, 74, ...y 1) < o

?
Ueltptp .1} n?

- where {7y, ..., 7y) (0) are all the moments of “collisions” of the lines
%=+ vyt with the line # = 0 in the time interval [i;, ¥,.,).
The random variables

) = ¢ (z;) where

¢(7) =t +[(r—t) 2 njA]- A2, §=1,.., N,

where » =1, 2, ..., approximate the variables =y, ...,
sense: The g-algebras spanned by 7y, ...

7y in the following
; Ty Yeduced to the event Vy(fy, ;)

= N, are P—equiva.lent to the limit o (U F,), where F, is spanned by

(=, ..., 2@, for v = 1, 2,
NOW, aceording to the Doob theorem on conditional dlstrlbutmns
it. remains to show that for every positive integer »:

const

(5) P( sup Quult)>VAB0 | =+, R =<

teltgtpp 3l n?

.7% — points from the »th diadic partition. The event
- (7'53): n$), where 2’ >1 and 4 =1,2,..., means

Fix » and 7, ..
o & Qu (), nf), ..
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that ,
a}n,-(w)’!'t”ni(m) =0
or
B_py(0) +10_p (@) = 0,

for some % e[r{;"), 4+ —% -2“"]‘ Then for w e 2y((Y),nd), ..., (Q, n§))
we may introduce the following order in {i,..., N}: v

i< b =rD<® or [ =+ and (Ing] < Imgl or 7, <0 < my, = —ny)].
The numbers 79, ..., r{) ordered by < are denoted by #f, ..., 7). Hence

it remains to prove that

Plmax8; > VA[30 | Qu((r0, n0), ... (), n$))] <—};-comt,

1IN n
where S; is a sum of random variables z; = 1, 1 <j <4, where 2; equals
+1 iff the “collision” in Fg-”) with # = 0 arises from the left and —1 if
it arises from the right.

Now we shall use the following theorem of Billingsley [2] for sums

f (possibly dependent) random variables:
If for every h >0
P81 =B < B (-0
then
P(max |§;] > h) < Kb,
[E<2<] :
where K is a universal constant.

If in the chain 2, ..., 2 there are two “collisions” beginning from
particles », and »_,, then, obviously, [S;— ;| is not changed and may
be neglected.

Finally we obtain at the remaining points 7., i+1< 4 <j, inde-
pendent random variables +1 with probability 1/2. Hence ’

PLI8; =8 = Rl 6—5)2h~"
Applying Billingsley’s theorem, we have

P[max |8, > A]30] < K-30°n°.
1<i<l

Thus the proof of Theorem 2 is complete.

4. Discussion of the process X (t).
ExAMPLE 1. Assume the distribution % to be a uniform distribution
on [—a, a]; then we have .
1 o 1 min(@, s)]
E[ X)X == .
L0 X()] = a|ming, o+ 5 T

for (¢,8) #(0,0), 0<<t,s<1.
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Proof. Let 0<s<<t<<1; ¢ 5% 0. Then
B[X(t)y-X(s)] = —as—— ffmm(tu sv) dudv

8
a i’ e a
1 1 1 1/s 82)
=-2—as————-2a2(ff mdudv+f fs'vdudv)—a(gs—-—z-(z ——ét—) .
o 0 0 fv :
13

ExawpLE 2. Assume the distribution % to be normal # = N (0, o).
Then we have

BX(t)-X(s)] (Viz 452

1/271:

Proof.
P (min(tlul, siol) < @) = P(¢|u] < z) +P(slv| <o) —P(tlu| < x)-P(sv] < )

and then min(t|u], s}v]) has the density

V2 a2 ) 1) o (—w )
Vato ex? 20202) ' Yrse P2t
— 2 il fex __y2 +
ntso? P 21202 P P 282 g2 Y
_‘”2 z yz
JreXp(28202)!‘3}@(2152 2) y}
Hence

min (¢, 8) Bo — § Emin (|u], slo])

—lt—slo 17 —p\ f —y?
- Vor + TttsazfaE i 2t g2 fexp 282%¢? W+
8 0

—t—slo 1 z? — 2
=—————1/E +— rrts (+ sﬂ)fexp (2t2 )exp (»—28202)11.'0

(Ve +fs—lt—s)).

27
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It is natural to ask whether the limit process X (t) is Markovian. The
answer turns out to be generally negative. Namely we have
TEEOREM 3. The process X (1) is Markovian if and only if there ewist
a> 0, f <0 and non-negatives p, q, 7, p+q+r = 1, such that
with probability p,

0
6) v =1a with probability
( s 4,
: B with probability r.

In this case the covariance is
3B |- (1+p) -min(, s).
Then X (1) is simply a Brownian motion.
Proof. If X (f) is Markovian, then for every % and ¢ > 1 -

1 1 1 1 1 Y]
[ x{Ge) x{e=]] () wim] = ofx () o] 2]
(cf. Feller [5]). But this means that for every k = 14,2,..

{Ev| — E[min (v~, au~) -+ min (v, aut)]} x

X {Hv| — B[min (v~, a*~'%~) +min (v*, ¢ 1ut)]}
= {Bv| — E[min (v, ¢*u~) +min (v*, a*4™)]} x
x {B |v] — B [min (v, #~) 4 min (oF, »¥)]}.

Given a k approaching infinity, we have for every a > 1
Efmin (v~, %~)+min(v*, »*)] = E[min(v™, at~)+min(s*, aut)].

But this may be fulfilled only if (6) is satisfied. )
The process X (¢) can be realized on 0[0 - In & “symmetne cage”
it is & consequence of Theorem 2. But even in the general case we may
Prove more:
. [2(t) —@(3s)]
alj»l:-l% uf?f@ (It —1 |10g [ta.“tz[[
with probability one (cf. Ciesielski [3]).

Then we may ask whether there exists a “velocity” process of the
Limit motion, i.e. whether the trajectories of the process X (f) ave differen-
tiable. The answer is negative and we can show a little more:

THEOREM 4. We have

p[ﬁ X (t+h)— X (1))
N0 h

We use the following theorem of Kawada and Komno [7].

)1/2 <0

= o0, for each 0<t<1]=1.
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If there emists a positive integer g such that
V1
lim (——*—) — =0
molgh)) B
where g(k) is a negative, even, non-decreasing function such that
BIX(t+h)—X 01> g*(h),

and if there ewisis also a positive integer p such that

Im sup |B(4,X(0)-4,X () <
R\O [f—8|=ph

where

. X(t+h)—X()

ST TN B Oy Sk

then

P[Ew = +oo for every tl<t<tz] =1.
Ao R

Proof of Theorem 4. Let 0 < T <1. We verify this assumptmn
for ¢ =3 and p =1 on the interval
= [T+%8, T+ (k-+1)B) (0, 3/2),

where p > 0 is chosen in such a way that:

-paupy <2
v U v
I 12
THT+B)<g= <(T+2)IT
u~FET
and ‘ )
Pot
vTPAuPdv< ) .
TT+H< % <(T+2B)T
v
wtzpt
Since

BIXG+h)—XBHP > 3Bp-h for h>0,

we may set g(h) = I/%E |v|- k. Hence it remains to show that for every k
such that 4, #@, we have

sup |B{{X(E+A)—X @] [X(s+h)—X()TH <

£,8edy,
h<|i—s|

Ell-h
THE

icm
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But for < |t—s| we have
IB{X({#+h)—X )] [X(s+h)—X(s)]}
< 3| B [min (™, sv7) +min((¢+h)u", (s+h)o~)—
—min ((t+ k)=, sp~) —min (", (s+ ko~ M+
+}|B [min (tu*, sv*) +min (¢ + k) u, (s+h)ot)—

—min ((¢+A)u*, svt) —min (tu*, (s I h) v+)][ .

We restriet our attention to the first integral. If (u~ = v™) or (tu

> (s+h)v7) or (sv™ > (t+h)u”), then we have 0 under the mtegral.
Hence it remains to show that for every &

© lim - sup

N0 ts:A
v tu <u<t+h

u?&v

[min{(¢-+h)u~

, (5+h)v™)—sv

But this follows immediately from our assumptions, because the expression
W under the integral satisfies W < h-v~ and

{(u‘,w‘): (.f- U‘<ﬁs————,u #o,t,sedy, t—s|= h)}

7
. T v~ T4+28 _
C{(’M )0 ) (m<F<T‘, U~ Fw )}.
Then Theorem 4 is true for 7 < ¢ <1 and hence for 0 <t < 1.

The assumption F |v| < co is essential. In fact, if B|v] = + oo, then
it is easy to see that each trajectory m(f) collides mf1mtely many times
in each time interval.

Let us now consider the model of Harris and Spitzer (see [6], [8], [91),
which may be described as follows:

(Sl) -’”o = 0’

(82) & =@, —w_, are exponential random variables with the mean one
Jor =0, £1, 42, ..;

(83) v, are identically distributed with B [v] = 0, and Elv,| = 1;

(84) &, 9, &, 0y, E_1, V1, &, ... are independent random variables.

Here, 2, is a system of particles in the macroscopic equilibriam (the
origin 2, = 0 is included in the system) and, what is more, Spitzer proved
that if we define w,(f) = {47 (8) =9 (1), v4(2)), then w,(#) is a random Poisson
measure in a phase space for each ¢ > 0. Algo for this model Spitzer proved
that ¥ ,(¢) = W(f) as A->oco, where ¥ () is defined as in Theorem 1
and W (#) is a standard Brownian motion.

Now let us consider the model D, in which @, = k and P{v,c = +1}
= P{v;, = —1} = 1/2. Then, aeeordmg to Theorem 2, Y, (¢) = L1/2 W(t
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as 4—co. On the other hand, y(At) may be treated as a symmetric con-
tinuous random walk (i.e. 2y(%/2) is an ordinary simple random walk),
where changes occur at the moments +1/2, 41, +3/2 ... Weak con-
vergence is now a consequence of Donsker’s theorem on the weak con-
vergence of random walks to the Wiener process. Therefore our model
may be viewed as & generalization of Donsker’s theorem and this is why
we call it “model D”. Now, if we specify in the model D the distribution %,
assuming that it is absolutely continuous, then the assumptions of Do-
brushin’s theorem are satisfied (see Stone [10], Th. 5). Therefore it is
plausible that via the macroscopic equilibrium, suggested by Dobrushin’s
theorem, the corresponding process of the mull particle, in this special
case, should converge to the Wiener process. This is apparently why
Spitzer [9] writes “Now there should be no great difference between
a particle system initially on the integers, and one which is initially distri-
buted as a Poisson system. The intuitive idea is in fact supported by
the theorems of Dobrushin and Stone”. Qur theorems on model D show
that at this point the intuition fails. It is essential that in Dobrushin’s
theorem the convergence to a Poisson distribution holds only for con-
ditionally compact sets but, if 4 tends to infinity, the length of the relevant
intervals tends to infinity as well.

This is the reason why the passage to the limit with ¥, (), A oo,
cannot be done in two steps: first passing to the Poisson system and
then passing to the Brownian motion.
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