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Therefore f(t) < I/g(t) for any ¢ > 0. Integrating, we get

[ fmac—g) = [ Feyf@y'—"d(—g)
0 0

0

< [ farrrgya—g)

— 12 [ fopa—g) = 1w
Y Y

7. Proof of Theorem II. In view of part (iv) of Proposition 2.1,
it suffices to assume that ¢ = 1, and in view of Theorem I, it suffices o
agsume that m = k-+e¢, ¢ > 0. The proof follows that of Theorem I with
minor modifications. Define

As) = [{V(F) >} and  u(s) = |{|D"F|> s}l
Ag in Lemma 5.1, deeompose F = F,+F,; since F, =0 in ¢,
(8) < 101+ |{| DEFy| > s}
From (5.2), it follows that
[{IDFFol > 83| < 057 |1V (Fa)llp,
so that Lemma 5.1 yields )

11
() < A(t) 057 ([ A()do]”
0

1

TUsing this replacement for Theorem ITT, the result now follows as in the
proof of Theorem I.
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A characterization of H?(R") in terms of atoms

by
ROBERT H. LATTER (Los Angeles, Calif.)

Abstract. Distributions in HP (R"") where < 1, are repr a8 we:
(3
> P epresented as lghted

§ 1. Introduction. Let H‘1 (R") denote the space of functions u, har-
monic in the upper half-space B = {(=, y) (Bry evy By, ) y > 0},
whose mnon-tangential maximal fﬂnetmn u*(z,) = sup |4 (2, y)| is in

o

the Lebesgue space I?(R"). Give H?(R™ the “norm”<”ullﬂp {78
C: Fefferman and E. M. Stein [4] have shown that if « € H?(R"), then
hmu( , 1) = f exists in the sense of tempered distributions and that

u 1s uniquely determined by f. We will denote also by H? (R") the space
of boundary distributions of functions in H?(R"™). R. Coifman [2] has
exhibited an explicit representation for f e H?(R'), 0 < P <1, by means
of a purely real variables construction. Here we modify Coifman’s con-
struction in order to obtain such a representation for H?(R"), n > 1.

) Let 0 < p <1 and define a p-atom to be a function b on R® which
iy 1is.ugported on a cube @ in R" with sides parallel to the axes and which
satisties '

. (i) 12(#)] < 1Q7*2, where |Q][ is the volume of @
an

(i) [b(x)a® dw = 0, where o is a multi-index of order o] <N
= [n(1/p —1)], the integer part of n(1/p —1). We then have:

THEOREM. A distribution f is in HP(R™), 0<p <1, if and only if
there exist a sequence of p-atoms b, and o sequence of non-negative real num-
bers A, such that

(L1) f=2 kb,
=0
in the semse of distributions and
(1.2) AUt < 3 2 < Biflfo,

1:0

where A, B are constants which depend only on n and p.
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O. Fefferman obtained this theorem by non-constructive means
in case p = 1. In fact, he showed thab it is equivalent to the duality
between H* and BMO. A constructive proof for p <1 was obtained in
the case of martingales by C. Herz [51.

Before proceeding I should like o express my deep gratitude to
Steven Krantz and especially to John Garnett without whose help and
encouragement I could not have undertaken this work.

§ 2. Proof of Theorem—the easy direction. We begin by proving
the left inequality of (1.2). Let b be a p-atom. It is no loss of generality
o assume that b is supported on a cube @ centered at the origin with side
of length 1. Let ¢ > 0 be an infinitely differentiable function with compact
support in the unit ball of R”, {z: o< 1}, and with [ ¢ =1. Then,
if g, (t) = e "(te); e

(2.1) pobl =| [ @lo—0b(0) d| <1017
R™

Let 2Q denote the cube with the same center a8 @ but with twice
the diameter, and fix @ ¢2Q. Notice that then /2 < jw—1 < 2|2 for
t€Q. Thus p,(z—1) = 0 if &< |2|/2. Fix &> |o|/2. Let P, be the Taylor
polynomial approximation to ¢ expanded about x/e of degree N. Then

L)
Q pe

N+1
b (0)1di <

[pe#b| =

c !Q[1~1/:nlN+1

(o} i
<&
sn
(Here € is a “constant” which may change but will depend only on =
and p.) It follows that .

dx

[ twpipestipan< o1 we [ e <O

zi2Q *>0 i >1
Putting this together with (2.1) y"ield,s sup |p,xb| € L? and {jsup|@.+dil,
&>0 6>0

< (. From the maximal funetion characterizations of H” (R™ [4] it
follows that if 347 < oo and if b; are p-atoms, then 3 4;b; e H” and 1|3 2o
<03 Ar. 7

§ 3. The converse. The proof of the converse will be presented in
four steps.. This section will contain the preliminaries. In the following
section we will complete the proof for the case p = 1. Section 5 will eon-
tain the modifications necessary to extend to p <1, and in Section 6
we will tie up some loose ends.

icm
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At the outset we assume f e I'n H?, which is dense in H” (see [4]).

‘We will remove the restriction by a limiting argument later. The “grand”
maximal function is defined as follows: Put

aty, = fp € OVBY: llglly, = [ Ala)™ Y (Dp(a)ldw<1},

B® IBI<Ny

o+ (W1

fa,(@) = sup sup
lpe&lNu lx—y| <10
Fetferman and Stein have shown in [4] that if fe L' and if N, is
chosen large enough, depending only on » and p, then f e H? if and only
if f;‘,ﬂ  I®. Moreover, there are constants 4, B, independent of f, such
that
Al < ¥l < Bilflgw-

(It is easily seen that, it fe I'nH?, fx, coincides with the function il
of [4].) .

Let Q= {o: fi,(0)>2" for k=0,+1,£2,... The Whitney
decomposition theorem (see Stein [7]) provides us with closed dyadic
cubes @} with the following properties:

(a) Q= UIQjF, k=0,+1,...
im

(b) The interiors of the cubes QF and @7 are digjoint whenever i+ j.
(81)  (c) Put & — diameter of @} Then @ <distance (@], R™ Q)
< 445, .
(d) I£ 1> %, then for each j there is an ¢ such that Q= ¢f.

Let (QF)* be the cube with the same center as Q% but with 9/8 the
diameter. We now present a lemma which will provide us with partitions
of unity over the £,'s: : .

Tmvra 3.2. Let N, be fiwed as above. Let {Qf} be the Whitney decom-
position of 2, deseribed above. Then for each k =0, £1,...andj =1, 2y
there is a function @ € ™o with the following properties:

(i) 0 < ¢f <1 and gf has compact suppors equal to (@F)".

(i) If ol < Ny, then |Degk| < A (@)1 Also, there are constants

A, B, depending only on m, such that

A@r< [d<B@N".
R" :

x ey,

> 1 if
%z — S
00 ;"”f = e = lo if @¢.
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(iv) If |a} < Ny, then

].Du(tpk Ic+l)l<B (dk+1 —la]~n f(pk k+1
R®

(v) If pfghtt = 0, then there are 2" cubes, Q;, and a constant A such
that for some I,

pH(@) g (m) > }Q,"‘”f f pigytt forall weq,.

We will indicate the proof of this rather techmical lemmsa later.
§ 4. The case p = 1. With Coifman [2] we write, for each integer %,

1) f= (fx!,; + jZm,’fwjf) - ;’(f—mé‘)q»f = g+ f(f——mj-‘)%’%
=] =1

J=1
1 . -
where mf = — f fe¥. Then
f 21 '
(4.2) Im¥| < C2*.
. To see this pick yf.¢ Q. such that |2 —y} < 10 for all & < (@¥)*. Pus

(@)
J

Then, by Lemma 3.2, for some constant ¢, 0% € A y,. Thus

(b}“ () =

) = (@) o+ f () < Of%, (vF) < 0%

From (4.2) and (4.1) we have 19 < 02 for each & a.nd consequently,
9> 0 a8 k— —co. On the other hand, f— g, is supported on £, and hence
9x=>f a8 k—>oo-a.e. Thus we find

(43) = 3 g ne.

k=—00

Let us examine

o

(44)  Grp—gr = 2 [ Z .m,fj-}-l k+1]+

=1 i=

+Z [Zm (f_mifj+1~)¢f97;”+l~(f mk+1 k+1]

J=1 d=1

a= Zﬁ?—i—zjy‘f,

i=1 =1

-
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where
1
E41 f T h+1
mg = | foie
4 (P?‘P}CH s

when this makes sense and is zero otherwise. Using (iv) of Lemma 3.2,
the argument leading to (4.2) shows that [mi™| < 028+, Now a moment’s
reflection yields |A%| < 02F+! a,nd I7§] < C2F+.. Notice also that [f¥ =0
and [yF = 0 and that B% and ¥ are supported on cubes Thus we may
write ¥ = 2faf and yf = uFdf, where ¥ = 0|QF|2% and puf = 0|QF+! |2k
and af, b¥ are 1-atoms. Because of (4.3) and (4.4), we have

(4.5) 2 Z‘ (AFaf + ulbh).

k=—o0i=1
Finally,
% . o+l kl_L0k
k;’w;’ (+uf) =0 5& EPNUHE )
=0 Z QU +C D) 2F12,0]
k=--00 k=—co

<of o fa (@) > A} aa

= Olft s < Clf -

§ 5. The case p < 1. The case p < 1 requires a modification: We
must replace the “mean values” mf and mi™ by eertain polynomials
defined below. Once this is done we Wlll except for the proof of Lemma 3.2,
have proved the theorem completely for fe L'(R*)nH?(R"). We lel

-pass to the general cage via a limiting argument.

Define Pf, for each j and k, to be the unique polynomial with the prop-
erty that : . o

[ (@—afyPia)gf (a)do = [ (@—af)'f(@)¢f (@) do

Rn RN
for |a] < N = [n(l/p—1)]. Here af is the center of the cube @f. Also,
if gl sé 0, define P5* in a like manner by

f (@—af T PE (2) gk (0) g} (0)dw = [ (0 w’““)"f o) ¢k (2) g (2) do
§ 33

for |o| < N. If gfglftt =0, put Pi =.0. O. Fefferman, N. M. Riviere,
and Y. Sagher use the polynormals P¥ in [3], and there it is shown that
if € (QF), then |PF (2)] < 02F. We mod]fy their proof to show that |PE (z)|

< 02+ on (QFH)*. Fix ¢, j and k with gf pf ™ 5 0. We note that by a dilation:
and a translation of R® we may assume that Q¥ has side of length 1 and

7 — Studia Mathematica LXIL1
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center at the origin. Also, for simplicity, we denote by ¢ the function

1
ToE L o ‘Pf“‘
f‘P; 2]

Let 7y, ..., m; be an orthonormal basis for the Hllbert space of poly-
pomials of degree no larger than N with the norm

1Pl = [ I1P(@)*¢(z)do.
R

Then the polynomials {m} have coefficients bounded above by a con-
stant independent of . To see this we begin the construction of the 7
with @ = 1. By the Gram~Schmidt orthonormalization process

a'm— 2 o [ a°m g do
=1

(5.1) 7, (%) = T .
“m"m—lzl' [ 0 wp da,,
Lj=1,...,m—1and if a] is the coetficient of #% in m;, then
- 2 a} ([ a'm mypda)
5.2) ar =

lon—5; i fam g,

Using (v) of Lemma 3.2 we see that for some r, 1

a3 (e

<r<2t,

) m(fwawaw)r-dw
. 5 =1

>4 [ gn—
@r

Ry jldo>

Here R;, , is the projection of a™» into the Hllbert space generated by
{1, %, ..., 51} with the norm | ||,[‘2 By induection on m, (5.2) shows

la7'l < 0 for j=1,...,m. The argument used to prove (4.2) now shows

(5.3) ! J f@m(@)p(n)ds| < 0241,
R"

From (5.3) and the identity

L -
P = 3 [ f@) m@)p(@)do)
=1 px
it follows that |P5*!| < 025+ on (QF+Y)*.
The proof used in the case p = 1 now yields, with obvmus modifi-
cations, the result when fe H*nI'. Let f € H? be arbitrary. Since H? A L}

icm

A characterization of HP(R™) in terms of atoms ‘99

is dense in H”, we may choose f, € H? n L' such thatf —fin H® as n—>co,
”fl |HIJ < ”f“ﬂm7 and “fn *fn—lnﬂﬂ < 2‘“”f” ’i’b > 1) Puﬁ;]ng g = fl

and g, =f,—fu_1 (n>1), we have f = Zgn Let g, = Zl"b“ be the de-

eomposnlon into p-atoms of g, whose ex1stence was proved above. Then

=3 Suw and
n=1j=1
Z 2 P <0 ? 980 < CIf o

ne=1 j=1 n
‘We now have the decomposition (1.1) for f e H” except the series converges
to f in H” norm. The corollary below shows this convergence also takes
place in the sense of distributions. This completes the proof of the theorem.
If ¢ is a festing function denote by Py(¢) the unique polynomial

of degree N = [n(1/p —1)] with the property that
f P o(n)de = f 2°Py () () dow
for |a| < N. Asin Goﬁman [2] we note the following

COROLLARY. If ¢ is a lesting fumction, then
| [f@)¢@)ds| < Olf osupl@i™® [ |p—Pq(p)ldo.
B Q Q
Proof. It is true for p-atoms.
‘We note that, by results of G. N. Meyers [6] and of 8. Campanato [1],
sup QI [ lp—Pq(g)ldo
¢

is a norm on the Lipschitz space 4,, a = n(1/p—1), equivalent to the
usual norm, if p < 1. If p =1 it is the BMO norm. The corolla.ry thus
implies the duality results

Aay <1,

(B ()] =[BMO, iy

§ 6. Proof of Lemma 3.2. Fix N,. Put

M, 0<s<f,
@) =10, <0,
1,  a>=1.

Extend 7 to be defined on all of R so that I is non-decreasing and infinitely
differentiable except at @ = 0. Let m(z) = I(162+9). Finally, let

m(x), < —14,
D () =l1, —i<e<g %,
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L—B
b

If I is any interval let @y be & adjusted to I ie. ¢ = @ d ), where

@, is the center of I and I, is its length. Then it is clear that
(6.1) o < ARlI17F, 0SB Ny,

and T} < [¢;. Also p; has compact support equal to I* =3I

Tn what follows 8¢ will denote the interior of the set S.

SuBLEMMA 6.2. Let I and I be closed diadic intervals such that |I'|
< 4[I]. Let o = gy and y = g Suppose |I| = 2% and |I'| = 27*"™, Then,
OIS N,

(6.3) l(p9)®1 < By (2Fm)H Rf .

Proof. If gy =0, (6.3) is trivial. Suppose then gy = 0. The proof
of (6.3) in this case is based on the geometry of dyadic intervals. Notice
that the endpoints of I* are dyadic boundary points. Thus, if I" is' small,
' < %\, and I'nI* 5 @, then either I' © I* or I'nI* is an endpoint
of I*. The only way an endpoint of I* ean be in (I)° is for I’ to be large:
> 311 '

Casge L. If (I')° contains an endpoint of I, then as we have seen;
LI < |I'| < 41|, There are only finitely many such I'. Choose the con-
stants B, 50 large that (6.3) holds for all of them.

. Now notice that it is no loss of generality to assume [I| =1; i.e.
% = 0. The estimate (6.3) is obtained most easily for small I’ by dealing
with three cases. The easiest of these cases is when I' lies deeply inside I*

. Oase IL I' = ¥ T and |I'| < §; |I|. First we notice that there is a con-
gtant O such that ¢ > on (I')*. Thus [ey> Cfp> C27™ The deriva-
tives are estimated using the Leibniz rule and (6.1).

Case ITL. (I'}°n(I*)° = @. That is, I' just touches an endpoint of I
The estimates are straightforward using (6.1) to estimate the derivatives
of y and computing the derivatives of ¢ directly.

Case IV. I' = I*\(£I)°. This case is done similarly to the last
case again using the fact that p is known exactly in a neighborhood of
the endpoints of I*. ; ‘

The extension of Sublemma 6.2 to R™ is immediate: If & = (%, ..., %,)
& R" define '

DO(0) = D, (w) = P(@,) ... D(w,).

If ¢ is a cube with center z, and side I, let ¢ be & adjusted to Q: @g(x)

& —®,
._45( . )
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SuBLEMMA 6.4. Let @ and Q' be closed dyadic cubes in R™ such that
diam (Q') < 4 diam@Q. Let 9 =@y and p = @q. Suppose Q has side of
length 27° and Q' has side of length 2%~ Then, if 0 < |a| < N,

(6.5) 1D*(99)] < B,(2™)0%" [ gy,
) 23

Now fix ©, as in the theorem and let {Q%} be the Whitney decompo-
sition of £2,in (3.1). Let y);-“' =@k From the above if is clear that statements
i

(i), (ii), and (iv) of Lemma (3.2) hold for {wf}. Statement (v) also holds
ifQ, = 3Q;,1 =1,2,...,2" where the Q) are the corners of (QFTy \@t+.

Recall that no point # € 2, can be in more than I of the cubes (@5,
where L is a large constant depending only on #. (See [7].) Thus

(6.6) 1< Y @) <D, weQ,
i=1

Define ¢f = wf/gl y¥. Properties (i), (ii), (iil) and (v) of Lemma (3.2) are

immediate consequences of the corresponding properties of the ¥ and (6.6). -
Property (iv) requires some work but is straightforward. Details are left
to the interested reader.
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