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A multilinear interpolation theorem
by
MISHA ZAFRAN (Stanford, Calif.) -

Abstract. We prove a general multilinear interpolation theorem for the “espaces
de moyenne” of Lions and Peetre. This result is used to obtain a multilinear Marein-
kiewiez interpolation theorem.

Let (B, B') be an interpolation pair of Banach spaces, and denote
by (B, BY,, (or more simply B,), 0<s<1,1<p< oo, the real
interpolation spaces of Lions and Peetre (see [1], Chapter 3, and [8]).
In this paper, we obtain a multilinear-interpolation theorem for the spaces
B, , which generalizes a result of the aforementioned authors. As a conse-
quence, we obtain results concerning the real interpolation of operator
gpaces. In the context of I, spaces, our results, combined with methods
closely related to the technique of reiteration (see [1], Chapter 3), yield
a multilinear version of the Marcinkiewicz interpolation theorem. These
results are then applied to obtain a Marcinkiewicz-type interpolation
theorem for the H? spaces, 0 < p < oo.

We begin our discussion with some notations and definitions.

1. Let (B°, BY) be a pair of complex Banach spaces continuously
embedded in a topological linear space ¥". Then (B% BY) is called
an interpolation pair. If zeB’, we denote its norm by fzl; or |olw,
j =0,1. Under the morm [wlg,pt = max(lisl, llol), B~ B becomes
a Banach space continuously embedded in 7. The algebraic sum of B
and B, defined by {y +2| ¥ € B°, z € B'} and denoted by B+ BY, becomes
a Banach space continuously embedded in' ¥7, when furnigshed with the
norm |zl = nf{lyle+ Rl 2 =y+2 and y e B zeB'Y.

For any Banach space X, we denote by L2(X) the Banach space of
all strongly measurable functions f with domain (0, o) and with values
in X for which

£ 7\1P .
Wy = ([ WG ) <o # 1<p<e
[

and )
flzem = 05? S;lp}]f (lx < o0,
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where, as usual, we identify functions agreeing almost everywhere. If
X = complex numbers, we write L (X) = L%.

If (B', BY) is an interpolation pair, we define the real interpolation
space (B', B'), , (or B, ) to be the collection of all elements »  B®-+ B!
for which there exists a strongly measurable function « with values in
B°~B' such that ‘ '

Fooa
@) © = of u() <
and
@) ou(t) eD2(BY)  and  t—*w(i) e TE(BY).

It follows by condition (2) that u e Ly (B°+B') so that the integral in
(1) is well defined. For 0 < s <1 and 1 <p < oo, the space (B’, BY), ,
becomes a Banach space continnously embedded in ¥ under the norm

bollep = 0 masx ("ul o » 10l 01,

the infimum faken over all % for which = | u(t)ﬁa.nd the condition
(2) above is satisfied. 0 !

‘We recall that there are several other equivalent definitions for the
spaces B, , (see Chapter 3 of [1], [8] and [9]). We use the above definition
since it simplifies certain computations in Section 2. The basic properties
of these spaces can be found in [1], [8] and [9], and will be used freely
throughout. .

We now turn to the Lorentz spaces. Let (Q, X, u) be a o-finite
measure space, and let .# denote all complex-valued measurable func-

tions on Q. Then . becomes a linear topological space under the top- -

ology of convergence in measure on all sets of finite measure in X.

For any f e .#, we let f* denote the non-inereasing, right continuous,
rearrangement of f (see [6], Section 1). We define the Lorentz space Ly o(12)
to be the collection of all fe.# so that |f]}, < oo, where ’

' r dt\e
Wt = (f (tl/pf*(t))q_t-) it 0<p, g< o,
o,g T °

Stulo’tllpf*(t) I 0<p< oo, g= oo,
>

" We define L, ,(u) = Ly(p), 0 < g< co.

' In genem}, I3, is Dot & norm. However, L, ,(#) is a metrizable
linear topological space (see [6], Section 2). Moreover, if 1< p < 00,
1< ¢< oo, then |-}, is equivalent to a norm. Specifically, let f**(t)
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i
[ £*(s)ds. Detine

0

|

ps at\ve
( (t””f"*(t))q——) # l<p< oo, l<g< oo,
Fle = |5 :

sup 72 f** () i 1<p< o, g=00,
i>0 .

Then there exists & constant ¢ (depending only on p and ¢j so that ]lfl};,q
< Wfllp,g < CUf g5 for all f € Ly 4(1); the space Ly, 4(p) becomes a Banach
space under the norm [|[p g, l<p < o0, 1< 0 (see [3], [6] or
[11], Chapter 3, Section 3). The L, ,(x) spaces play an important role
in the theory of interpolation of operators. In fact, the weak type con-
dition of Marcinkiewicz is equivalent to a boundedness condition between
appropriate Lorentz spaces. We refer the reader to [1] and [11] for this
theory. The relation of the L, , spaces to the abstract interpolation theory
of Lions and Peetre may be found in [1], Chapter 3, in case 1 < p < oo,
and in [77, for the full range 0 < p < o0, 0 < g << oo. We will assume these
results throughout.

2. In this section, we obtain a multilinear interpolation theorem
for the real interpolation spaces ‘BM. This generalizes a theorem of Lions
and Peetre (see [8], Chapter 1, Theorem 4.1). Our result, combined with
interpolation properties of Lorentz spaces will yield a general multi-
linear Marcinkiewicz interpolation theorem (see Theorem 2.9). We begin
with some lemmas. .

Levma 2.1. Let (BS, BL), (0°, CY) be interpolation pairs continuously
embedded in thetopological linear spaces ¥, and W', respectively, L <k < n.

n
Iet T be o multilinear operaior from @ Bin By inte C'nC such that
k=1 ]

@ @1, By oo 2o < M | | Il

k=1
n
j=0,1, for all (B3 Bay -eey ) €D BRnBi. Fiz 4, 1<i<<n. Then
n k=1

for all (zy, @5y .ees Bp) Ek®1 B! ~ B; we have
n
T (@3, s -+ Sallooscr < M ([ [ Wl o) Wil g,
_ e
where M = max(M,, M;).
The proof is a direct consequence of (1), the definitions involved,
and by noting that if # € BinB} and & = a--b where a € B; and b e B,

then both & and b are in Bin B;.
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) LEMMA 2.2. Assume the notation of the preceding lemma. Let vy e
Liy(BinBy), 1 < k< n—1, and let v, e L (Bl + BL) such that
(a) v, is B B.-continuous;
o
dt
f o)~ e Bin B,
0

[+ dt .
Let a, =f oylt) < 1< <n. Thon
0

©

T(ay, ..., ,) *f fzwl AT (t) @ ...'-‘fl—’?i,

0 n
the n-fold multiple imiegral converging im C°-+C'.

Proof. By (a), (b), and the corollary to Theorem 3.7.4 of [6], we

see that there exists a sequence {f,,} of finitely valued, strongly
B! N B measurable functions such that

dt
W f 1) ~fam (Dl a0 28 mrco,

Algo, since v, € L (BUn BL), 1 <k < n—1, we see that there exists a
sequence {f,,,} of finitely valued, strongly B}~ Bi-measurable functions
such that

3 & .
@) [ 1m0 fkm(t)u Lo as mooo.
]

The lemma now follows by (1), (2), Lemma 2.1, and since the result
evidently holds for functions of the form Jims I<ES<n, 1< m< .

The following lemma can be obtained by transformmg Lemma 3.1,
Chapter 1 of [8] from (— oo, oo) to (0, co).

Leyma 2.3. Let (B, B‘) be an interpolation pair, and let 0 < s <1,
1<p< oo Then if € B,
= 8 11— 8 1—§,,18

”m”s,p - mf(”t ung(Bo) Ht u“Lg(Bl)’)’
the infimum taken over oll sirongly messurable B°~ B-valued functions

u satisfying t™°w e LZ(B"), #**u e L2(BY), and » = f %(t) %—e
- 0
‘We now turn to our general multilinear theorem.

THEOREM 2.4. Let (By, Bi), (0°, () be interpolation pairs, L E< n.
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n .
Let T be a multilinear operator from ® Byn B} into O° N G such that
k=1 .
n \
VT @15 2oy @ullod < i [ [ ol

k=1
g )
§=0,1, for all (@3, @s;...,2) € @ BinBi. Let 0 <3 <1, 1<, < o0,
" n k=1 .
and suppose 1Ljr = > 1jp,—n+1>0.
prass

Then
n
1T (2,5 - -y mn)n(cﬂ,c'l)s’rg My MY H ”-'”1.:“(30,31)8 o ’
n
for all (z,...,7,) € @ BynB}. In particular, if p, < oo, 1<k<n,
k=1

then T has & unique exiension as & bounded muliilinear operator from

C(Bk,Bk)s 1, nto (C° 0",,; of norm < My *Mj.
k=1

Tn the special case B < Bi,1< k< n, this result may be found
in [8], Chapter 1, Theorem 4.1.

Proof. For simplicity, we write (C°, ("), = C,, a;ng use the some-

. 1
what abusive notation (B, B})s,p, = Bs,p,- Since 1/r = 2 . —n+12=0
k=1
and 1 < p, < oo, we see that there exists at most one & such that p, = co.
Hence, without loss of generality, we may assume 1< p, < o0, 1<E< |
n—1 and 1<2p,< oo.

Let 0 <y <1 be fixed, and let (1,...,3,)€ @B}’an‘. Clearly,

we may assume @, = 0 for all k. By [8], Chapter 1 Lemma 2.1, trans-
formed from (— oo, oo) to (0, co), we. see that there exist functions
with values in BynBj, a,nd continuous with respect to the norm of
B~ B;, such that

tou, e IP4(BY), #°u, e L*(BY),

roo
@ a = [ w7
0
TR (16 gy 10l gy ) <1+ 9l -

Now for 0 < z< 1, and 1<k < n—1 define
we(t)y i e<t<1fe,
0 otherwise.

() ' () = [
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Define
o
: dt
@) mlsc =fuk,8(t)7-
0

Since w;, is Bj nBj-continuous, it follows by (2) that the integral
defining 2* converges in the norm of B nBL, 1 <k < n—1.
It is evident that for 0 < e<1,1<k<n~1, and §j = 0,1,

(4) It o)y < ()] for all 2 (0, o0).

Iy

Thus sinee p, < o0, 1 <k<<n—1, we see by the dominated convergence
theorpm that for 1< k<< n-1,

— v _
T [ (e — 1, Ml o [ (=t )y i 120 25 6 >0,

LEk(B)"
. K|
® oy —els, ,, ~0 a8 20,
Moreover, by (4) we have

5™ aag, < |

B L2k’

(6)

i < 5y

Yl ey L2KEY”
. Choose ¢, with 0<eg<1,1<k<n~1. To simplify notation
we write '

o =@, 1<k<n—1 and g, =a,,

(M

Up,y = 1<E<n—1 and w, =ov,.
Si:lce, 1by (2) and (7), the integral defining a, converges in the norm of
Byn By, 1<k<n—1, and since the integral defining a, converges in
the norm of B} 4 B}, and satisfies the hypotheses of Temma 2.2, we have

(8) T(ayay,...,a,)
r a,
= f f T (01(t2)y Da(ta)y e y0n (1)) == —2 ... ﬂ’l,
o 0 bt tn
the n-fold multiple integral converging in ¢°- (.
Define a function w as the (n—1)-fold multiple integral
(9)

v =ffT(ﬂl(7i)”(%)’ ”"-%(t"ﬂ),vn(t f1)> LS

tn_l _tl tn—-l
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Then by (9), the assumptions concerning the multilinear character and

boundedness of T, and Young’s inequality on convolutions, we obtain
(=]

o [l

o . -

) (tH) @, i,y
n—1 Ty -

1

A0 Wl < Mo

O

Ty
n—1 n—1

158

: n
< Mo” Ut_"_‘vk “Lfk(B]"c) < 00
k=1
Similarly, .
() 19 g g < M [ W50 gy < 0
Also, it follows by (9), Lemma 2.2, and the translation invariance

dt
of the Haar measure - on (0, oo) that

g
(12) Ty oy ey ) = [ 0O
Hence T (6y, Gy «» -, ) € O, by (10), (11), and (12). Moreover, by Lemma
2.3, (10), and (11) we have

(13) 1T (81, 83, - Ga)lgy,, < (700 ) (0l )"

<(, l—[ AT H 104l )
A -

= M;"°M3 (Ht"vklngk(B]g))l“s(f]_tl"‘kaL?k(Eb)s.
=1

k=

Therefore, by (1); (6) and (7), it follows thab

1T (g5 - G, , < M MEAL+9)" [ | lols, -
: k=1
Thus by (7) and the above inequality,
. .n
(14)  NT(al, oy ooy @5 By, < Mo ME(A+9)" Q el

the above jnequality valid for 0 < 5, <1,1<¥k< n—1.
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Nowif 1<i<n—1and 0 < a, <1, we define

(18) #0650, B) = AR I (g0 = ) gy 187 s ) g -
Note that by (5) we have
- (186) »(i,a, )0 as a, f-—>0.

By an argument similar to that leading to inequality (14) (see, in
particular (13), where now the ith term is treated separately from the other
terms in the product), and by (15), we see that for 0 < ¢, < 1and 0 < a, 8
<1,

D) Ty s iy s 007 B, < Holiva, B)] [ o, ,
. k=1
Fei

for 1 < i < #~1, where N may be chosen as 2"M}~*M? (recall 0 < y < 1).
Choose R > 0 such that ]lmkHBngR for 1< k<< n. Then by amn,

(18) HT('J/':N vy 937;~00§a ceey m:;__ll) wn)llﬂ,,,< Kv(i, a, ),

for 0<e<1,1<k<n—1,k #iand 0<a, <1, where K — NR*L
] Wfa now show how (14), (16), and (18) yield our theorem FirSt take
4+ =1 in {18). By (16) and (18) we see that {T(al ,2, ooy T2 _1, 2,)}
converges in C; ,. as a—0, and so converges in O°+ (" as a—->0 "
But by (5), 2l—a, in B, p,s 50 &~ in B} +B}. By Lemma 2.1,
T(miy we.,: ‘17’;,:_1
in (°+0C" as a—0. Therefore,

(19) T(mai 4982, A 7mcu 1?

a8 a—0, the convergence in C,,
Note that (19) is valid for any fixed, bub arbitrarily chosen e, with
0< g <1, 2 < k< n—1. Hence by (14) and (19) we obtain

1 Bn) > Ty, wig’ seey mu— 12 ®n)

)~>T($1, fl’iz: ceey w?,:_ll, .'I?n)

(20) HT(ml,zviz, s T ), , < Ml_sMs(]-’I'V)nH”mk"Bsp
k=1

We now fix > 2 in (18), fix 0 < <1 for 2< E<n—1, k& #1,
and fix 0 < e,f < 1. By (19),

1) T, =, ..., si—af, ... 93:;_11‘1 Z)
=T(@y), eees &,y - @l m)— T(@yy eeny @y .y a @)
-T2y, 22 Q,...,w},—w},...,wﬁﬁl,mn) a8 &0,

the convergence in C,

8,

icm
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Hence, letting £;,—>0 in (18), we see by {21) thab
(22) T (s @y <o ey Bomhy ooy 57 By, < K (i @, B),

foral0 < g <1,2<i<n-1,2<k<n-1,and 0 < a,f < 1.

We now repeat the procedure which led from (14) to (20), and from
(18) to (22), now using (22) in place of (18) and (20) in'place of (14). The
result is

n
23) T (21, @y @y ooy S5 By, < M ME(L+9)" !j el

and
(24) 111’(-"51:%9033, -~-,wi—~’b‘}}, - T 111 $n)“0’s,,. Ev(iy a, B),

for all 0<e<1,3<k<n—1,3<i<n—1, and 0<a,f<L
It is clear that after n —1 steps we obtain

(25) W (1) By -y Ba)lo,, < MY M3 (L) H Wills, -
k=1
The theorem follows by (25), the fact that y > 0 was arbitrary, and
by recalling that B, ,, = (B, Bi)s,p,-
Comment. The preceding proof could be simplified if we knew
the validity of the following result: The elements af (see equation (3)
in the proof of 2.4) satisfy

Uwfﬂgm = inf[F~* ’UHlI};(Bo ftl Sol? Pk(B}c)

the infimum taken over all B} Bj-valued funetions v with compact sup-
port in (0, oc), which are continuous on their support, and which BaibleV

1,

2 dt
the additional two properties z* = f ev(t)—— and % e L7x(B;, 1), 5= 0 1.7

(Essentilly this requires the “smooth elements” & to attain their norm
over “smooth functions”.) We do not know whether this, in fact, occurs,
and anyway, this result does not seem to be of great infrinsic interest.

‘We remark that Theorem 2.4 plays a crucial role in the construction
of multiplier transformations which are of weak type (p, p), bub which

. are not bounded on L,. Here 1 < p < 2 (see [12]).

COROLLABY 5. Assume the notations of Theorem 2.4. Suppose that
<1llg<< 2 1/p,—n-+1. Then there ewists a constant K > 0, depending

only on the Drs Gy 7oy and 8, Such that for all (21, ..., ®,) € (—BBkan we have

IT (@1, Bas - )0, ovy, , < K MG ° M3 H loulgo oy,
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3

n
Proof. Let 1/r =k21,/pk-n+1. The result follows by Theorem
=1

2.4, since forr < ¢, (0°, ("), = (C°, (%), ., the embedding being conti
< s S ' ntins
(see [1], Corollary 3.2.13). e ¢ ¢ o
‘We turn to some applications of Theorem 2.4. Ag in 2.4, let (By, B),
1<k<n, (", (") be interpolation pairs. Let .# denote the space of

bounded multilinear mappings T of @Bl BL into °+ ¢* with the norm
k=1

HT” = sup ”T($17 teny mn)”CO-i-C’l}
n
the supremum taken over all (zy, ..., 3,) € @ BLn BL such that [lmll_o
Fm1 By By,

SL1<k<n We further assume BjnB} is dense in Bj,j =0,1,
1<k<n, and define #M; 0 be the collection of all bounded multi-

linear mappi o Bli i wi :
ippings of k(lalBk into ¢ mthl\the norm [T} = sup [T (w,, ..., 2,)]lc,
n
the supremum taken over all (zy, caey By) Ek@)BZﬂB}c such that llznlld
=1 )

<SLLI<k<n, j=0,1.

Then .# is a Banach space and .#
. : s #, are Banach spaces con-
tinuously embedded in .# (see [2], Section 10.2). We now have the fol-

lowing theorem, which is the amalo i 1
] gue for real interpol
a result of Calderén (see [2], Section 10.2). ‘ rpelation spaocs of

Bomglf:r%OB;M 2.6. L?t SB,‘:, BL), (C°, C") be interpolation pairs such that
p:wedf s dense ‘L’I;;B]”j =0,1,1<k<n. Let M, M, and M, be as in the
’ %gpamgmﬁ.lnlet0<s<1,1<q<w,1<l<w,amd1<pk<w-

uppose 0<1/g< | — )
<1/q \kg pg+1ft—n. Then if T e (M,, My)s,y, there exists

@ constant K > 0, depending only on the Dy 43 by n, and s, such that

1 T(a,; ... g
” ("‘017 ) 'T'n) H(cﬂ,cl).,’qg KI[T”(“O’“‘VI)S,I H ]].’l}k ”(BD Bl s
) k=1 % k)m,k

n
Jor all (z,, ... 20 B i ;
(@15 -0y @) ekiBlBkan. In particular, if p, < co for all k, then T

has & unique extensi i
q nfwn (again denoted by T) so that (1) remains valid for
L (@ ...,2,) e @ (B, BY, o
k=1 "
. Proof. Let L(z,, ,, vy By T) = Ty ..., %,) for all (z,, ceuy By, T
0 1
eke;)l(Bkan) @(MAyn.A,). We now argue as in the proof of 10.2 of [2]
using Corollary 2.5. ’

icm°®
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We now obtain & multilinear analogue of the classical interpolation
theorem of Marcinkiewicz. We will adhere to the following notation.

NoTATION 2.7. Let (£, Zy, py) and (2, X, u) denote o-finite measure
spaces, 1 <k < n. We denote by & the integrable simple functions on
£2,, and by # the measurable functions on 2. Let 1< pk #pE< oo,
1<k, 1<q # < o and 0<s<1. Define 1/p, = (1—s)/pk+-
+s/p¥ and 1/g = (1-—5)/go+5/q,. Finally, we recall the definition L, 4
=Ly, 1< g 0. ‘

‘We require the following preliminary lemma.

LEMMA 2.8. Assume the notations of 2.7 (and Section 1). Let T' be

n
a mauliilinear operator from @y into A such that
=1
7
W (Fay oeor Sl st < M Il Wl
k=1 ¢

7
for all (fuy .o, fu) € @ Poy § = 0,1. Then
k=1
N (Fas oo Fo Mg o < KM | [ Uil 09
k=1

Jor all (fyy ..y Jo) ek@yk, where K is a constant depending only on s, 1, p’§
=1 .

and g;, 1<k<n, j =0,1L
Proof. We begin by noting that if 1<r< 0, 1< k< n, and if
F € X, has finite, non-zero m-measure, then
’ ey = ra(BY i r < oo,

1
@ lzzls =1,

where y; i3 the characteristic function of the set E. (Recall we define
L, to be L)

Suppose first p}‘ < oo for all & and j. Let B, have finite non-zero
Hz-measure, 1L < k < n. By (1), it follows eagily that

1w},

@) T(gm,, - 2m,) O < OM;E™5 [ | ()5,
k=1

where C; is & constant depending only on the p}‘ and n. (Note this holds
even if g, or g; = o0, provided we define 7/° = 1.)
Therefore, by (2) we obtain

T(ZEla ceny xEn)* (t)= [T(%El, ceey ZE‘,,)* (t)]l—"s[T(XEl’ cery XE")*(t)J

L3

n
< Oy o3 | | (B,

k=1


GUEST


118 ‘ M. Zafran
where € = C;7°(%. It follows by (1) that
° n
3) W Ctzys -oos 28, oo < Ko M3 [ | lizmy s
k=1

where K, depends only on pf and p,, 1<k < n,j =0, L. It is also clear
that a similar argument applies in case p,’-“ = oo for some % and j, for an
appropriate constant K,.

Bince 1 < ¢ < oo, we see by [3], Theorem 6, that there exists K, > 0,
depending only on g and K,, so that

(4) T (s s 2wy iy < Ko M55 k[_j Wzl 0

for all B, e X, with finite, positivé, Hy-Ieasure.
We show that (4) yields the general result by an argument which is
well known in the case of linear operators (see [3], Theorem 7). Let f; € &,
N

with f; > 0 on 2,. We write f, = > G X4, Where A, e X, hagfinite, non-
m=1
N
ZE0 pr-Yneasure, 4, > 0,1<m< N,and ff = Y 6,1% . Then fi* =
N N m=1

mz-jl O 2t 20 | illeg, s = ,,él Sl Ly, - Then by (4),

70’

~
17 (fs, KBy -3 XMy () < Z“m”T(lAm: By -+ 1B,y o)

m=1
n N
(8) <K, Mé—sm (IH ”xEk”Iza);,I(‘“k)) (2 [ HXAm”Lpl,l(l‘ﬂ}
—3 =1 ]

”ka: 1leg) 7

. n
= B My Milfuls, ) | ] Vs,
k=2 N

where B, € 2, has finite, non-zero u,-measure.

Now let f, e &, with f,> 0 on 0,. By the argument leading to (5)

r
now using (5) in place of (4), we obtain

(6) W (Fus fas 2y -+ 2mMEy oy

< Ky My M3 f, 1z, I’I(pl)ﬂfauLﬁz_l(nz) Q UXE,C”ka,l(p,,),
whenever B, eZX,, with 0 < bi(Byp) < 00,3 < k<n. After n steps we
obtain
] VT (f1, ooy Sz, oty < Ky Mé_’Mfkljl ”fk”_l-pk,l(ykﬁ

for all f, € &, with f,>0,1<k<n.

- ©
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The lemmsa follows easily by (7).
THEOREM 2.9. Assume the notations of 2.7 (and Section 1). Moreover,

suppose 0<1/g< > 1ip,—n+1. Let T be a multilinear operator from
n k=1
@ &y into M such that

k=1

W (Fus ve Fadly < 5 [ JUARIE .
- - k=1 3
for all (fuy -1 fa) € ® F. Thom

() W (Fry -ees Tadlggn < EMy°M3 kH Welly o>

for oll (fiy ..., fa) € é &y, where K is a constant depending only on the p¥,
k=1 n

g;, n and s. In particular, T has a unique extension to 691ka( ) Satisfying (*).
k=

Proof. We assume 1<q; < g, < oo, 80 that ¢, < g<¢,. (}ho@e
45, ¢; such that 1< g, < ¢ < ¢ < o < o< oo. Choose s, and s, satisfying
0<sg<8s<s; <1 and
1 1—s; 8;
S =y
@ 9; 9 %’
§=0,1.Let 1<} < oo be defined by

1 1—3 8
@ R
§=0,1,1<k<n.
Let 0 < 6 < 1 8o that s = (1—0)s,+ 0s;. Then

1 1-6 0 1 1-6 [/

—_ =t —, 1<k and —=——+—.
© P 75 * e’ " q % &
By Lemma 2.8, (1) and (2) we obtain
4 TG s Flg i < MM [ [l 00

37 1 'l

b -
j=0,1, for all (f;,...,f,) € ® &, where K, is an appropriate constant.
k=1 . .
It is easy to see that 7 has a unique extension so that (4) remains valid
n

' i it % or 7%
for all (fy,...,fn) € kclal Lr‘,:’lner,l. (Note that this Ifolds even 1 1
equals 0.)

Since L, (p) and L ’“1(”’°) are Banach spaces, Theorem 2.4 (and
d,,00 i

Corollary 2.5) are directly applicable. Thus by (4), the interpolation
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. Droperties of Lorentz spaces (see [1], Chapter 3, Theorem 3.3.10), and by
the definition of 6 we obtain S .

n

CAUTRNS AIPARESS o tad o f NP

k=1
n
for all (f,...,f,)e k@}ﬂ’k , where K is as in the statement of the theorem.
This completes the proof. '

3. In this section, we obtain a Marcinkiewicz-type interpolation
theorem for the H? spaces, 0 < p < oco. Our result is analogous to the
Riesz-fype theorem for these spaces, as obtained by Calderén and Zyg-
mund (see [13], Chapter 12, Section 3). In the theorem of these afore-
mentioned authors, the point of departure is & multilinear analogue of the
Riesz convexity theorem. Similarly, the basis of our result iy the multi-
linear theolry of Section 2. Our principal result, Theorem 3.2, was obtained
some years ago. In the intervening period, this theorem hags been subsumed
by a much stronger result of Fefferman, Riviere and Sagher [4]. We
include a proof primarily as an application of the results of Section 2
and we will thus be brief in our presentation. : ’

‘We begin by recalling the definition of the H? spaces. If 0 < p < oo,
we define H* ag the collection of all functions [, analytic in the unit dise
for which » ,

1 2 17
- =011:1<)1 (5;‘! {f(mwnpda) p< -

In case p>1, H? is isometric and isomorphic to {feZL,| f('n) =0 for

n < 0}. The basic facts eoncerning these spaces‘may be found in Chapter

7 of [13]. . :

Norazron 3.1. Let (2, X, u) denote a o-finite measure space, and
let .# denote the measurable funetions on £. Denote by # the class of
all complex polynomials, restricted to the tmit dise. For all real numbers
a> 0, we let [a] denote the greatest integer less than or equal to a.

THEOREM 3.2. Assume the notations of 31. Let 0<p,<p,< oo
and 1< gy # ¢, < co. Let T be a linear operator from P into M such that

Jor all fe®,j=0,1. Let 0 <s<1, and let lp = (1—s)/py+s/py,
flig = (1—s)/q+s/qy. Suppose 1/p is not a positive integer and that 1/q
<1/p—[1/p]. Then

IT (Pl < ML 23 1f),
ot all f € 2, where K is a constant depending only on p;y gz, amds, j =0, 1.

e © .
cm ,

A multilinear inferpolation theorem 121

We will require three preliminary lemmas.
Levuma 3.3. Assume the notations of 2.7. Let 1 <p¥, p?¥< 0,1 g
# 1< oo, and let 0 < 6 < 1. Define 1jp, = (1 —0)[pt+ 0%, 1< k< n,
”
and 1/q = (1 — 0)]qo+0/q.. Leét T be a multilinear operator from @ %, inio M
such that k=1
IT (Frs +ees Flllgoo < 245 [ | el yguer
=

k=1

j=0,1, for all (fl,...,fn)ek@yk. Then
=1

WL (Frs -oes Fallzgoor < B M3 T T Uil oy
k=1 .

n
for all (fy,...,fa) € @ ', where K is a constant depending only on p}', q;
k=1

and 8, 1<k<n, j=0,1.

The proof of this result is similar to that of the strong type interp-
‘olation theorem as proved by Hunt in [6], pp. 266-269. In fact, the proof
of our lemma iz easier since we consider multilinear rather than sublinear
operators, and since the representation (3.5), p. 266 of [6] becomes elemen-
tary under our hypotheses. Hunt’s proof will also yield more general
versions of Lemma 3.3, but we do not pursue these generalizations.

LeMMA 3.4. Assume the notations of 3.1. Let 0 < p,,p;< oo and
1< gy # q1 < co. Let T be a linear operator from 2 into M such that

T () gge0 < M1 Uy
for all fe®,j =0,1. Let 0<0<1, and let 1/p =(1—0)[p,+0/[p,,
1lg = (1—0)/g0+6/g,. Then
IT ()l o0 < KM MIF ]
for all f € 2, where K is a constant depending only on p;, q;, and 0,5 =0, 1.
Proof. The proof of this result is very similar to that of Theorem 3.9,
Chapter 12 of [13]. We now use Lemma 3.3 in place of the multilinear
Riesz convexity theorem (see Theorem 3.3, Chapter 12 of [13]).
Lenma 3.5. Assume the notations of 3.1. Let 0 <py<p; < oo and
1< ¢y # ¢2 < oo. Let T be a linear operator from 2 into M such that
M) W (F)1f 0 < M1
for all fe?,j=0,1. Let 0<0<1, and let 1lp = (1—0)[p,+6/p,,
1/g = (1—0)/go+0]/g,. Suppose 1/ q<1[p—[1/p] and that there -ewisis
a positive integer n such that n—1 < 1/p; < 1[p, < n. Then
“T(f)ﬂz,q(p) < Kuy-'af | .
for all f € 2, where K is a constant depending only on p;, q;, and 6,§ = 0, 1.
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Proof. Again the proof is similar to that of Theorem 3.9, Chapter
12 of [13]. We first extend T uniquely to H*1 (= H?o) 5o that (1) remains
valid. Define the multilinear mapping T% by

'(2) T*(yll"wgn) :T(FIFZFn)y
‘where

27 1t—[—z
®) File) = 4= f (D) ds

for all complex-valued, integrable simple functions g, on (0, 271:)
By the inequality of M. Riesz, it is easy to see that

4 1Bl < A, llgillz,
for l<r<oo,1<k<n. In pa.rtmula.r, F,e H”, 1< k< n, and ['[F,c

€ H". Thus the operator T is well-defined. Moreover, by Holder 8 m—
equality, (1) and (4) we see that

1T (g5 <5 Gl 00 < O H 1941z,

J=0, 1, for ‘all integrable simple funections g, on (0,2%n), 1<k n.
Here C is a eonstant dependmg only on p; and n,j =0, 1.

‘We note also that 1/g < Zl [np — n+1 (since this latter term is just
1/p— [1/p]) Thus Theorem 2 9 mphes that

n
(5) W™ (91, s gy < KM M2 H gl
k=

for all integrable simple funetions g, on (0 27). Here K depends only
on p;, q;, and 6,5 =0,1.

As in the proof of Theorem 3.9, Chapter 12 of [13], we may extend
T* to k(—B L, ”I’npl s0 that T™ is still defined by (2) with the functions F,,
and g, relfa.ted by (3), and so that (5) remains valid. The remainder of
the proof is identical to the argument in the aforementioned theorem.

We are finally in a position to prove the principal regult of this section.

Proof of Theorem 3.2. Since 1/p is not a positive integer, we
may choose a positive integer n so that

. _1<1/p<n.-
Choose p, and p, with
1
{1) . ——<—17<w,
V2t V2 /)
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and
1 1 1 1
2) <<=,
[ 2 170 Po
‘We now pick 0; satisfying
1 1—6; ;

R EAE

?; Do ?:’
j =0,1. Note that 0 < 8, <s < 8; < 1. Define g; by the equations
1 1 [7) 0;
- -i"—'l,
4 Qy e /A1
j =0,1. By Lemma 3.4, we obtain

®3) 12 ()il L, W< < K M5 MY fll o

for all fe#,j = 0,1, where K, depends only on the p;, ¢;, and ;.
Now choose 6 with s = (1—6)0,-+00,. By computation we see

) 1 1—6 6 1 1-6 6
(4) = and S =4
? Do y2! q % 0

Hence by (1), (3), (4), and Lemma 3.5,
W (g < KMy MINfl 0

for all fe#,j = 0,1, where K is as in the statement of the theorem.
This concludes the proof.

Much of the multilinear theory of Section 2 of this work was taken
from a_portion of the author’s doctoral dissertation, written under the -
direction of Professor J. D. Stafney at the University of California at
Riverside. We wish to thank Professor Stafney for his valuable aid and
encouragement.
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Harmonic analysis on the group of
rigid motions of the Euclidean plane*

o

by
RICHARD L. RUBIN (Miami, Florida)

Abstract. Aspects of Fourier analysis on M(2) relevant to the study of L? mul-
tiplier operators are developed. Relations between multiplier operators on M(2) and
S0(3) or 8T(2) are studied. Applications are given to transplantation results for Bessel
funetions. -

Tntroduction. The idea of considering the real line to be a limit of
circles With increasingly large radii has long been used to relate Fourier
analysis on the line, R, to Foufier analysis on the forus, T. In the study
of multiplier operators, this idea leads to the following classical theorem:
Let m be a continnous function on R. Suppose that for each A > 0, there
exists an operator M, acting continuously on L*(T), given by

L
f=—00

M, f(z) = ! m(%‘) a, 6™,
where a,, is the nth Fourier coefficient of f. Assume that the operator norms
| M| are uniformly bounded. Then m defines a bounded multiplier oper-
ator M on LP(R)([31, p. 264).

We wish to generalize this result by replacing the torus, which may
be identified with S0(2), with the non-abelian group S0(3), or with its
universal eovering group SU(2), which is naturally identifiable with the
unit sphere in two-dimensional complex space. By a limiting process
analagous to the classical passage from the circle to the line, the group
80(3) can be shown to tend to a non-compact non-abelian group: the
group of rigid motions of the Euclidean plane, denoted by M (2).

In this paper, we shall show how Fourier analysis on M(2) is closely

* The author wishes to thank Professor Guido Weiss and Professor Ronald
Coifman for their many helpful discussions concerning. this work.
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