Correction to
"Unconditionally converging and Dunford–Pettis operators on \(C_\mathcal{X}(\mathcal{S}) \)"
Studia Math. 57 (1976), pp. 85–90

by
CHARLES SWARTZ (Las Cruces, N. Mex.)

There is an error in Theorem 3 of the paper. The measurability of the function \(F \) from \(S \) into \(l^\infty(\mathcal{X}) \) does not follow immediately from the result of G. E. F. Thomas that is cited (reference [17]). In order to apply this result one needs that \(F \) has range in a norm separable subspace of \(l^\infty(\mathcal{X}) \). \(F \) has range in the subspace of \(l^\infty(\mathcal{X}) \) consisting of those sequences which tend to 0 weakly and this subspace may not be separable even when \(\mathcal{X} \) is separable. About the only obvious situation when this subspace is separable is when weak and norm convergent sequences in \(\mathcal{X} \) coincide; this is, of course, the case when \(\mathcal{X} = l^1 \) a situation discussed by I. Dobrakov ([8], Theorem 13).

The method of proof of Theorem 3 is also employed in the proof of Theorem 1 and it works at this point because the space \(l^\infty_n(\mathcal{X}) \) is norm separable when \(\mathcal{X} \) is separable.

Received August 15, 1977