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Weighted norm inequalities relating the g%
and the area functions
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Abstract. The purpose of this paper is to obtain weak-type and strong-type
weighted estimates relating the parabolic g% and area functions.

§ 1. Notations and definitions. The n-dimensional euclidean space
will be denoted by R,,. The scalar product’ of two vectors = (0y,...,2,)

n
and ¥ = (Y4, ..., ¥,) of R, is the number (z-y) = 3 z,y; and the norm of
n 1
w is defined ag 9] = (z-2)'/* = { Y }}*. By R},, we mean the upper half-
1

space, that is, the set {(z,?): xeR,,t>0}. Let P be an nxn matrix
satisfying (Pw-#) > (#-2) for every z in R,. For t >0 we define ¥ as.
tF = ¢™¥, The set {*: ¢ > 0} is a group under the operation multiplic-
ation of maitrices. et © € R, be given and define h(t) = (t¥z-tFs); this
function is strietly increasing if # # 0, tends to infinity for ¢ tending to
infinity and tends to zero for ¢ tending to zero. Then, for @ = 0 there
exists a unique = o(w) such that [~ = 1. It can be shown that the
limit of ¢ («) for » tending to zero is equal to zero and therefore, it turns
out that the function o(w) defined as above for 4. 0 and zero for » = 0
is & continuous tunction on R, which satisfies: e¢(z+y) < o(#)+ o(y) and
o (s%e) = sg (). Thus, the function d(x, y) = e(x—y) is a translation in-
variant metvie on R,. The g-ball with center at » and radius >0
is the wot By(w;7) == {y: e@—~y)<r} If by m(8) we denote the
Lebesgue moeasure of o measurable set §, then m(Bg(w;r)) is equal to
mH N ((n-+2)/2)" #7; where y denotes the trace of the matrix P. The
g-cono I',(z) with vertex at » and amplitad ¢ > 0 will be the subset of
R, given by I'y(w)= {(y, 9): o(w—y) < at}. I Dis a subset of R,, I',(D)
will gtand. for the union | J{I,(#): = € D}. Let »(z) be a non-negative,
meagurable and locally integrable function on R,. If f(v) is measurable
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function, we define its g-norm with respect to the weight w(x) as
1 llgo =1 f|f @)4w (z)dz}%. By m,(D) we denoto the w-measure of a

Lebesgue measurab]e set D defined as m,(D) = f w (@) dw
n

Let u (2, t) be a solution of the para,bollc differential equation
" ou ‘ ’
i tml tP* ‘tP" »
5 (ot 0w
where 0 = (0/0y, ..., 0/0x,) and ¢> 0. For such a function w(w,?) we
define its area function S(a, ) of amplitude ¢ > 0 as

» d
f!t” Buly, )" x(e(@—y)/at)(at)™" d’ ty
rRF

n+1

where y(s) stands for the characteristic function of the interval (0,1)
and y = trace of P.

8*(a, @)

We also define a g7 () function associated to u(x, ?) as
d dt
{73 (@) = ff [£F* Bu(y, £)|? {1+Q(t—l’ m—y )}“’W ”. y
R""b"‘f‘l

where 4 > 1 and y has the same meaning as above,
Observe that for P = I (identity) t** is equal to ¢-I and the para-
bolic differential equation becomes

n

v e

1

(3%/35 = w]0wd).

Furthermore, the solutions of this equation are the functions wu(z,t)

= v(w, 1#/2), where v(z, t) is any solution of the standard n-dimensiomal
heat equation

(00 /08) = 2 v /02,
1

Finally, we shall say that a non-negative, measurable and locally inte-
grable function o (o) belongs to the class AT, co > p > 1, if there exists
a finite constant ¢ such that

Ef w(w)dw}‘{m% f m(a))‘llaon-ww}”"1 <
e. Be

for every g-ball B,. If p = 1, thig expression should be interpreted as

) fw(w)dm}g co(y).

[
Be

e

sup'{

B,

icm
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§ 2. Statements of the results. The results obtained in this paper
ghow that even in the case where weighted norm inequalities are considered,
the theory of the gj funetion can be subordinate to that of the area func-
tion. For the cage w(x) = 1, that is, when the norms are taken relatively
to the Lebesgue measure, this result is due to A. P. Calderén and A. Tor-
chinsky (see [1]) whose method we borrow in order to deal with the weight-
ed case. In the clagsical case of harmonie functions, weighted norm in-
equalities and weak type results for the area function and the g function
were obtained by R. Gundy, B. Muckenhoupt, C. Segovia and R. L. Whee-
den (see 2], [4] and [B]).

The main results in this paper are stated in the following theorems:

TEROREM 1. Let w(x) belong to 42, co >p > 1, and 0< ¢< 2. Then,
18 (@, ®)lly,0 48 finite for every amplitude a1 if |IS(L, @), 48 finite.
Moreover, there is a finite constant ¢, not depending on u(w, 1), sueh that

18(a, @) 0 < - a®~¥78(1, w)|E,,,

holds for every =1

TrRoREM 2. Let w(w) belong to 4%, co>p =1 and 0 < g << 2. Then,
if A > 2p/q, there ewists a finite consiamt ¢, not depending on w(x,?), such
that '

I3, < e I8 (L, 2)IE o

holds.

TrEOREM 3. Let w( ) belong to AL, 2 =2[q and 0<q<2. Then
there exists a finite constant ¢, not depmdmg on w(w, t), such that

mg({m: gi(w) > ) < 178 (1, )l

holds for every > 0.
§ 3. The proofs. First, we shall state in Propositions 1 and 2 some

known results about weights belonging to A2,

ProposrrioN 1. If w(w) belongs to A9, co>p =
constont o such that

1, there exists a finite

m(B)\* _  my(B)
‘ {WE;)“} SO (B

holds for every ball B, and every Lebesgue measurable subset B of B,.
ProrostmioN 2. Let w(@) belong to A%, oo >p =1, and lat M( f,
the Hardy mawimal function of a Lebesgue measurable funotion f(2) defmed as

M(f, 0) = sup {ﬁ?Bj'wf(y)\dy}-
Q
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Then! there exists a finite constant ¢ such that,
my{w: M (f, ) > s} < o572 [ f (@),

_holds for every s > 0. Of course, the constant ¢ does not depend on f.

The proofs of these propositions will not be given here (see [3]).

The following lemma will supply the geometric background needed
in. the sequel.

Levma 1. Lei A be an open subsel of R, and y, s characteristic

Sfunction. If for.a = 1 we define U as the set
U ={w: M(xy,w)> (4a)™",
then we have

(1) T,(CU) is contained in I';(CA).

(i) If (2,1) eI (CT), then m(B,(e; 1) < 2m(B,(2; 1)nCA).

Proof. The lemmia is obviously true if I,(CU) = @. Thercfore, we
shall assume that I',(C U) is not the empty set, which implies that 4 = R,.
Let us see (i). If (2,t) e I,(CU), then either z e C4 or zc 4. In the first
cage it is apparent that (¢,1) eI, (CA). If we are in the second. case,
" le.ze 4, let us call  the distance from # to the closed and non-empty set
CA. This number ¢ is positive and tinite, and B,(z; ¢) is contained in A.
The assumption that (¢, ¢) belongs to I',(CU) implies that there is y € CU
with ¢ (2 —y) < at, Thus, writing v = 6 4 o(2—y), we get

’ B,(2; 6) = B,(y;7)
and also :

' B,(#; 8) < By(2; 8)n4 = B,(y;r)nd.

This, together with the definition of U, implies that
m(By(z; 8)) < m(B,(y; 7N4) < (46)"7m (B, (y; 1))

since ¥ € CU. From these inequalities and the fact that the Lebesgue
measure of a g-ball is equal to a fixed constant times the y power of it
radius, we get -

0 r/(4a).
Recalling that r = §4g(e—y) and ¢(z—¥) < at, we obtain

d4+o(e—y)  d4at
o< i < da

and since a =1, it follows that 6 < . Then, by the very definition of 4,

there exists an » e C4 satisfying e(x—2) <1, which means that (z,1)
€I (CA). This proves (i). )

e ©
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Noxt, we prove (ii). It (2,1) e I'(CT), there iy ¥ e CU such that
¢(z—y) < at. Then B (2;¢) c B (y; (1-+6)t) and since yc CU, we get
m(B,(2; t)NA) < m(B{2 (w; (L u)t}nA) < (4@)‘7m(Be(y; (1+a)t)

and therefore

(865 90) < (58 (2 30) = (52 mima0).

Now, observing that (1-a)/da < 1/2, from
m (B, (25 1)) = m(By(z; ) NA)+m (B, (2; 1)nCA4)
we obtain
(L=2"")ym (B, (2; 1)) < m(B,(2; )nCA4)
which implies (ii).

In the next lemma we establish an inequality which is the base of
the method used in this paper.

Luwma 2. Let o(w) be o weight belonging to A2, co>p =1, and let A
be an open set in R,,. If U is the set associated 1o A as in Lemma 1, then there
ewists a finite constant e, which does not depend on wu(x,t), such that

@t [ 8a, )w(@)do< 0 [ 841, 0)0(@)do
cu c4
holds.

Proof., Hrom the definition of the function §(a, #) and by a cha,ﬁge
in the order of integration, we geb

‘ . " _, dydt
a9 j §(a, )0 (o) do = ¢0-Pa=" f { f f I duy, 1)1 V—%~}w(m>dw
cU

CU Py

dydt

(3.0) =a [ [ ouly, o o (o) dn} ==
I'(C0) By(uab)n CU

dy dt

<aw ([ (i ouly, 0Pma(B,ly; a)nC T =

N (o))
Now, if we apply Proposition 1 to the sets H=DB,(y; t) and B = B,(y; at),
wo geb
(3.1) M, (By(y;5 at) < ca’m, (By(y; 1)
Applying Proposition, 1 once again, this time to B = B,(y; t)nCA4 and
B = B,(y; 1), wo got

V ) B,(y;t) \" )
(3.2)  my(Byy; 1) <o {'}nf(g;(("@]{?)’ﬁé)ﬂ)"} ‘M, (By(y; )NCA).
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Therefore, (3.1) and (3.2) plus part (if) of Lemma 1 imply
M, (B, (y; at)) < HNC4).

From this inequality it follows that the last integral in (3.0) is smaller than
or equal to

0 m, (B, (¥

dydt
g ff |tP‘au(y,t)|2{ w(m)dm}rv_yr
Ty(CU) BQ(V;i)ﬁCA
ay s
=0 [ [ " duty, viPm, (By( w3 )nCajrrL=,
ryco

Finally, since by part (i) of Lemma 1 we know that I,(C U) < I',(C4),
we have that the lagt integral above is smaller than or equal to

c- ff[t?‘au(y,t)ﬁ{ )f o (@) dw }z ydt =0 jsza ) o (%) do
'Be(v;tncA

TIy(C4)

which proves the lemma.

Proof of Theorem 1. Let 4 = {w: §(1, ) >say/2} It is easy to
see that the set 4 is open. Let U be the set associated to .4 as in Lemma L.
Then -

m, ({o: 8(a, @) > 8}) < m, (T)+m, (CUN{@: 8(a,n) > s}).

Our immediate task will be finding estimates for the terms in the second
member above, By Tchebyshev’s inequality and Lemma 2, we have

m, (CTUN{w: 8(a;0)>8}) < s™? £S’ o, @) o (v)do
< 0-0&‘-”"””.&‘“2 fS(l, o) w () de.

Now, since CA = {w: §(1, »)
a¥l%g

2f b, {m Slm>i})d6.

< a"s}, the la,st integral is bounded by
(3.3)

On the other hand, by Proposition 2, we have
8.4)  mo(T) =mq ({o: M (14, @) > (46)77}) < O+ (48)"m,, (4).
Therefore, from (3.3) and (3.4), we conclude that

my({o: 8(a, @) > 5}) < 0-am,({2: §(1,0) > a?2s}) +
&%

+0- a5 [ e, ({w: 8(1, @) > 6})dt
0

icm®

- (3.8)
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This estimate of the measure of the set {z: § (@, @) > s} allows us to compute
the g-norm. of S(a, x) as follows:

18 (e, D)o =g+ [ 8V, ({: S(a,s)> s}) ds
0

<o J 87 my, ({w: 8(1, @) > a”s})ds +

ol

+ O g1 f gi—1g-2 f tomy, ({w: 8(1, ) > t})dids.
By a change of variables, the first term of the second member becomes

O-a =) [ 6t ({2 8(1,2) > )@t = 0-a?P-@N |81, o))
0

1,0

As for the second term, a change of the order of integration gives

0-ar= fwz-mm({w 8(1,2) > 1)) ( f o ds)at
0

a2

Lo
= 0o~ gm0 [ =ty (0 8(1, 0) > 1)) b

= (- g 9 (1, g;)”glm_
Thus, we obtain the inequality
18(a, @), < 0-a?®=D). |8 (1, D)L,
'which was claimed in the statement of Theorem 1.

Lemma 8. Let x(t) denote the characteristic fumction of the interval
0<t<l and 0< u < co. Then
27H (1 —

~HY=L (1 8) Zx(s 27H).97#k < 2#(1 — 27#) 1o (1 4-5)*

holds for every s 0.

Proof. For a given s> 0. let b be the least mon-negative integer
such. that ¢« 2% Then, y(s:27"%) will be different from zero (and there-
fore, ogqual to one) if and only if % > k. Thus, we have

5"2—% _ 2—/4h(1_2-/4)-1

JTewmals

00
\1 e ple
D g(s27") 27 =
fowa()
In order to estimate the value of this sum, we consider first the case
h > 0. Then, by the definition of » we have 2"~! < ¢ < 2", which implies
thatb

27h-~1 < 27&-—1 _{_1@ S+1< 2h+1 < 2h+1
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or -
(3.6) 2h~1< s+1< ol

If & = 0, that is to say, when 0 < s<C 1, we can see directly that (3.6)

is still valid. Then, from (3.8) we get that
(L48) 7278 < 27#h < 9F(1 - g)~ ¥

holds for every s > 0. This, together with (3.5), gives the estimate claimed.

in the lemma.

Proof of Theorem 2. Let us apply Lemma 3 to & = g(w—y)/t

and u = Ay. Then,

—y)y ) i
Q(wt ’l./)} <O'275(9(7}_‘?)2_70,—,11)'2*”,6

Joe0

e
therefore, '

ff‘1+ (@=y) } [ du(y, t)]*-t7 dy‘”
n+l

dy dt
<0 22 M ff%(e — )2 By,

h=t
nb—l
®

. N .
= 2{2 (4 l)yk.sﬂ(zk’m)‘
k=0

Now, since ¢/2< 1, we can write
(3.7)

g @)L o = [{(g} (@))% 0 (@) ds < 0 f (22 (A=27% . g2 (9F g )"’” () dw

<0 22‘(3"1)7‘70(112 “S(zk

Je=0

but, from Theorem 1, we a]rea,dy know that

IS (2%, D)1, < € 2@~ WD) 3 (1, )
therefore the series in (3.7) is less thamn or equal to
o 2,207 81, )i o,

where the series inside the parentheses i geometric and converges since
(Aq/2)—p is greater than zeéro. This proves the first part of the theorem.

“q,w?

j
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Proof of Theorem 3. Let B, 4, and U, be the sets defined as
= {o: M(8%1, ), @) > 52477},
Ay = {w: 8(1, $) > 276141.3}7
= {: M(yq,,») >27"-477},
where & = 0,1,2,... We obgerve that the sets U, defined here are re-
lated. to the sets 4, a8 in Lemma 1. Let us see that the sets U, are contained
in the set # for every . If » belongs to Uy, there is a ball B,(w;r) such
that
. m (B, (w5 )0 Ay) Som (By(w; 7)) 277477,
Therefore,
[ 8, pdy= [ 8L, y)dy> s 27 -m(B,(o; r)Ndy)
Ea(w:r) Bfasr)m Ay,
m(By(w;7))-s%-47"

which shows that € H. '

Now, for s >0, we have

(3.8) #m,, ({w: g3 (@) >s}r\CEﬁ)< f(g}‘(m))zw(m)dw.
ck

Applying Lemma 3 with 4 = yi and procceding as in the proof of
Theorem 2, we geb

f( (@))* 0 () da;<22 (-1 fﬁ’z z) o (%) dz. .
crE le=0
Since, as we have shown above, U, = H, we have

fS“ (2%, o) o (@) de < f 822", o) o (x)da.
<k .

CUp

Also, by Lemma 2, the last integral is majorized by

0 f 821, @) (w)de.
CAy,

Colleating these rosults, wo have

(8.9) [ (@)@ do< 0 22 -Gk [ (1, 0) (o) da.

ch fem0 cdy

Inferchanging the ovder of summation and integration in the second
member, it becomes

o0

(3.10) 0« [8(1,0) (22 (=2 4y (0) o (2) o

Ry, femm 0
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"

In order to estimate the series inside the integral, let % be the least non-
negative integer such that 2 e C4,. Then the sum of the series is equal to

o0 .
2—~(1-—1)yk —_ 2-U»—1)y7l (1 — 2—(2.—1)7/)—1 .
=

‘We have, by the definition of %, that §(1, #) < 2"®.s, therefore,
9=k (3—1 -8(1, x))-(l—l)q.
Thus, the sum of the series is smaller than or equal to
(578 (1, )00 (1 —2=6-17)-1,

80, we can majorize (3.10) by

C-st=00 [ §2(1,0)-8(1, 2)"¢" o (2)de

Rﬂ
and taking into account that (A—1)g = ((2/g)—1)g = 2—g¢, the integral
above can be written as '
0-8*¢ ISQ(I, @) o (0)de.
Rn

This expression majorizes the second member of (3.8) and therefore, from

(3.8) we get
m, ({@: g3(z) > }nCE) < C-57% [8%(1,2) 0 (a)do.
. R,

Finally, consider the inequality y
my ({2 g3 (0) > 8}) < m ({22 g5(a) > s} NCE)+m, (B).
By Proposition 2, we know that '
my, (B) <057 fS“(l, v)o(z)de.
B
Then, this and the estimation we oqata,ined above for the first term on
the right-hand side of (3.11) imply
m, ({22 gi(0) > 8})< 0570 [ 891, 2)w () do
R’n

which is the statement of the theorem.
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