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Antisymmetry of subalgebras of (*-algebras
by
WACLAW SZYMANSKI (Cracow)

Absteact. In the present paper we introduce a generalization of antisymmetric
8ots, known in the function algebras theory, to a noncommutative cage. We prove
a do Brangoes-type theorem and a generalization of the Bishop decomposition theorem.
As applications we prove a version of the Stone~Weierstrass theorem and an approxi-
mation-type result in conneotion with. the Bishop decomposition proved earlier.

1. Preliminaries. I (H) stands for the 0*-algebra of all lineax, bounded
operators in a complex Hilbert space H. A*-homomorphism = of a C*-
algebra A into L(H,) is called a representation of A, the dimension of H,, is
called the dimension of m. Characters of a 0*-algebra A are one-dimensional
reprosentations of A. A representation @ of a C*-algebra A is called irre-
ducible if the algebra m(.4) has no non-trivial invariant subspace in L(H,).
It 4 has the unit ¢, we will assume always that, for every representation’
7w of 4, n(e) = I, — the identity operator in H,.

If & is a subset of L(H) we denote by ¢* (%) the 0*-algebra generated
by & and the identity. Tt TeL(H), we write 0*(T) for C*({T}). By the
spectrum A of @ O*-algebra A we mean the set of unitary equivalence classes
of all irreducible repxesentations of 4 equipped with the hull-kernel
topology. For a subset K of 4 we write J(K) = (\{kerg, geK}. It J is
a closed, two-sided ideal in 4, then by the hull of J we mean the set hull (J)
consisting of all wed such that J < kerzm. It follows from [2], 2.9.7 (ii),
that J = J (hull(J)). The closure K of a subset K of 4 in that topology
is equal to hull(J(K)), by the definition.

If two C*-algebras ave *-isomorphic, then their spectra are homeo-
morphic. Namely, if ¢: A1—+Au is a *isomorphism of the C’* -algebras
Al, A,, then the mapping §: 4,4, given by the formula ¢: g->gop™?
ix the homeomorphism induced by ¢. For basic facts concerning C*-alge-
bras we refer to [2].

2, Sets of antisymmetry. To begln with, we recall two results due
to de Branges, Bishop and Glicksberg [3].
Let X be a compact Hausdorff space and let B = 0(X) be a function

. algebra. B+ denotes the set of all finite, complex (regular, Borel) measures
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u on X such that [fdu = 0 for all feB, ball Bt stands for the closed
unit ball in B*.

A subset o of X is called antisymmetric for B if every function feB
real-valued on ¢ is constant on o.

THEOREM A (de Branges). Let B bé a function algebra in C(X). If
u is an extreme point of ball BL, then the carrier of u is an avmsg/m'mato io
set for B.

TarorEM B (The Bishop decomposition). Let B be a function algebra
in C(X). There is o family A of subsets of X such that X = (JA" is w par-
tition of X and:

(1) Boery Kex 4s a maximal anvisymmetric set for B

) If feO(X) and if for every KeA flgeBlg, then feB.

Our main purpose is to prove generalizations of these theorems to
2 noncommutative case.

Let A be a C*algebra with the unit ¢. Let B = 4 be a %lb&]{,,(‘bl'h
of A containing e, Z denotes the center of 4.

For a subset K of A we define:

Dg(B) = {beB: b—b*eJ (K), Vaecd ab—baed (K)}.
Observe that for meXK, beDg(B) m(b) is a self-adjoint element in the
center of w(4). Since = is irreducible, =(b) = a,I, for some a,eR (veals).
Hence

Dg(B) = {beB: YueK,da,eR: n(b) = a,I}.

DEFINITION. A subset K of A is antisymmetric (a set of antisymanetry)
Jor B if for every beDx(B) there is 7 <R such that, for all we K, m(b) = rl,;
in other words, all the o,’s above are equal. A subalgebra B is called
antisymmetric it 4 is an antisymmetric set for B.

From the definition follows immediately that one-point subsets of
A are antisymmetric sets for any subalgebra B of 4. The detinition. implies

- also L}m‘u all self-adjoint elements of ZnB belong to .D,(B) for every
K< A If A is & simple C*-algebra (i.e. 4 has no proper ideals), then for
every med kerm = {0}. Then, for every subalgebra B of a simple (*
algebra 4 and for every subset K of 4, Dz (B) consists only of self-adjoint
elements of Zn B. Simple C*algebras exist. For example, every UHIL
algebra is simple (see [6], p. 88).

Compare now our definition of the antisymmetry with the classical
one (as at the beginning of this section). If 4 = O(X) then 4 = X und
if B is'a function algebra in A then Dy (B) is precisely the set of all feB
which have real values on K < X. Now it is plain that the above definition
of antisymmetric sets is a natural generalization of the classical one.
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First we give some immediate properties of antivymmetric sets
Agsume that A is a O*-algebra with the unit ¢ and with the center Z, B is
a subalgebra of 4 such that e<B.

Remark 1. If K = 4 is an antisymmetric set for B, then so is its
dlosure K.

Proot. Since J(K) = J(K), we liave Dg(B) = Dg(B). Take beDz(B)
ek, It o(b) =rI, for all geX, then b — recJ (K), hence m(b—re) =0
and the proof is complete.

Remark 2. If K,, K, are two antisymmetric sets for B such that
K,NK, # @, then K, UK, is an antisymmetric set for B.

Proof. Define K = K,UK,. It is clear that J(K) = J(K;)nJ(K,).
Hence Dz (B) = Dg, (B)NDy,(B). Take beDg(B). There are y, 7,eR such
that for every myel; my(b) = r I, and for every myeK, my(b) = ryl,,.
Since K,;nK, % @, we must have 7, = r, and Remark 2 is proved.

Remark 3. Hvery antisymmetric set for B is contained in & maximal
antisymmetrio set for B. Mawimal antisymmetric sets are closed.

Tt follows from Remarks 1, 2 and from the Kuratowski-Zorn lemma.

Remark 4. Suppose that all self-adjoint elements of ZNB are scalar
multiples of e. Then B is an amfisymmmic algebra.

Proof. It is known that J(4)= ({kerg: ged} = {0}. Hence
= {heB: beZ, b = b*} and Lhe proof is complete.

This Remark implies in particular that if the center Z is trivial,

then every subalgebra B of A is antisymmetric.

The next Remark shows that the property of the antisymmetry is
algebraie.

Remark 5. Suppose that A, A, are two O*-algebras with units e;, €,,
respectively. Let p: Ay—A, be a *-isomorphism. Let B < A, be & subalgebra
of A, containing e,. If K is an antisymmetric set for B, then P (K) (defined
in Preliminaries) is an antisymmetric set for (B).

Proof. It is easy to check that Dyxyle(B)) = q:(DK(B)), Recall that
#(e) = gop=* for ped;. Let ceDgup(B)). Then there is beDg(B) such
that ¢(b) = ¢. If .'n:etp(K) then = = gogp™* with some geK. Now m(c) =
(¢op) (p~(b)) = ¢(b) and, by the assumption, K is antisymmetric for, B.
Hence m(c) = rl, f01 all wep(K) and the proof is concluded.

Tet A Dbe an irreducible O* operator algebra in L{H). Remark 4
implies that 4 is antisymmetric. It follows from Remark 5 that an anti-

symmetric operator algebra need not be irreducible. As an example con-
gider the unilateral shift U, of the mulmphel‘ry one. The algebra C*(U )
is irreducible. But the algebra 0*(U% ) is not irreducible and it is *-isomor-
phic with 0*(U ), hence, it is a.ntisymmetr’ic. .

Now we will give an example of antisymmetric sets.

D4(B)
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ExAamerz 1. Denote by J(n) the usual Jordan block in O":

0

0
J(n) = 1.‘0..
0 10

©0 o :
We define H =@ 0", 8 =@ J(n), 4 =C*(8). § is a power partial
. n=2 n=2

isometry (in the terminology of [4]). The description of 4 is given in [1],
[4]. Namely, all irreducible representations of A have the forms:

(a) ¢(8) = ¢" with some te[0, 2], .
(b} 7y (8) = Uy,

(6) my(8) = U,

(d) en(8) =d(n), n =2,3,...

up to the unitary equivalence. Denote by I' the set of all characters of 4,
L = {gy, » =2, 3,...}. The values of all pel” at § cover the whole unit
circle. As for the topology of A; I' is closed, {m} = {w}Ul, i =1, 2,
L is dense in 4 (we omit the rather simple proot).

One can check that the center of A consists only of sealar multiples
of the identity I in H. Hence, by Remark 4, 4 is an antisymmetric set
for every subalgebra of 4. Now we want to consider a subalgebra B of 4 to
show some, other than .4, antisymmetric sets for it. Let # = &*§ be the
initial and F = 88" — the final projection of §. Let B be the closed
in norm subalgebra (not symmetric) of 4 generated by 8, B, B and I.
It is clear that B is not commutative (SE = HS). Moreover, B # 4
because 8*¢B. For the distance in norm of §* to, the algebra of all lowerz
triangular matrices is equal to one and. all elements of B are lower-triangu-
lar. We claim that I" is an antisymimetric set for B. '

- For the proof let us determine the set Dp(B). The algebra B is the
closu.re in norm of all operators p(H, I, 8), where p (@, y', 2) is a poly-
nomial in three variables @, y, 2 such that # and y commute and # does
not commute with @, y. Let deg,p denote the degree of p with respect
t0 2. The elements of D(B) are those operators p(H, I, 8) (and their
norm-limits) for which ¢(p (&, I, 8)) are real for all pel' Observe that
for an arbitrary peI" we have ¢(E) = ¢(F) = 1. Take p(B, 7, 8) from B.
For pel’ we have

¢(p(B, T, 8) = pp(B), (), p(8) = p(L,1, ",

where c_p(S) =%, ?e[O, 2r]. This equality proves that » (B, F, 8) is in
Dp(B) if and only if p(1, 1, ¢*) is real for every te[0, 2n]. The polynomial
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2~»p(1,1,2) hag real values on the unit eircle if and only if deg,p = 0.
But if deg,p = 0, then p(1,1,2) equals to the sum of all coefficients
of p. It follows that p (H, F, 8) belongs to Dp(B) if and only if deg,p = 0
and the sum of all coefficients of p is real. Hence Dy (B) consists of norm-
limits of such p(X, F, 8). Finally, it follows that the value of a character
gel at an element of Dp(B) is real and. it does not depend on ¢. It proves
that I' is an antisymmetric set for B.

Since one-point sets are antisymmetrie, {m,}, {m,} are antisymmetric
for B. Since the closures of antisymmetric sets are again antisymmetric,
{m}UI" and {m} Ul are closed antisymmetric sets for B. The set Dy(B)
consists only of scalar multiples of I, hence I is also antisymmetric for B.
Tts closure is equal to A, hence A is antisymmetric for B, as we have
remarked above in a slightly different way.

Finally, we would like to present a subset of A which is not anti-
symmetrie for B.  Choose two characters ¢y, p,el” such that ¢,(8) =1,
@a(8) = —1. Put K = {p;, pz}. It is clear that SeDg(B) but K is not
antisymmetric, because @;(8) # @a(8).

3. Main theorems. Before proving main results of this paper we will
prove a proposition in connection with function algebras and measures
in oxder to explain the genesis of out further considerations. Let us recall
gome definitions. Consider & compact Hausdorif space X and a complex,
finite (regular, Borel) measure u on X. (1| denotes the positive total variation
measure of u. Let kb be the Randon-Nikodym derivative du/d|u|. Since
 i8 finite, b is [u|-integrable. Moreover h == 0 [p|-a.e., because u and |u| are
mutually absolutely continuous. A point z<X belongs to the carrier of
u if and only if for every open neighbourhood U of & |u| (U) > 0. Denote
by = the representation of ((X) into L(Iﬁ(m[)) given by the formula
n(f)u = fu for feCO(X), weL*(|u]). It @eX, then we write g, for the point- -
evaluation character ¢,(f) = f() for feO(X). Define the following fune-
tional on O(X): .
o(f) = [fau, f<O(X).

PROPOSITION 1. kerm is the largest ideal of O(X) contained in kerg.
Moreover,
the carvier of p = {weX: kerm < kerg,} = hull(kers).

Proof. Tt feO(X) and a(f) = 0, then f = 0 |u|-a.e., because p is
finite. Tt follows that ¢(f) =0, hence kerm = kerp. It J is an jdeal of
0(X) such that J < kere and if feJ, then for every keO(X) flhed and
[fledu =0 for all keCO(X). Using the Radon—Nikodym theorem, the
continuity of the inner product in I*(|u|) and the denmsity of C(X) in
L (lpl), we obtain ffghd|ul =0 for all geL*(|u]). It follows that fh =
0 {u|-a.e. and hence f = 0 |u|-a.e. Hence #(f) =0 and J = kers.
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Now we prove the second part of the proposition. Suppose that
w»eX and # does not belong to the carrier of u. Then there is an open
neighbourhood U of @ such that ju| (U) = 0. Now we can find a function
feC(X) such that f(») 0 and f =0 off U. It follows that (px(f 5% 0
and fOI‘ all geI?(|ul)

[foaiul = [foalul+ [ fodlul =0,

x U x\U

hence z(f) = 0, thus # ¢hull (ker»). Conversely, if #¢X is not in hull (ker 7).
then there is feC(X) such that f(w) # 0, n(f) = 0. Hence f == 0 |ul-a.e.
But f is continuous, hence there is an open neighbourhood U of @ such
~ that f # 0 on U. Finally,

[t < [IfPalul =o,

5 X

hence |u| (U) = 0 and the proof is complete.

_ In what follows 4 will denote a C*-algebra with the unit 6. B = 4
is a fixed closed subalgebra of A containing e. B stands for the set of
all continuous complex functionals on A vanishing on B, ball.4d (ballB,
resp.) denotes the norm-closed unit ball in 4 (B, resp.).

The following theorem is a mnoncommutative gemeralization of
Theorem A.

TueoREM 1. Suppose that ¢ is an eslreme point of ball B, If J s
the largest two-sided ideal of A contained in kere then hull(J) is an anti-
symmetric set for B.

Proof. Clearly, K = hull(J) is a closed subset of A. It A, = 4/[J
then X can be identified with 4, ([2], 3.2.1.). Let g: 4> 4, be the quotient
map. Take beDyg(B). Then for every neK m(b) = a,I, for some reals a,.
We may assume 0 < a, < 1 for meX. We have to show that all the a,’s
are equal. Note that ¢(b) is in the center of 4,, because J = J(K) and
for all aeA ab—baed. ’

Write @ = ¢y --@q, Where ¢,(a) = @(ba), ¢s(a) = qo((e——~b)a) for a.ll
aed. Tt is clear that ¢y, p,eBL. Now we will prove that |lp, || sl <
It is sufficient to show that sup {|p,(a)+p.(6)l, @, ceball A} < 1. For mke
a, ceball A. Then we have

o)l = [pfba-+(o—b)0)| < g (ba-+(e—b)o)||
= s}g) “ﬂ:(ba/ +(e—b) c)“

|1 (@) - @a(

< up (a,.uw(am +{l—alm(e)l) <1,

because for every aed llg(a)l| = sup Il (a)]| ([2], 2.7.1.), by the identification

of K with A4,.
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Since ¢ is an extreme point of ball B, we conclude thai @ =79
for some r<[0, 1]. It follows that ¢((b—re)a) = 0 for all aed. Since for
all aed ab—baed = kerp, we have also g(c(b —re)) =0 for all ccA.
It follows that ¢ annihilates the two-sided ideal generated by b-—re.

But, by the definition of J, b—reed and hence m(b) = rI, for all ze< K.
The proof is completed.

I would like to express my tha,nks to the Referee for the essential
simplification of my initial proof of Theorem 1. The enclosed proof is
just this simplified version.

Now we consider an ideal of B instead of the whole algebra B. Then
the following theorem holds:

TumoruM 2. Let G be an ideal of B. Suppose that ¢ is an extreme point

is ballG. If J is the largest two-sided ideal contained in ker g, then hull(J)
of antisymmetric for B.

To prove this theorem it is sutficient to repeat step by step the proof
of Theorem 1, observing additionally that if p<G* and beB then the func-
tional ¢, (@) = p(ba) for aeAd is also an element of G

Let us point out that by Proposition 1 one can consider Theorem
A and a part of Theorem 2.5, in [3] as special cases of our Theorems
1 and 2, respectively. As a consequence of the previous two theorems we
are a,ble to prove the following theorem which generalizes Theorem B fmd
a result of Glicksherg ([3], Theorem 2.5).

TrrorEM 3. Suppose that A, B are as above and that G is an zdeal
in B. Then there is a family A" of subsets of 4 such that A = \ ) A is a parti-
tion of A and:

(1) every Kex is a mawimal (closed) antisymmetric set for B;

(2) if acA and if for every Ket there is beB such that a —bed (K),
then weB;

(3) if acd and if for every Kek there is geG such that a —ged (K),
then ae@.

Proof, Since all one-point subsets of 4 are antisymmetric for B,
(1) follows from Remark 3. To prove (2), we will apply the technigue
used by Glicksberg in [3). Let a«A be as in (2). Suppose that a¢B. By
the Hahn-Banach theorem, we find a continuous functional ¢ on 4 such
that peball B*, p(a) # 0. By the Krein-Milman theorem we may choose
@ ay an extreme point of ballB+. Let J be the largest two-sided ideal
contained in kerp. By Theorem 1, hull(J) is an antisymmetric set for B.
By (1), there is K e such that hull(J) = K. It follows that J = J (hull(J ))
= J (K). Our assumptions imply now that there is beB such that ¢ —bed (K).
But J(K) = J < kergp, hence p(a) = ¢(b) = 0 which is a contradiction.
The proof of (2) is finished. )
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To prove (3), we repeat the proof of (2) ’using Theorem 2 ingtead of
Theorem 1. Now our theorem is completely proved.
We call the family 2" of Theorem 3 the Bishop decomposition for B

4. Applications. In the function algebras theory the Bishop decompo-
sition appears as a generalization of the Stone-Weierstrass theorem. In
the noncommutative situation considered in this paper we are also able
to prove a verison of the Stone-Weierstrass theorem. First we introduce
some terminology. Let us fix a O*-algebra 4. Let m,, @, be two irreducible
representations of A. We will write m, =, if m; and =, are unitarily equiv-
alent. Similarily, it § is a subset of A, we write my|g =2 mlg if therve is
a unitary operator U: H,—H, such that, for all aeS, Uny(a) = my(a) U.
We say that a subset § of A sepowates A if for any two irreducible repre-
sentations ., w, of A m, & m, implies 7y [g ”2\5 The following proposition
is a gemeralization of the Stone—Weierstrass theorem.

PROPOSITION 2. Suppose we are given a C*-algebra A with the unit
¢ and with the center Z. Suppose that dimensions of all irveducible represenia-
tions of A are equal (finite or not). If a C*-subalgebra B of A satisfies the
following conditions:

(a) eeB,

(b) BNZ separates- A,

(¢) for all irreducible represeniations x of A m(B) =
then B = A.

Proof. Let " be the Bishop decomposition for B. Take Kex' and
two points 7, we< K. Suppose that 7, # @,. It means that there are two
irreducible representations =, m, of 4 such that =, 4 =, and the unitary
equivalence clags of s; equals to 7, ¢ = 1,2. By our assumption (b),
%1lznz ¥ Wslpnz. Hence, for every unitary opemtor U: H,—~H,,, there is
beBNZ such that Um,(b) # ny(b) U. Since BNZ is a C*-algebra, we may
choose b as a self-adjoint element of BnZ. But seli-adjoint elements of
BNZ lie in Dg(B) and K is antisymmetric. Hence there is < It such that
w1 (b) =9I, , my (b) = rI,,. This is a contradiction which proves that every
maximal, em‘msymme’orle set for B, must contain strictly one point of A.
Now, if ae A then, by (c), there ig beB such that »(a) = ~(b) and applying
Theorem 38 we finish the proof.

- Bome remarks are now in order. There are several noncommutative
generalizations of the Stone~Weierstrass theorem. Our generalization
has a connection with one of them due to Fell (see [2], 11.1). He called.
a subalgebra B of a O*-algebra A rich if B separates A and for every
irreducible representation = of Ax|p is irreducible. He also proved ([2],
11.1.6) that every rich subalgebra of a GOR algebra is equal to the whole
algebra. If B satisfies the conditions of Proposition 2 then, obviously, it

n(4),
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is rich. Hence we see that Proposition 2 says something new in case where
4 is not GOR.

Now we would like to ‘present an example in which assumptions of
our Propogition 2 are satisfied non-trivially. We will also show that those
agsumptions are essential.

ExAMPLE 2. Consider a commutative von Neumann algebra ¢ — L(H)
with the identity I<L(H). By M,(%) we will denote the (*-algebra of
all #» X n matrices over ¥ (i.e whose entires are elements of #). Takesaki
in [B] proved that all irreducible representations of 4 = M, (%) are exactly
n-dimensional. Moreover, to every irreducible representation w of A there
corresponds a non-zero character ¢ of # such that = is unitarily equivalent
to the representation ¢ of A4 of the form ¢([Ty]) = [p(Ty)l, Tye? for
i,j =1, ..., n Conversely, every non-zero character ¢ of ¢ induces the
representation ¢ (as above) of A which is irveducible.

We can consider % as a subalgebra of A if we embed it into 4 as
ollows: for Te%

T
T 0
0

Ir-T, =
r
This embedding is a *monomorphism. One can check easily that € is
equal to the center of A.

Let s, m, be two irreducible representations of 4 and let @i, ¢, be

two characters of # corresponding to =, m,, Tespectively. Observe that
the following. three conditions are equivalent:
(1) m =m,

({) @1 =g

() mle @y
Indeed, implications (i) = (iii) and (ii) = (i) are trivial. The only thing
to prove is (ifl) = (ii). If my), o my),, then, for T'e®, ¢ (T)I, =2 @a(T) 1y
Hence ¢y (T) = po(T).

This equivalence implies that € separates A. Let B be a C*-subalgebra
of A containing ¥ and such that for all wed m(B) is irreducible (in this
case it is equivalent to say that w(B) = n(4) = L(0™)). Proposition 2 implies
B = A.Tor instance, take B as & (*-subalgebra of A containing ¢ and an
operator

0 0

§=|T 0
0 T,.,0);
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where T;, 4 =1,...,n—1 are invertible. Since for all wed =(8) is an
irreducible operator, we have B = A. The (*-subalgebra % of A satisfies
(a) and (b) of Proposition 2, it does not satisfy (c) and ¢ =+ 4, hence (c)
is essential. .

Let now B = ¢*(U), where

U= ]
0 "10

One can check that the center of B is trivial, hence BN % congists of scalar
multiples of the identity. It follows that B % .4 (and, by Remark 4,

A is the only maximal, antisymmetric set for B). If ¢ is a character of %, .

then ¢ ( f7) = J(n) (as in Example 1). Hence for any two irreducible rep-
resentations my, m, of A 7|z m,s|5. It is clear now that B does not separate
A and (b) of Proposition 2 is essential.

Ags the second application of Theorem 3 we will prove now an approxi-
mation-type property for subalgebras of = (*-algebras. . Consider a C*-
algebra, 4 with unit e. Let K be a closed subset of 4. In this case K
= hull(J (K)). Let 7: A—A/[J(K) denote the quotient map. As we have
observed in the proof of Theorem 1, we may identify K with the spectrum
(A/J(K))‘ of A/J(K). If a, bed, we define |la —bllx = sup {|lw(a)—x(b)|,
neX}. Now we have [la —b|g == [[z(a—Db)].

PROPOSITION 3. Let A be a O*-algebra with the unit e, let B be its closed
subalgebra containing ¢ and let A be the Bishop decomposition for B. Then
if aed, we have:

lo—B| = sup{lla —Blg, Kex},

where |@ —B|| = inf{la —b|, beB} and |o— Bz = int{|o —bl|x, beB}.

Proof. Let us recall that all elements K of # are closed in 4. Since
for every wed ||z = sup {|=(2), wed}, we have |l&—B| > sup{le—Blg,
KeA}. To prove the converse inequality observe that the dual space
(4/B)y of A/B and Bt are isometrically isomorphic as normed linear
spaces. Hence

lla ~B|| = sup{|f(a)|: feball B+}.

It follows from the proof of the Krein-Milman theorem that the last
supremum is assumed at an extreme point ¢ of ball B*.

Let J be the largest two-sided ideal contained in kerp. By Theorem 1,
hull(J) is an antisymmetric set for B, hence there is I e such. that hull(J) <
< K. It follows that J(K) < J(hull(J)) = J = kerg. Let v: A—A/[J(K)

icm
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be the quotient map. Now we have for every beB:
lp(a)] = lp(a—~b)| < lr(a—b)|l = lla—blg |

and the proof is completed.
This proposition implies a result proved by Glicksberg ([3], p. 419)
in connection with the commutative Bishop decomposition.
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