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STUDIA MATHEMATICA, T. LX. (1977)

On the structure of separable 2, spaces (1<p< )

by
D. ALSPACH* (Columbus, Ohio), P. ENFLO** (Stanford, Calif.)
and,
E. ODELL* (Columbus, Ohio)

Abstract. It is shown that Ly, (3 Xp)y,, Bp and (5l)1, (1< p < co) are primary.
The proof for Ly is then extended to a class of rearrangement invariant function
spaces. Also, if X is a subspace of (Z’Z,)zp = Zp (1 < p < o) which contains a subspace
¥ isomorphio to Z, and s > 0, thon there is a subspace Z = Y with d(Z, Zp) < 1+e
and a projection P of Z, onfo Z with |[Pll< 1+e.

Introduction. A Banach space X is said to be primary if whenever
X = Y®Z then either ¥ or Z is isomorphic to X. It is known that ¢, 1,
(1< p < o) and 00, 1] are primary (see [13] and [9]). In the first part
of Section 1 of this paper we show that L, (1 < p < o) is primary. The
main technique in the proof is a result of Casazza and Lin (Lemma 1.1
of Bection 1). In the latter part of Section 1, we employ a similar argument
to show that cer‘r,.a,i]‘a pther Z, spaces (namely, (3 Xp),p (3 lz),p and B, (see
[14] for the definitions)) are primary. )

In Section 2 we turn to the study of the isomorphie structure of sub-
gpaces of (Y lz)zl, = Z,. In particular, we show that if X is a subspace
of Z, which containg an isomorph of Z,, then for all & > 0 there is a sub-
space Y of X with d(Y, Z,) <1+ and such that there is a projection
P of Z, onto ¥ with |Pl<1 +s.

‘We use standard Banach space notation throughout as may be found,
for example, in the book of Lindenstrauss and Tzafrivi [10]. By subspace
we mean closed linear subspace. Tf 4 < X, by [4] we mean the smallest
subspace containing 4. X ~Y means that X is isomorphic to Y.

Wo wish to thank Professor W. B. Johnson for many useful discussions
regarding the material contained herein.

* The contribution of the firet and third named authors is part of their respective
Ph. D. dissertations being prepared at The Ohio State University and The Massachusetts
Tnstitute of Technology under the supervision of!Professor 'W.'B. Johnson.

** The second named author was supported in part by NFS Grant MTS 74—
07330 A01. ' :
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1. In this section we will show that Ly, (3 Xp)y,, (3la)s, and B, ave
primary. The basic technique we use is essentially due to Cadazza and Lin
[4]. We wish to thank Professor W. B. Johnson for pointing out to wus
that the following lemma follows easily from the arguments in [4].

LemmA 1.1, Let (=, ( ) be a bounded unconditional basis for X with biortho-
gonal functionals (zy). Assume that T is om operator on X such that (T, ;)
is a block basis of (m,) for some subsequence (w,,) and lmni(_’l'm,w | = ¢ for all
i and some fizved ¢ > 0. Then the basic sequence (‘l’aa,%)i,_1 98 equivalent o
(ny)imn and [(Tw, )21 is complemented in X.

Our next lemma follows immediately from a theorem of Gamlen
and Gaudet [6].

Luvwa 1.2. If (k) s the Haar basis for L, (1 <p < o) and {h}2,
= {ly o1V, o1y then either [(Rg,)]~Dy or [(Ry, )]~y

‘We also wish to recall that if (#,) i3 an unconditional basic sequence
in L,, then there is a constant k¥ < oo such that for all finitely non-zero
sequences of scalars (a;),

( 2|aﬂ)

@ (Do) <] 3 e, <

(see [7]).
TEROREM 1.3. L, (1 < p < oo) i8 primary.
Proof. It is well known that L,~L,(l,), where

o) = (201 fueZy amd 1501 = ( (Smﬁ)m)“’k o).

Let (h;) be the Haar basis for .L,. Then (hy)., is an unconditional basis
for L,(l;), where

)p/2 d t)llp

@)

i = (0,0,...,0,%,0,...)

{h; stands in the jth place). For these facts and some related results see [15].

Assume Ly(l,) = XPY and let Py (respectively, Py) denote the
projection of L,(l,) onto X with kernel ¥ (respectively, the projection
of L,(l,) onto Y with kernel X). We shall show that either X or ¥
contains & complemented isomorph of IL,. The fact that L, is primary
then follows from the well-known decomposition technique of Pelesyri-
ski [13].

Since hﬂ —th,j+I-’th ‘either R(Pxhy) = § or Ty (Pyhy) =
each i and j (here (hy) are the functionals biorthogpnal to (hy)). Let

% for

I = {i: hj(Pxhy) >} for an infinite number of j},
J = {i: hy(Pyhy) > for an infinite number of j}.

By Lemma 1.2, either [(k;);r]~L, or [(A)ieg]~L,. Without loss
of generality we assume that [(h;) Yiez~L, and enumerate I as {i,)o.;.

and
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Since (Pxhy)iy~; converges weakly to 0, we may assume (by standard per-
turbation arguments) that there are integers j, such that (Pxhi g, ne Is 2
block of the basis (hy) and hz du(Pxly ) >4 By Lemma 1.1, (th‘in PR
is equivalent to (h{” in ey ;md [(Prhz dpne] 18 complemented in Ly(1,).
But by (1) and (2), (Pt gy mms 18 eqmvalent 0 (hy,)p—y and thus we hawe
shown that X containg a complemented momorph of L, m

The second named author presented a different ploof of Theorem 1.3
at the conference “The Geometry of Banach Spaces” at Oberwollfach,
1973. A proof similar to that and an extension to the case p = 1 has been
given by Maurey [11].

Our next theorem shows that certain other £, 8paces with a “nice

© matrix form? are primary. In what follows X, and B (l<p< oo,p £2)

are the £, spaces of Rosenthal [14].
THROREM 1.4 (Z‘X],),p, B, and (Sla)y, are primary (1< p< oo,
P #2)
(J. Lindenstrauss has independently obtained this result for (31, )
Proof. Tt suffices by duality to prove the theorem for P >2 and we
shall consider only the case of (ZXﬁ), (the proofs for the other spaces
are similar and simpler).
We regard X, as [(24)75.1], where ()%, is a sequence of independent
symmetric 3-va1ued random variables in L,[0, 1] such that

ozl ILE

(3)

=, for all 4 andj
loglz, ’
Zw"m'“ = oo and w0 (ef. [+4]). Thus an unconditional basis for (3 X, )

is given by (y44)mi=1, Where for each n (@,,;)55-; is 2 sequence as

in (3) above, and
= (22 5 awsan
n T J

12223
n 2 ¥
Let (3 X, ), = Y@ Z and let Py be the projection onto ¥ with kernel
% and define Py similarly. As in the proof of the previous theorem, we
need only show that either ¥ or Z contains a complemented isomorph
of (3 X,)
Let (.)wan‘.,,) be the functionals biorthogonal to (a,.,) and for each
n set

'p)llp'

.
Oy X iy

7

for an infinite number of j},

__{1

B ""“{7’ mn,i:l(-PZmn,M)

n 4,4 Pl’wn,'[.

)= 4
W >1

for an infinjte number of j}.
Then for each n either

Z w;ﬂ/ﬂ‘z = o0 Or
ied, -

2 WP = oo,

ieBy,

6 — Studia Mathematica 60.1


GUEST


82 D. Alspach, P. Enflo and E. Odell

Thus, without loss of generality, we may assume that

(5) 2 w2 = oo for all nel for some infinite set of integers I.
dedy i

|

Let a: N—{(n,i): nel, ied,} be a bijection. We claim Ghat
(P Bagy,jy)ie=r 18 & small perturbation of a block of the basis (@, ;;)m s m1
for some, choice of the j(k)’s. To see this, let m N and set

(Z, Z 2 “nﬁwnﬁ) :‘: f Oy Ty

=1 fm1
Let g, be an arbitrary sequence of positive numbers decreasing to 0.
Now for each n and 4, Py, converges weakly to 0 as j-»oo, thus, if we
Tet .y, g0y = @311, then there is an integer m, such that (I~ @) Py &aq, i)l
< &y and an gy, Such that }|lePym.,(2),j(2)H < &y. SUPPOSE Wagy, gy has
been chosen. Then there is an integer my and a j(k-+1) such that
L~ Q) Py Bagry syl < £’ 0L @y Py By, syl < &ar- Since by (4),
Py uyy.ig 18 bounded away from 0 in norm, a sufficiently small choice
of the ¢;’s yields the claim.
The theorem follows by Lemma 1.1 once we observe that [(@ug, )]
~(3Xp),, - This in turn follows from (5), the definition of a and the following
result of Rosenthal [14]: There is a K < oo guch that if (@,) is a sequence

HMﬁ

=

of 3-valued symmetric independent random - variables -with
Joly 1‘,0,“ w40 and Zw“,f’“’”“ = oo, then
”m‘an :

x,)<

Remarks. 1. By a q1m1lar argument 1‘0 can be shown that (Zl
primary, 1<<r, p < oo.

rily is

2. We do not know if X, itself is primary. A simpler version of the
above proof yields that, if X = Y@ Z, then e]ther Y or Z contains a
complemented isomorph of X

3. The proof of Theorem 1.3 can be extended to show that, if X is
a reflexive rearrangement invariant funetion space on [0, 1] with indices
o B, 0 <f<a<l, then X is primary (see [2] or [3] for definitions).
Thus, in particular, every reflexive Orlicz space on [0, 1] is primary.
This extension was the result of a conversation with A. Pelezyhski, to
whom we are grateful. We sketch the proof below.

From results of Boyd [2] one can easily obtain the following theorem :

THEOREM 1.5. Let T be o bounded linear operator on L, for all p,
1<p< oo If X is a rearrangement invariant function space with indices
@ B,0 < B < a<1,then T is continuous on X (s.6., TX = X and |T|x < 00).
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By arguments of Mitjagin ([12], pp. 85-91), it can be shown that
Theorem 1.5 also holds with L, replaced by L,(l,) and X replaced by
X (l,). Moreover, X can be shown to be isomorphic to X (I,).

If we examine the proof of Theorem 1.6, we see that the following
results are needed:

(i) The Haar system, {h]}{,, is an unconditional basis for X and
the corresponding system {h,}7., is an unconditional basis for X(l,);

() It {1,2,3,...} =TIuJ, then either [h];; or [hsey is iso-
morphic to X;

(iif) I£ [hyyer~X, then [hy,liz~X;

(iv) If X~Y@®Z and Y~A@ B with X ~A4, then X~Y.

The first three of these can be obtained from the corresponding
results for L, and Theorem 1.5. Indeed, consider (ii). An examination
of the proof of the result for L, [6] shows that one can construct an operator
Tfrom L, [0, 1]to [h;];7 (say) which is an isomorphism forall p, 1 < p < oo.
Thus, by Theorem 1.5, T’ is continuous on X. Let P be the basis projec-
tion from L, [0, 1] onto [%;];.;. Then T-'P is continuous on X, by Theorem
1.5, and hence T is an isomorphism from X onto [%];.

Finally, (iv) follows from arguments of Mitjagin ([12], p. 95).

The technigues used here would have wider application if the following
problem has an affirmative solution.

Prosrem. If Y is isomorphic to a complemented subspace of X and
X is isomorphic to a complemented subspace of ¥ is ¥ isomorphic to X%

2. Let Z,, = (S},
the fo]lowmg theorem.

THEOREM 2.1. Let X be a subspace of Z, which contains a subspace
Y isomorphic to Z,. Then for any &> 0 there is a subspace Z = X with
A(Z, Z,) < 16 and o projection P of Z, onto Z with |P|| <1+,

‘We note that a theorein of Pelczyniski shows that I, possesses a similar
property [13].

We first introduce the basi¢ notation we shall be using. Let the natural
baxis of Z, be given by (ey){5.., Where

|3 Sl = (S 134"

Let €, be the natural projection onto the first n Hilbert spaces and for
B < NV (finite or infinite) let Py be the projection onto those Hilbert
spaces indexed by E. Thus

Qn(z a,ueﬁ)

4] i=

(1< p < o). Our aim in this section is to prove

00 .
Z g 45

J=

HMs
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and
oo
2
PE'( jew) = 22 Gy by
iel j=1

Also let Q" = I —@, be the natural projection onto those Hilbert spaces
past the first n.

The idea of the proof of Theorem 2.1 is to construct a sequence of
almost disjoint Hilbert subspaces in ¥. The following lemma will be
very useful. We omit the proof which is quite standard.

Levma 2.2. Let (y;) be o block basis of (ey)ij=1- Then, if (a;) is a fam,tel'y
non-zero sequence of scalars, we have

1) if p=2, (3lallly P < IIZ%WH\(ZIM llysI*)* 5

(2) if p <2, (Jlal vl < || X oy < X1aal? lyall)*®

Lemma 2.3 provides a sufficient condition for a subspace of Z, o
be isometric to I, and well complemented.

LeMMA 2.3. Let (y,) be a nmmalwzed block. bcms of (ey) such that Py,
= A for all & and 1. Then H ey =
s norm-1 complemented in Z,.

Proof. The first assertion was observed by Rosenthal (cf. p 292 of
[14]) so we shall confine ourselves to producing the desired projection P.

Let Pyyy; = 'y,.j 50 that [yl = A, for all j and % and 3 A2 = 1. For

22’” *945- Then fyeZ, (1/p+1/q = 1) and ||fl, = 1. For

E=1
Pp = Zf,-(m)y,
i=1

By definition, f;(y;) =0 if j 7 while

each j let f/ =
ZeZ, define

(=] o0
5 = D B g > = D BT = 1.
foe=1 few=1

Thus P(y;) = y, for all 4 and it remains only to check that |P| = 1.

Let weZ, with [l#] = 1 and let ¢, denote the vector » restricted to
the support (wmh respect to the e,’s) of y;. Thus (Z( Z‘ncuuﬂ)»/z)x/p <1
We shall show [|[Pz| < 1.

By the definition of P and the first part of the lemma,

IPalf = DN if@ = 3 34 g, o)
i i %
< ,jZ (’2 B gl o) = ) (> m ua,c,u)”.
e Tk

2)”2 for oll scalars (a;) and [{y;)]
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Thug, by Minkowski’s ireqralily and Holder’s inequality,

Pall< 3 ( 3 G tel?) = 3 7 (3 et
& K k 7
<( X (33wt = (3 (3 telt)”) <. m
k k g k 7

Our next lemma will allow us to 1eplace subspaces isomorphic to
I, by subspaces nearly isometric to I,. It follows easily from an argument
given in [6] and Lemma 2.2.

Lzmma 2.4. Let X be a subspace of Z,, which is isomorphic to l,. Then
SJor all £> 0, X contains o subspace ¥ with (¥, 1) <1+e.

Proof. This was plovec'l in [14] for 1 <p < 2 #0 we assume p > 2
Let X = [(x;)], where (;) is equivalent to the unit vector basis of Z
By the generalization of Rosenthal and the second nmamed author of an
argument of James [5], there is a normalized block basis (y;) of (#;) such
that for all finitely non-zero sequences of scalars (o),

(1—%) (2 |a¢]z)m < H 2 aYsl| -

Since (y;) converges weakly to 0, by passing to a subsequence, we may
assume that (y;) is a block of (e;). But then by (1) of Lemma 2.2, we are
done. Of course, the case p < 2 could be proved similarly. m

Remark. It is possible using a slightly different argument to take
the y’s as blocks of constant coefficient and constant length. This ean
be accomplished by taking long averages in order to “kill the I, part”
of the z;’s.

Our next lemma asgerts that every Hilbert subspace of Z, must
contain'a subspace which “dies off uniformly”. We wish to thank L. E. Dor
for correcting an error in the proof of this lemma. If @: X—Z and Y is
a subspace of X by @ | we mean the operator obtained by restricting @ to ¥.

LemmA 2.5, If X is o subspace of Z, (1 <p < oo,p 5 2) which s
isomorphic to ly, then there is a subspace ¥ < X for which im @ |y|l = O.

N—+00

Proof. If 1 < p < 2, then we may take ¥ = X (cf. [14]) so we re-
strict ourselves to the case p > 2 ’

Craxm. Tor every 6> 0 there is an &> 0 such that, if ¥ < Z,, and
(X, 1y) € L5, then for some inleger n, 1™ ¢l < 6.

If not, then for some fixed 6 > 0 and any ¢ > 0 we canfind a normalized
block basis (y,) of (¢;) with |@"y,| > 6 for all n and such that (y;) is (1+e)-
equivalent to the unit vector basis of I,. By passing to a subsequenee
of (y,), we obtain disjoint finite subsets B, < N'so that |[Pg, yn,> &
and [Py yill = 0 for 4> 1. Given o> 0, since § < |]PEniy,biI| <1, we may
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assume (by passing to a subsequence) that H]meyni!]-nl < a for all
i and some 53> 4. Also for some k<1, Hl:’ﬂyl Yn;ll < @. Indeed; the set
{: Py, ynz” > « for all | > &} is finite by the dlsjomtnesq of the B;’s and
the ffwt tha,t ly,ll = 1 for all .

Tor simplicity we thus assume that we have y,, ¥,, and disjoint finite
sets B, ' < N so that

Prinl = 1PpYmll =n= 6
and
1Pp¥nll = IPgYml = 0.

Then, by Lemma 2.2,

”yn'{'f’/mnp = ”PEf‘/n'{‘-PE?/m“p“I' ”( ""-PE) .q/n"l" (I"PF)ym[]p '
< (7 2 Ly?) (1 —1 )Zlm_l_ (1 _unp)zlp]plz
= op2 _ (217/2 —2)n? < 9pl2 __(219/2 —2) 8%,

But this contradicts the fact that (y,) is (14 ¢)-equivalent to the unit
veetor basis of I, (provided ¢ is taken sufficiently small depending upon 6)
and the. claim is proved.

Using the claim and Lemma 2.4 repeatedly, we can find vectors
(y,) = X and integers n;} oo 80 that (y;) i3 2-equivalent to the unit vector
Dbasis of I, and @™y, < 27" for all j and 4. Assuming without loss of gene-
rality that (y;) is a block basis of (ey), we see that if y = 3 oy, then by
Lemma 2.2

1971 = | 3 0@y | < (X 1a "2~ < 27201 m
J

Proof of Theorem 2.1. We shall construct a sequence of “almost
disjoint” Hilbert subspaces of X. First assume p > 2 and let 4 > 0. By
the hypothesis on X, there are K < oo and subspaces ¥, & X such that
(¥, 1) < K for all n and, if y,<¥,, then

(3) B 3 ) < || 3 va| < B (3 l0al?)”

Also we have ‘
(4)  For all integers N and ¢ > 0 there 18 am integer ny such that, ¢f n = n,,

then |Q@nyll < ellyll for oll ye X,.
gt T 00 With {[y,]] =1 and

Indeed, if (4) is false, there are y,,¢X
1@x¥nll = & for all m and some fixed N. By (3), (y,,) is equivalent to the
unit vector basis of I, but |@xy,ll > ¢ implies that (y,) is equivalent to
‘the unit vector basis of I,, a contradiction.

Let &, 0 be arbitrary. Using (4) and Lemma 2.5, we can inductively
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construct integers m;} oo, subspaces X, € ¥,,. and digjoint finite subsets
IB; of N with (~F denotes the complement of B)

(5) 1Pyl < seX;.
For each ¢ choose unit vectors (@y)j2, = X, so that
(6) 1Pg,0y, —ygll < 2,2
where (Yi)i1 € (60121, he;] 18 & block basis of (e,;) satisfying
kel

glell  for

Payyyll = Ay, for
(Ag: is independent of -

By Lemma 2.3,
| 3wl = ( 3 teat i)™

and [(9y)je1] 18 norm-1 complemented in [(6;1)i2y, zez,]- Thus [(¥4)55-] is
isometric to Z, and norm-1 complemented in Z,.

By standard perturbation arguments, the proof will be completed
it we show that the operator T: [(24)i=1]1—> [(¥)ij=1] given by Ta; = yy
satisfies | T 1T~ < 1+ 6 (provided the &;’s are taken sufficiently small).

By (6), it suffices to show that the operator 8: [(#)5-1]—>U(Pr,®y)7y=1]
defined by S@y; = Pg,my; satisfies

(M 1SS <
Let (ay4);4.1 be a finitely non-zero sequence of scalars. Then, if

2=33
i

1+ 8)'? if the s’s are chosen sufficiently small.
Qi Wiz y . )
et = | 3 22 3 e
i
< H Aj.: ;1 %y |\t HZP:in(; aij“f'if)
<loll+ e 3 ayoy
i [

<loll+ Y allol = (1+K Y &) lal.

244)

Here we have used (3) and (B).
Nimilarly,

[l] = ”%:‘;Y O @y ”
<[ S 2a (S e+ 52 on( T e

< I8l + D) &K |al,
1
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or
(1—E 3 ) lol < 18-

(7) follows by taking (g) small enough to insure that

[L—&( 3 e[t E (Y] < 1075,

and this completes the case p > 2.

The case p < 2 may be proved in a similar fashion once we have
established the following

Luvwa 2.6, Let Y be a subspace of Z, (1 < p < 2) which i8 isomorphic
to Z,,. Then for every n and & > 0 there is & subspace W = Y, W ~1, such that

(8) 19l < eloll  for all we W,

Proof. Let ¥ = [(yy)iy=], where (yy)iz, is K-equivalent to the
unit vector basis of I, for each ¢ and, if y;e ¥; = [(y4)%,], then

©) (3 ) | 3 v < 5 (3 k)™

By passing to subsequences (using a diagonal process), we may assulie
that (¥;)iy=1 is a block bagis of (ey).

To prove the lemma we need only show that for all integers m and
4> 0 there is a normalized block basis (w;) of (y) which is equivalent
to the unit vector basis of I, and such that

. IQuwsll < 8 for all 4.

Indeed, if this is true, then by passing to a subsequence we may assunie
(@nw; 1@y, 7" is 2-equivalent to the unit vector basis of I, (here we ave
using that p <2 (ef. [14])). Then by Lemma 2.2,

”Qn(z aiwi) ” = HZ @ (w;)
<2( )l 1Quwdlf)"™ < 28 3 foyft)
<20 Jaon
which proves (8). .
Thus let % and 6 > 0 be arbitrary and assume that 1Qnyyll = & for

all ¢ and j > N,. We next observe that there is an 4 = 0 such that for all
m there is an ¢ with

1@yl 2 n  for an infinite number of j.
If not, then for all 4 > 0 there is an m such that for all i

19"yl <7 for all but a finite number of j,
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Thus there are (y;,,) and oo so that for all 7,
1Q™ys;ll <27 for all j.

But then, by a result of Arazy and Lindenstrauss (proof of Theorem 1 of
[1]), & subsequence of (%,n) iy equivalent to the unit vector basis of ls,
contradicting (9). Thus by relabeling the Y4’ Necessary, we may assume
that we have disjoint sets B, € N and an %> 0 such that

Pgyyll =4  for all i and j.

We now employ an averaging argument to produce the desired
sequence (w;). Let # and ¢ > 0 be given. For a fixed integer % (to be choosen

%
below) and arbitrary jlet o, = 3y, and w; = ||~ a;. Since w; < [(y4)f1 217,
qml

(w;) is equivalent to the unit vector basis of 1,. We shall show that, if
k is taken sufficiently large, then ||Q,w;|| < 6. For any j, -

1Qn 2yl = “Zlcj QY ” < 0(57 ]lQnyij‘|2)1/2 < ok
=1 =1

(Here ¢ is a constant depending only on d(Q,Z,,I,).) Since the H,’s are
disjoint, Lemma 2 of [8] yields ‘

.
2 > ( 3 1Pmgl) > mi.
i=1

Thus [Q,wll < 9~ %~ *®ck'?, which is turn smaller than ¢ if % is suf-
ficiently large. This completes the proof of Lemma 2.6 and Theorem 2.1. m

Remarks and Questions. 1. The third named author has recently
shown that, if X is a complemented subspace of Z,, then X is isomorphic
to one of the four spaces: 1,, 1,, 1, ®l,, or Z,. This result was obtained
in [16] under the assumption that X has an unconditional basis.

2. G. Schechtman has proved that there are an infinite number of
distinet isomorphic types of L, subspaces of Z, (p > 2) [17].

3. If X is a subspace of Z, (p > 2) which does not contain an isomorph
of Z,, is X isomorphic to a subspace of 1, ®1,% If the answer is yes, does
the same result hold for subspaces of L,?
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A general result on the equivalence between derivation of integrals and
weak inequalities for the Hardy-Littlewood maximal operator

by
IRENEO PERAL ALONSO (Madrid)

Abstract. In this paper we consider integrals of functions belonging to (L)
olasses, and. their differentiation properties with respect to a translation invariant
(B-F) differentiation basis. We prove that the differentiation of certain integrals
is equivalent to a certain property of weak type for the maximal function of Hardy—
Littlewood, which is associated to the basis. In a gense, this is a sharp result (see
Peral [3]).

Introduction. We consider for each w<R", a family of open bounded

sets B (w) such that each Bed () verifies:
‘ ‘(i) zeB; ) ,

(ii) there is a sequence {Byli.y < #(%) such that 6(By)—~0 as k—co
(8(B,,) stands for the diameter of By).

Tf these conditions are satistied, we say that {B*} contracts to @, and
that 4 = U #(x) is a differentiation basis in R".

weR™

# is a Busemann-Feller (B-F) basis, if for each Be# with yeB,
we have BeZ(y).

A differentiation basis # is translation invariant, if each translation
of Be# belongs also to 4.

We denote by %, and 4, () all the elements in # and % () with a
diameter less than 7.

If B is a measurable set, then |B| will be its measure.

Let f be a locally integrable function on R™, i.e. f e L} (R™; we define
the upper and lower derivatives of the integral of f with respect to £ by:

E(If; w) =‘h‘11]3 lhm.\up———— ff Y dy: By—x; {Bk}c .@(m}

Fe-ro0

( f fi 'v) = inf {hn;mf—— f F(y)dy: By—; (B} < Q(w)} .
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