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Interpolation of Orlicz spaces
by
JAN GUSTAVSSON and JAAK PEETRE (Lund)

Abstract. Let ¢, ¢, and ¢, be positive increasing funetions on [0, o) connected
by the formula ¢p~! = gyle(py /ey !) with & suitable g. Consider the corresponding
Orlicz spaces L%, L™ and L®L. It is shown that L® is an interpolation space with
respect to L™ and L™ provided g is “a little more than concave’.

0. Introduction. In this paper we give a contribution to the following

- problem: Given three Orlice spaces L?, L* and L% on some measure space M,

under what conditions is it true that L® is an interpolation space with respect
to L% and L** % Roughly speaking, we show that, assuming that @is expres-
sed in terms of ¢, and ¢, in the form ‘

(0.1) e =gt el o)

(where ¢! is the inverse of ¢, etc.), it is sufficient to assume that o is “a
little more than concave’. In particular, our result applies when

(0.2) o®) =4 (0<6<),
in which case (0.1) specializes to
(0.17) S (s i (o

covering thus the case treated by Rao [17] (cf. Kraynek [10]). As an
example of a function g, more general than the one in (0.2), to which our
theory applies, we mention

o(w) = 2°(log(e+ w))*(log (e +1/m))
(0 < 0<1, a, p arbitrary real).

(0.2

‘Whereas that author uses Thorin’s proof conveniently adapted, we shall
instead rely on an idea of Gagliardo [5], in the special case of L7 (cf.

Peetre [13]). More precisely, given any quasi-Banach couple 4= {4,, 4.}
we define interpolation spaces {4, g> = (44, 4,, ¢>- In the special case
when 4, and 4, are both rearrangement invariant spaces of measurable

3 — Studia Mathematica 60.1
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functions on our measure space M we also define spaces 4,¢(4,/4,)
which generalize the spaces 43~%A¢ introduced by Calderén [4]. Now our
full result reads (cf. Theorem 7.3)

L7 = (L%, L™, @) = Lo (L™ |L%).

-

The restriction on p seems to be of a merely technical nature. In fact, we
strongly suspect that the right necessary and sufficient condition on
¢ is pseudoconcave, i.e. concave up to equivalence.

It may be of some interest to note that the corresponding problem
for Orlicz classes has been essentially solved (see Peetre [12]). (For con-
venience we reproduce the essentials of the solution in the Appendix.)
In this case we assume that ¢, g, and ¢, are related by the formula

(0.3) @ = 900 (91/Po)

and the necessary and sufficient condition reads ¢ pseudoconcave. In
particular, if ¢(s) =" (0 < < 1), (0.3) specializes to
(0.3")

¢ = "¢l
It will be proved (Proposition 2.3) that in the special case ¢;(®) = 2%
(4 =0,1) the two conditions (0.1) and (0.3) are essentially equivalent.

The organization of the paper is as follows. In Section 1 and 2 we
consider some useful clagses of positive functions on R} = (0, o), in
particular, submultiplicative and pseudoconcave functions. (What we
:mean by “a little more than concave’’ is made precise here.) In Section
3 we prove certain variants of two classical inequalities, Carlson’s inequality
and Khintchine’s inequality, which will be needed later. In Section 5 we
introduce the Orlicz classes O and the Orlicz spaces L?, after first having
treated in the brief Section 4 with the more general case of modular classes
and modular spaces. In Seetion 6 we introduce our interpolation spaces

{4, g)>. Then, in Section 7 we put all our pieces of information together
and, finally, prove our main results (summarized in Theorem 7.3). In
Section 8 we consider some concrete cases and in Section 9 a certain
limiting case of our main result (where one of the spaces is L®). In Section
10 we prove that in the special case ¢,(2) = &* (¢ = 0, 1) pseudoconcavity
of p ig, in fact, a necessary condition. Finally, there is the Appendix
devoted to the interpolation of Orliez classes, including weak type
interpolation.

1. Submultiplicative functions and the notion of type. We say that

two positive functions ¢ and y defined in a set 'S are equivalent if there .

exists a constant ¢ such that 07" ¢ (%) < (v) < Cp (@) for weS. (Occagion-
ally we write ¢ ~ y.)
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In this section and Section 2 we are only concerned with positive
funetions on R = (0, o).

We say that a positive function s on RY is submultiplicative if

(11 s(zy) <s(@)s(y), s(1)=1.

‘We will need the following classical fact (see e.g. Hille-Phillips [7], p. 244
the additive version): '

PROPOSITION 1.1 Let s be submultiplicative. Then s is bounded on any

- compact set and there exist numbers p, and p, with p, < pi such that

(1.2) §(®) = O(max(a®, 2%)), x>0 or oo.

More precisely, if py is the supremum of all such Po and py the infimum of
all py, then the following holds:

2y = suplogs(w)/loga = limlogs () /logz,
z<1 =0

Py = inflogs(w)/logw = limlogs(x)/logz.
- ZT-—+00

It follows that if instead of (1.2) the sharper inequality

(.27 s(x) = o(max(a®, &™), 20 or oo

holds, then py < py and p, > 25, implying, in particular, that we in (1.2)

cam replace p, and p, with py+= and p, —e, respectively, provided s> 0
18 sufficiently small. m

Let now ¢ be a positive function on R such that for every leRX
with some constant ¢ = (G'(1) holds '

(1.3) ?(2w) < Cop ().

The smallest such C will be denoted by $y(4), Le.

(1.4) 8p(2) = supg (A2)/p(z).

Clearly, s,(4) is submultiplicative so we may apply Proposition 1.1. There-
fore we can replace (1.3) by the more precise

(1.5) @ (4x) < Omax (70, 31) p ()
(with ¢ independent of A), implying that

(1.6) 85() = O(max (4%, 371).

We say .thén that ¢ s of lower type p, and upper type p,, or alternatively,
more briefly of type (po,p,). We sometimes also write @eX(py, p,) or,
if we want to emphasize the constant € in (1.5), @ eX(Po, P1; 0).
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If (1.6) can be sharpened to
(1.6") 8,(4) = o(max (1%, A7),

we say that ¢ is lower type p,-+ and upper type p, — or simply of type
(po+, p1—) and write ¢eT(po+,p1—) Or @eX(Po+, p1—; 0).

Finally, we have the hybrid case where (1.6') holds only at one endpoint
(0 or co). In an obvious way we then use, for instance, the notation
T(po+,p1)- It is also clear what we mean by “of finite upper type”,
for example.

Clearly, the type is not changed if we replace ¢ by an equivalent
function. The following simple fact is often useful.

Limprva. 1 1. BEvery @eT(p,,p1;0) 1is equivalent to some fumction
weX(Py, P1;.1). If ¢ is increasing and p, > 0 so is .

Proof. Take w(®) = supe(iz)/max (4P, A”1). Then o< p<< Op and
YeT(Po; P13 1) M '

Remark 1.1. It is not hard to see that if ¢e$(;p0, p,; 1) then ¢ is
absolutely continuous and we have

Po<wg’ (@) /p(2) < py 2ee.

Assume now that ¢ is increasing. Then ¢ is automatically of lower
type 0. To ascertain that ¢ is of finite type, it is then sufficient to know
that (1.3) holds for 4 = 2, i.e. we have

(1.3") 9 (20) < Op(2),

which condition often is referred to as the A,-condition (see e.g. Krasno-
selskii-Rutitskii [9], p. 35).

Assume further that ¢ is continuous with ¢(RY) = R} so that
¢! exists and is continuous increasing, t0o. We have then the following
simple

LevmmA 1.2, If ¢ 48 of type (Do P1) where. p, > 0, then 3
(P 25)-

Proof. By Lemma 1.1, we may assume that @eZT(p,, p1;1). We
thus have, for instance,

~1

@8 of type

o (An) < Prp(w)  if A>1
which implies with any u
e (ue) < ¢ (P po).
=1
Taking A =4 * , u<1, now follows
~1
)< pt o) i <1
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Thus ¢~ is of lower type pr’.
proved in a similar manner. m
Another obvious fact which often will be used implicitly is embodled in

LeMuA 1.3. If @eX (Do, p1), ¥eT(do, Q1) then gypeT(Po+qo, P1+4.)- W

2. Pseudcconcave functions. We say that a positive function ¢ on
R is pseudoconcare if it is equivalent to a concave function.

A proof of the following elementary fact can be found in Peetre [15].

ProposITION 2.1. ¢ is pseudoconcave if amd only if 0eT(0,1).m

In other words, we have with & suitable ¢ (compare (1.5))

(2.1) e(4x) y Ae(w).

It follows that, with s, defined by (1.4), the following holds
(2.2) 8,(4) = O(max (1, 4))
(compare (1.6)).

The class of functions ¢ satisfying (2.1) will be denoted by P(C)
= (0, 1; C)). If instead of (2.2),

(2.2") 8,(4) = o(max (1, 4))

The corresponding statement with p, is

< Cmax (1

holds (compare (1.6°)), we get instead the class P+~ (C). Similarly, we
define the hybrids P+(0) and P~(C). If we do not want to specify the
constant in (2.1), we write simply P, P+, B+, $~.
‘We now discuss several examples and give some auxiliary remarks.
(What is an example or a remark is, of course, an article of faith.)
ExAmpLE 2.1. ¢ belongs to PB(1) if and only if ¢(«) is non-decreasing
and o(wx)/r non-increasing. Clearly, every concave function is in PB(1).
Thus every pseudoconcave function is equivalent to a function in P(1).
ExAMpLE 2.2. If ¢ is preudoconcave so is o* defined by o*(z) = zo(1/z).
If ¢ = g, denotes the function given by (0.2), we have g; = o,_,.
Remark 2.1. Example 2.2 displays an important symmetry property
of the class . The same symmetry is, of courge, inherent in all our theory
but we do not always point it out explicitly. It is sometimes convenient
to introduce the homogeneous function of two variables

(2.3) Bz, y) =v(ylr) (=ye*(®/y).

It is now easy to see, for example that ¢ is in B (1) if and only if R is
non-decreasing in each variable separately, in fact, always in the strong

sense we have
v<a,y<y = Rz, y)<R@,y).

To illustrate the usefulness of R, we prove the following generalization
of Holder's inequality (the special case ¢ = gg).
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PROPOSITION 2.2. Let ¢ be in P(1). Then for any two finite positive

sequences {m,} and {y}
(2.4) D' R(@,, ) <2B(Y 2,5 D),
Proof. Write #, = £.X, y, =9,Y with 3¢ =1, 37, = 1. Then

holds with R. defined by (2.3).
we got
Zmax Sy 1) B (2 &+Z%)R(—X Y).

D R(@,, 9, <
Since X = Jx,, ¥ = 2;)/,,, this proves (2 4).m

Bxaverr 2.3. If o(2) = (o(2))" for some ¢ % 0 and ge%, then
¢eB. Olearly, we have s3(A) = (5,(1%))"°.

Examprs 2.4. The function ¢ = gg,, given by (0.2), is in B+ for
all values of the parameters (0 < 0 < 1, a, freal). Note that gpes = 1_g, pa-
To see this, we apply Lemma 1.3 together with Example 2.2 and the fact
that s, = O(p) if ¢ =1log(e+m).

Remark 2.2. There is an obvious relation between the classes I and
+ P: g isin T(p,, py) if and only if there exists a function ¢ in B such that
(2.5) 9(a) = a0 o(a?™),

We can use this to settle the question of equivalence of conditions
(0.1) and (0.3) in the special case p;(t) = 1% (i = 0, 1), mentloned in the
introduction. We formulate this as

PROPOSITION 2.3. Let o be a continuous increasing function with o(RX)
= R. Define ¢ by (2.5), with 0 < py < p,. Then ¢ is continuous increasing
with ¢(RY) = R} so ¢~ ewists. Define g by
(2.6) 97 @) = a'Pog (a1,

Then o is in P if and only if o is in P.

Proof. The first statement concerning the existence of ¢! is elemen-
tary. Assume now that ¢ is in P. Then, by the preceding remark, ¢ is
in T(py, py). Thus, by Lemma 1.2, ¢~ is in T(p7*, p7"). Applying the

same remark with (2.6), now follows pe®. The converse is obtained if
we reverse the role of ¢ and o. m

3. Generalization of two classical inequalities. We begin by discussing

an inequality of Carlson type. (Regarding Carlson’s inequality and its -

generalizations see Beckenbach-Bellman [1], pp. 175-177 and p. 186.)

ProrosrrIon 3.1. Let 1 << p < oo. Let g be a positive measurable fune-
ton of finite type and such that, in addition,

31 ([ (min(, o/t o () @t < Cgl), 1p+ifp' =1
0
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holds. Let {u,} be a finite positive sequence. Then

62 Yu<k(( Yl (3erue@))”),
with R defined by (2.3).

Proof. Put
33 U= wle@P)”, v=(3ule))”.

Then using (3.1) and Holder’s inequality we get with any

2w = wt Ju<( Y @) T+ Slep)y
< P>z <z >z ‘
< Ce(@)U+0(g(n)[2) V = C(U+V/z)e().

Taking # = ¥ /U, we obtain
Du, < CUe(V|U) = OR(U, V)

which is the desired inequality (3.2). m
Condition (8.1) is cerfainly fulfilled if the function s,
by (1.4)) satisfies

(defined as

(3.4) (J (min(L, 1/2)s,(2)" ar/2)™” < oo.
0 H
Assume now that gefB. If p =1, then (3.4) is substantially just (2.1).
But if p >1, (3.4) is, in fact, equivalent to (2.2), i.e. geP+~. Indeed,
in view of Proposition 1.1, it is plain that (2.2") implies (3.1). For the
converse, we write (2.1) in the form t
e(?) = Omin(1, #/2x) ¢ (Ax)

Inserting this in (3.1), we readily obtain (2.2°). In particular, we have
thus proved

COROLLARY 3.1. (3.2) is applicable with p = 1 if 0P, and with any
P (L<p< o) if gePt.

ExAaMpLE 3.1. In particular, (3.2) is applicable with any p if ¢ = Qpap-
This follows at once from Example 2.4.

Remark 3.1. If instead oPB*, we can, in a similar way, prove

3 u< OB (3 (wle@)]”, 3 2ru.fe(@)-

(This will be useful in Section 9.)
We also mention the following variant of Proposition 3.1:

(3.2")
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PROPOSITION 3.2. Let 1< p< oo. Let g, g, and g, be continuous increas-
ing functions with ¢ expressed in terms of ¢, and @, with the aid of (0.1).
If p =1, assume that P, otherwise oePT~. Assume also that ¢ is of
finite upper type. Let {u,} be a fzmte positive sequence. Then the following
holds:

©5) (3] < 0[pa (| Slonfe@”) +ou (| rusezp] )

Proof. Define U, V by (3.3) and put further & = @o(U)-+p. (V)
Then it follows from (3.2) and Remark 2.1 that

D u,<COR(U, V) < OR(p7 (@), 97 (@)
Now (0.1) may be rewritten as )
(3.6) o7 = Rgs o).
‘Therefore,
2 %, < Cop™ (o

or

#( D) < 9 (0p~ (@) < On
by (1.3). m

It is convenient to insert here the following result which clarifies
the assumptions made on ¢ in Proposition 3.2. (This will be needed in
Section 7).

ProprosIiTION 3.3. Let ¢, and ¢, be confinuous increasing functions
on R with ;(RY) = RY (i =0,1). Let o be in P(1). Define ¢ by (0.1)
(or equivalently (3.6)). If @, and ¢, have finite upper type so has ¢. Also
if @y and @, have positive lower type so has ¢.

Proof. That ¢ is well-defined follows from Remark 2.1, if we again
rewrite (0.1) as (3.6). There exists a number p > 1 such that ¢, and ¢,
are both in (1, p). Then, by Lemma 1.2, ¢y and ¢ are both in T(p~*, 1).
From (3.6) it follows once more using Remark 2.1 that ¢~ is also in T (p~*,1).
Appealing again to Lemma 1.2, we find ¢TI (1, p). The second statement
concerning the lower type is proved in an analogous fashion. m

‘We now pass to our second topic, a generalization of the classical
Khintchine’s (or Littlewood’s) inequality.

ProrOSITION 3.4, Let {u,} be any finite real sequence, omd consider
random sums § = 3 twu,. Put also m = (Jul)*. Let ¢ be amy positive
non-decreasing function on R, = [0, co) whose resiriction to RY = (0, oo)
satisfies (1.3'). Then there exists a constant O, depending on C in (1.3") only,
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such that
(8.7) 07 gp(m) <
where B stands for “expeciation”.

Proof. We take for granted the classical fact that the result is true
for ¢(2) = 4®, p > 0 (see e.g. Zygmund [18], Vol. I, p. 213), i.e.

(3.8) O 'm? < B(|sP) < Om?
(With"(,' depending on p only).

(a) We prove the second inequality (3.7) first. By Proposition 2.1
and Remark 2.2 upon passing to an equivalent function, we may as well
assume that ¢ is of the form ¢(2) = w(4*), where y is a concave function
and p > 0 suitable. It follows that ¢ is given by the formula
(3.9) inf (42”+B),

(4,B)eH

where H is a suitable subset of the octant R.,_ X R,. In particular, for
every (4, B)eH we thus have, by (3.9),

p(lsl) < 415"+ B.

E(p(1s)) < Cp(m),

p(x) =

This implies
B(p(ls)) < AB(ls|P)+ B < 0(AmP+B),

where we have used the second inequality (3.8). Appealing once more to
(3.9), we clearly get the desired result.

(b) There remains the first inequality (3.7). Let us put (x) = 22 /p(x).
Then @ is of the form @(z) = ¥ (%) with PP (1). Therefore the result
of (a) is applicable to &. Write now .

=Vo(ls)) Vo(ls)).

o172
Holder’s inequality gives
(3.10) B (Is1”*) < VE(p(Is)) VE(®(js])
But in view of (a),
E(o(Ish) <
and the first inequality (3.8) gives
Ot < B (517",

Inserting these estimates in (3.10), we again arrive at the desired result. m
Remark 3.2. (1.3") is, in fact, necessary for the second inequality
(3.7) to hold (but not the first). Indeed, consider the sequence {u,, #,}, then

Op (Ve + ).

Om® [ (m

@ (Juy+ ual) + o (Juy —usl) <
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Take, in particular, u, = 4y = 1/1/5 2. Then it follows that
o (V2m) < Cp(a)

or upon iteration (1.3").

4. On modulars. We first nail down our terminology concerning
topological vector spaces (ef. e.g. Kothe [8]).

As is well-known a topological vector space is metrizable if and only
if there exists a denumerable basis of neighborhoods of 0 (for the proof
see also Gustavsson [6]). A complete metrizable vector space will be called
an F-space. As is likewise well known, a topological vector space is quasi-
normable if and only if it is locally bounded. A complete quasi-normed
space will be called a quasi-Banach space.

Now we give & rapid introduction to the theory of modulars, mainly
following Musielak—Orlicz [11].

Let B be any vector space (over R, to fix the ideas). By a modular
in Z we mean an extended real-valued function ||| in # such that

(41) lal =0 < a=0,

(4.2) Mall< llall - i AI<1, [|—al = lall,

(4.3) ﬁmlllail =0 if Jall< o0,

(44) l(@-+b) /bl < k(laf+ B])  for certain constants h and k.
Some distinguished special cases of (4.4) are:

h=1 quasi-F-norm,

h=1, k=1 T-norm, '

h=2 k=1 essentially a modular in the sense of Musielak—Orlicz [11].

A quasinorm is a quasi-F-norm such that (4.2) can be replaced by the
sharper condition

(4.2 ll2all = |4] liall

If we drop condition (4.1), we use the suffix “semi”, speaking thus of
a semi-quasi-F-norm, etc.

Given & modular |ja| in B, we denote by F (modular class) the subset
of B determined by the condition |a| < co. A sufficient condition for
E to be a subspace is that |o] is a quasi-F-norm.

We denote by £* (modular space) the subspace determined by the

condition |ja/af < co for some o (depending on &), i.e. B* = (JAE. In
- A>0
E* we have a natural topology, if we use as a basis for neighborhoods

of 0 the sets Uy, = {o] |a/al< B} with o f> 0. (From (4.4) readily
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follows the crucial property Uy U,z < Upgos.) Further we assume
that this topology is Hausdorff. Since we can, in fact, do with a denumer-
able number of U,, we know thus that E* is metrizable. An explicit
quasi-F-norm is given by

(4.5) el = int{a] Jajal < a7},

where 7> 0 has to be chosen so that 2k << k'. We now ask when E* is
locally bounded. A necessary and sufficient condition is that we can
find an U, 4, such that for all U, there exists 4> 0 such that AU,p = U
‘With. no essentla,l loss of generality we may assume that o, = ﬂo =1.
We then readily find the condition

{4.6) S el = fAall << 3R
Tf (4.8) is fulfilled, we can take » = 0 in (4.5), i.e., we have the quasinorm
{457 . lol* = inf{a| llajal <1}

We conclude by the following simple result which says something
about linear operators in modular spaces.

PROPOSITION 4.1. Let B and F be vector spaces equipped with modulars,
and consider a linear mapping T: B->F. Assume that T(E) < F and that
(4.7) ITall < Cilioll+Csy  ack,
for some Oy, Cy. Then T(E*)y = F*. If the set V = {b] bl < Ci+0Cs} is
bounded in F* (which implies that F* is locally bounded), we have
(4.8) \Tal* < Cyllal*,  acE*, k
with ||-|* defined in accordance with (4.3') and with o suitable Cj. )

Proof. By the boundedness of V we can determine C; such that
{cf. (4.6))

(4.9) ol <

*

C,+0, = “b/(}snél

take now aeB* with [af|* < 1. From (4.7) follows then, for any « subject
o flajall<1,

1Tafall < Cyllafall+ 0. < 0y +0,

50 that, by (4.9), [ Ta/Csal < 1. Upon taking the inf, (4.8) readily follows. m

Remark 4.1, In particular, 7' in Proposition 4.1 is continuous (when
restricted to B*). Conversely, if ¥ is 2'so locally bounded, every continuous
linear mapping T: B*-> F* satisties (4.8) (but, of course, not (4.7) in general).
The least constant Oy in (4.8) is the operator quasinorm of T.

5. Introduction of Orlicz spaces. For a general discussion of Orliez
spaces in the classical case where the function ¢ below is convex, see
Krasnoselskii-Rutitskii [9].


GUEST


44 J. Gustaysson and J. Peetre

Let M be a measure space equipped with a positive measure u. Let
¢ be a continuous function on R, with ¢(0) = 0 and whose restriction
to R} is increasing (and thus positive.) We apply the general framework
of the previous section to the case where F is the space of all y-measurable
functions & on M, taking

(5.1) lall = lallge = [ ¢(lal)du.
M

Clearly, (5.1) defines a modular with & = 2, & = 1. We set E = 0° (Orlicz

cdlags) and E* = (0%)* = I? (Orlicz space). If ¢ has finite upper type -

(i.e. satisfies the A,condition (1.3")), then O is in fact an F-space, since
completeness can be readily demonstrated. If ¢ has positive lower type,
then (4.6) is applicable so that L? is locally bounded. Again we have
completeness so that L? is a quasi-Banach space with the quasinorm
(cf. (4.5)

(5.2) lal* = llallp=int {a! [ ¢(lal/a)du <1}.
M

In particular, Propesition 4.1 is then applicable to L°.

As a preparation for Section 7 we include now the following simple
result:

PROPOSITION 5.1. Let g, ¢, and ¢, be continuous imcreasing functions
on R, with ¢ of positive lower type and expressed in terms of g, and ¢, by
the aid of (0.1), with o pseudoconcave. Assume that

[o:lad)au< C; (i =0,1)  and  lal < lagl g ([asl/laol).-
M .

Then holds
[ g(la)dp<C.
74
Proof. Put b, = ¢;(|as]) (4 =0,1), b = b;+b,. Using Remark 2.1,
we geb .

o] < R(o7 (0y), o7 (b)) << OR (5 (B), 17 (D)) = Cop™(b)
or
@ ({0]/0) < @oll@gl) + i(l@a])-

Invoking the positive lower type of ¢ and integrating, we readily get the
desired result. m
Remark 5.1. Proposition 5.1 can be given the following interpretation.
Let Ay and 4, be any two rearrangement invariant quarci-Banach
spaces of y-measurable functions on M and let o be pseudoconcave. We
ntroduce 4 = A,0(4,/4,) (= R(4,, A,)) to be the space of those u-mea-
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surable functions a for which one can find a constant ¢ and funetions
aged, and a;ed, such that

(3:3) 1ol < Olagle(lasllasl) (= OR(lal, ), llaglsy <1, Iyl <1.

We equip A with the quasinorm |laf, = inf 0, where C runs over all cons-
tants oceuring in (5.3). (That this is a quasinorm is easy to see; for instance,
the quasitriangle inequality results from application of Proposition 2.2.)
Then A becomes a quasi-Banach space. If o = 09, We obtain as a special
case the space A;’A7 of Calderén [4]. Now take 4; = L% (i = 0 1)
a8 in Proposition 5.1. Then we see that ’

(5.4) L% o(L7/L%) < L,
the embedding being continuous. .
6. A general interpolation method. Let 4= {4,, 4,} be any quasi-

Banach couple (i.e. 4, and 4, are quasi-Banach spaces, both continuonsly
embedded in a Hausdorff topological vector space ) and let ¢ be a pseudo-

concave function (geP). Then we denote by <Z, e> = {4y, 4, > the
space of elements aeX(4) = 4,44, (the hull of 4, and 4, in &) such

that there is a sequence 4 = {u,},.z of elements u,ed(4) = 4,NA4, (the
jntersection of 4, and 4, in ) such that

(6.1) @ = 2 u, (convergence in Z‘(Z)!),
veZ
(6.2)  for every finite subset F = Z and every real sequence

& = {Ehuer with & <1 wo have || 3 &u,/0(2)4, <,
“25,2%,/9(2”) ” ., < C with O independent, of F and ¢.

ExAMpLE 6.1. If ¢ = gy, Wwe obtain the spaces denoted by (Z)B
in Peetre [13].

-
We equip {4, ¢)> with the semi-quasinorm

(6.3) lall e = int,
where the inf ig taken over all sequences % permissible in (6.1) and (6.2)
{(with O having the same significance as in (6.2)).

Remark 6.1. If we replace ¢ by an equivalent (pseudoconcave)
function, we get the same space but the semi-quasinorm is, in general,
replaced by an equivalent one.

Remark 6.2. If geP*, ‘oh«in it is possible to show that [z, is

indeed a quasinorm and that {4, ¢> is a guasi-Banach space. In what
follows only this case will matter.
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Now we establish the following basic fact:

ProPOSITION 6.1. Let A = {4,, 4,} and B = {By, B} be any two

quasi-Banach couples. If T': 2+B 48 any continuous linear mapping (meaning
that T, = T'|4;: A;—~B; (i = 0,1) is o continuous linear mapping in the

ordinary sense), then T: (A, o>—<{(B, o> (in a similar sense) and we have
(6.4) ”T”<Z,q>,<§,e> < malx(”Tqu,Bm I|T”A1.Bl)
for the operalor gquasinorms involved (cf. Remark 4.1). In other words,

the functor A {4, o) is an interpolation space. More precisely, if s, is
defined by (L.4), we have

(6.5) 1T 0By < O g, 3 So N T Lty 3, 1T g, ) -
Thus we have an interpolotion space of type s,.

Proof. Let ae(4, ¢> with [lall 7, < 1. Choose 4 = {u,},.z sabistying
(6.1) and (6.2), with ¢ =1. Define v = {n,},.z by v, = Tu,,,, where
xe Z is at our disposal. Then we have the analogue of (6.1) with T and v:

To = qu,.

veld
It 71 = {n}ep Is any real sequence with |n,| <1, writing
My = Tlays, (=01 & =7n,0(2)]e@™),

we also get
|

|3 no.te@)|s, < 30| 3 ntsanle @], = Mo | 3 mle@)]
[ 3 n2 ofe@)|5 < Ma| 3 2 sufe@) |,
, = 12| Y 62 ule@),

In particular, if » = 0, 'we have &, = n,. Therefore, we get from (6.2)
(with ¢ =1)

| 3 noule@) |5, < Moy || X m20il0(2)

This is the corresponding analogue of (6.2). This proves Tae(B, ¢> and
also the inequality (6.4). In the general case we get instead

|2 n0ule(@)| 5, < Mos(@),

|3 m2one@) |5, < Ma27"s,(2).
Choosing now 2% ~ M,/M,, we have the proof of (6.5). m

o, < M.
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7. Application to interpolation of Orlicz spaces. Let @, and ¢, be
continuous increasing functions on RY such that ¢:(RY) = RX
(4 = p, 1). Let o be in P (1) and define @ by (0.1). If both ¢, and @, have
pos:lt‘lve lower tiype 80 has ¢ (Propogition 3.3). Then L%, L% and L% are all
quasi-Banach spa,c_:es. (An analogous statement holds with finite upper
type.) We would like to prove that the Orlicz space ¥ is an interpolation
space with respeet to the “Orlicz (space) couple®’ Ir= {L? ,'L“’l} (with ¢ =
(@o; ¢1)).. Here is our first result in this sense.

THEOREM T7.1. Assume that both ¢, and ¢, have positive lower type
and that one of them, say @y, has finite upper type (i.c. satisfies the A,-condition
(1.8). Assume also that ¢« (1). Then with ¢ given by (0.1), L? < (L7, g5,
continuous embedding. )

Proof. Let aeL”. With no loss of generality we may assume that

lal,,<1. Thus we have [¢(|a|)du < 1. For fixed = let us consider the
function M

_ P(8) = pofefo(t) — g (120 (1)
It is easy to see that y is continuous decreasing and that

limy(t) > 0,

limy(t) < 0.
i~0 [

Thus there exists a unique ¢ such that y() = 0. We denote this ¢ by A(z).
Then &, clearly, is a continuous function. From (0.1) now follows that

(7.1) ?(2) = po(efo(t) = oy tefo(1).
Indeed, writing

@z =zo(t), Y =tzfo(t),

we have

Po(®) = @i (¥), @7 {‘Po(w)) =&, ‘Pfl(%(m)) =

so that (0.1) g]?res

97 po(2)) = wo(y/o) = we() =2,
and proves (7.1). For ve Z we put
(7.2) e, = {m| me M, |a(m)|eh™ (127, 2°Y))}.

Since % is continuous, ¢, is u-measurable. Moreover,

?(2) = go(2)

M =e, ene =@ (v£ux).
veZ

Therefore, putting
@ on e,
Uy = )
0  otherwise,
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the sequence {u,},.z will satisfy (6.1). There remains the verification
of (6.2). Let us estimate first | 36,/0(2) |, Using (7.1) and (1.3)
(with @,), we get

Jool| D) emle@)])an = 2 f¢o(|a1/9(2 ))dp
M vel
<¢ > [ pollalle(rtia)))dp = 0 ftr lal)d
vel e,

TUsing the fact that g, has positive lower type, we see that thus
H 2 £ule(2) “LO’O <0
vell

In a similar way, we estimate || 3&,274,/¢(2")
veF

(7.3)

"}|| g, This is much

simpler since we do not need finite upper type (nor positive lower
-

type). Indeed, we obtain the bound 1. We conclude thus that a<(L?, o>

with el -~ <C.n
<L%0> .
- Next we prove a result in the opposite sense.

TEEOREM 7.2. Assume now — beyond what was assumed in Theorem
7.1 — that @, too has finite upper type, and ‘moreover, that oeP=(1). Then

halds (L%, o> <= L°, continuous embedding.
Proof. Let m(L“‘, o). Again we may assume that [|a|| 3 <1

Let v = {u,},.z be a sequence satisfying (6.1) and (6.2) (Wlth O =1).
‘We congider only sequences & with £, = £1. Using Fubini’s theorem,

we get
[ 55
3z
By our Khintchine’s inequality (Proposition 3.4) this gi&es

) 'p‘((z (27w 9(2”))2)”2) W< 0 (i=0,1).
M. vel

Again our Oarlson’s inequality (Corollary 3.1) in conjunction with Prop-

osition 5.1, yields
(] 3wl )ansc
- M ve
or, after passing to the limit,

[otahan<0
M

Now, in view of our assumptions, ¢ has positive lower type, too. Therefore,
we conclude that acL?® and lal,, < C. m

S 2vule@)|))dp<1 G =0,1),
ve ' - ’
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Combining Theorems 7.1 and 7.2 with Remark 5.1 and using Prop-
osition 6.1, we may summarize our findings as follows:

THREOREM 7.3. Let ¢, and @, be continuous increasing functions on R,
with @;(RY) = R" (¢ =0,1), both of positive lower type and of f'mzte
wpper type. Defme @ by (0.1) with ¢ pseudoconcave in P+~ (1). Then

L% = (L, &) = I™g(L"[L%)
holds with equivaﬁmce of morms. In particular, L® i an interpolation space
with respect to L, of type s,. m
8. Some concrete illustrations. Recall the notation (see Example 2.4)
06ap(®) = #’(log(e+x))“(log(e+1/m))", 0<B<1, ’
and, in particular (see Example 2.2),

0o(®) = ma: i

a, B arbitrary real

: 0<b<1.
Let us now also put
Ppot(#) = @ (log (4 +))*(log (B+1/a)),

where A = A, and B =
writing ¢, = @pe- Seb

P> 0, s, t arbitrary real,

B, are chosen so that ¢,,, will be increasing,

Lpst — pr.
‘We can then announce

PROPOSITION 8.1. We have (L™™, 7M1,
termined by

(8.1 1jp

=%, 17

o> = L with p, s, t de-
=(1—0)[po+06/py, [P = 8y(1—0)[po+3.0/p1,
t/p =tp(1—0)/po+4.6/p::
Proof. It suffices to show that, if ¢ is defined by (0.1) with ¢, = Pt
(¢ =0,1), ¢ = gq, then ¢ and ¢,, are equivalent. This follows essentiaily
from the remark that, if f(») = z(loga) in [a, ), &> 1, then f*(z)
~ % (logx)~". We omit the details of the elementary argument. m
OOROLLARY 8.1. Assume that the measure u s finite. Then

" (16g )", I (log I, o5 = I?(log L)’
(L7 (log )™, I (log L), ¢y = L*(logL)

holds with p, s related by (8.1). m

Remark 8.1. If p, =p, =1, s, =0, s, =1, compare Bennett [2],
pp. 215, 224-225. .

PROPOSITION 8.2. Let py + pr. We have (I, L™, pgpy = L** with
1/p = (1—0)[po+0/p, s = —fp, t = —ap (if po<pi) or 8 = —ap,
t= —pp (if po> 1y).

4 — Studia Mathematica 60.1
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Proof. Put 6 = 1/p, —1/p,. Using (0.1), we get
o~ = at?(log (e +a°))(log (e +a7%))".
The result follows now in a similar way as in the proof of Proposition 8.1. m

9, A limiting case. The purpose of this section is to prove the following
generalization of Theorem 7.3.

TuroREM 9.1. Let @, be a continuous increasing function on R, with
@o(R,) = R and of positive lower type and finite upper type. Define ¢ by
(9.1) o7 =t e(lps™) (= e"(#5)
with o pseudoconcave in B (1). We also assume that o*(RY) = RY. (This

is essentially a technical assumption; cf. Bxample 9.1 below.) Then
L% = (I, I, o) = LP0o(L®|L™).
Proof. The idea of the proof is that formally L% =L, where
( 0 i <1,
&) =
#1(0) it x>1.°

Thus L® is a limiting case of Orlicz space. Having acquired this insight,
it is not difficult to carry over the argument of the proof of Theorem
7.1 and 7.2 to the present case. (Note that the A,-condition was needed
only for ¢,.) First we determine for each 2 a unique ¢ = h(z) by the formula
t¢ = o(t). Now using (9.1) there easily follows, corresponding to (7.1),

(9.2) . () = golee(t)-
Indeed, we get from (9.1)
7 pol2le (1) = @M polt7h)) = 17 0(t) =2

which gives (9.2). Next, given acL” we define ¢, and w, as in Section 7.
The estimate (7.3) goes through unaltered. Thus we have

“ ;Z; ule@) ], <0

and it is trivial that

||§j £2u/e(2) |

maxsupz"mve( "

<maxsuph([a| lal/e(h(lal)) =1.

vel e,

. Thus ae{L%, L®, ¢>. This proves one inelusion L? = (L%, L®, o). There
remains the ‘converse.
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"Let ae{L%, I”, o) and pick up w satisfying (6.1) and (6.2). As in
the proof of Theorem 7.2, Khintchine’s inequality gives

f%((Z(u/e ) ) <C.

. veF
On the other hand, we have for all choices of signs

IZ £2%%,[0(2") | <1 p-ae.
veF

This implies
22'%1/9(2 <1 pae.

Vel
Using directly (9.1), we now see that

Jo((Ztwteen)?e( 3 2 marew) /(3 nlep))) an < o.

veF

Using thereafter Carlson’s inequality in the form indicated in Remark
3.1, we find .

[etlahau<c

M

and aeL®. This proves <L%, L%, p> = 1L°. m

ExAMPLE 9.1. (Application to Hausdorff~Young estimates). We consider
the Fourier transform & on a compact Abelian group @ with (discrete)
dual G. (The classical case is: @ = R/Z, ¢ = Z.) Then

F: I}(@)—~I*G) (Plancherel),
F: IM@)—I°(@) (“Riemann-Lebesgue”).

+
‘We want to considel F on Llog L(@). To this end, it is natural to try to
interpolate with ¢(z) = m/log(¢-+). Clearly, p<PB*. But o¢P~ and also

o*(RY) + RX. Thus neither the full result of Section 7 (Theorem 7.3)
nor the result of the present section (Theorem 9.1) are directly applicable.
The first obstacle is not very rerious since at least Theorem 7.1 applies.
‘We get (¢f. Proposition 8.2) the inclusion

+
LlogL = KI*, I*, o).

Regarding the second obstacle we .can either modify the definition of

o near 0 or uge directly the proof of Theorem 9.1 properly modified. Any-
way, we end up with the following result:

+ » -

feLlog (&)= Y e 0™ < oo (f =57).

I
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. +
A similar result holds, of course with L(logL)® a> 0, too (ef.
Zygmund [18], Vol. II, p. 158).

10. A necessary condition. In this section we specialize the measure
space to be R, equipped with the usual Lebesgue measure da, and we
take ¢; = @p, (¢ = 0,1). (We write, of course, I? = I%2.) p is still expressed
in terms of ¢, and @, with the aid of (0.1). We can now prove the following
necessary condition for ¢ (c¢f. Peetre [12], pp. 36-36).

PROPOSITION 10.1. .Assume that L? is am interpolation space with
respect 1o Ir = (L™, I} (with ; = (Po, P1)), in the sense thas T: LP—I7
implies T': L?—L% and we have the inequality

(10.1) 1T g0 < OAX(ITH 5, 295 W1l 2y ;20)-

Then p must be pseudoconcave.
Proof. We choose Ta(z) = a(z[t), t > 0. It is plain that

(10.2) =P (i =0,1).

Take now

11y o

1 i <o<wu,
a(x) = :
0 otherwise.
‘We readily see that
{10.3) lally = 1/p~(1/u), [ Tall, =1/~ (1]tu).
Using (10.2) and (10.3) with (10.1), we subséquently get
1/p (Lftw) < Crax (£, 731 p~1 (1 /u)
or using (0.1) '
e(w™) < Cmax (1, #')o((tw)™®) (8 = 1/p1—1/p,).
Stetting
A =18,

his gives (2.1) and 0eP. m
Remark 10.1. If instead of (10.1) we require the stronger inequalily

(10.1) L I {4 [P P
the same argument shows that f must saﬁisfy

o(Az) < Cf(A) e(w),
i.e. with s, defined by (1.4) we have

@ = (tu)™?,

8,(4) < OF (4).
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APPENDIX

A. Interpolation of Orlicz classes. Below we reproduce, for the reader’s
convenience, the material of Peetre [12], pp. 36-37, in a slightly updated
form, though (cf. Peetre—Sparr [16]). ;

Let @, g, and @, as in Section 7, be continuous increasing non-negative
functions on R,. But assume now that they all have finite upper type )
(50 that 0%, 0" and 0 are F-spaces ; we equip them with the quasi-F-norms
llatiyes ua,llo% and ””‘”00’1’ respectively, defined in accordance with (5.1))

and that ¢ is expressed in terms of g, and ¢, with the aid of (0.3) with
o psendoconcave. We considér the “Orlicz (class) couple” 0% = {07, 0™}.

THEEOREM A.l. Consider any bounded linear mapping T: O°— OF (in
the scnse that T; = T0": 0% 0" and we have |Tal| o, < C;llall 4, (i = 0,1)).
Then we have T: 07— 0% and | Tall,e < Clall - ° °

Proof (outline). We set

(A1) L(ty @) = inf (flagll g, +tlasll 5,)-

a=ag+ay
Then our hypothesis on T implies

(A.2) L(t, Ta) < OL(t, a).

It is also easy to see that

(A3) L(t, ) ~ [ min(polal, ta(lah) du.

It is no restriction to assume that o is eoncave (Proposition 2.1). For
notational convenience mostly, let us also assume that
o(w) = o(max(1,x)), x>0 or oo.

Then we have the representation (cf. Peetre [14], p. 16§)
©
o (@) =f min (1, #t)dw (1),
: ]

where dw is-a positive measure on RY. -In view of (A.3), we now see,
recalling also (0.3), that

(A.4)

0"8

L(t, a)dw (1) = lal,

and similarly for Ta. In view of (A.2), this gives the desired result.

B. Weak type interpolation. We intend to give a generalization of
Theorem (4.22) and Theorem (4.34) in Zygmund [18], Vol. II, p. 116
and p. 118, respectively. (Cf. the corresponding discussion in Peetre [121,
pp. 31-33.)
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First we introduce the weak Orlicz class 0F,, by the condition
660 [ du< Clp(w).
{lal>2)

As in Section A, we always assume that ¢ is continuous increasing non-
negative of finite upper type. Then Of... (as well as 0%) is an F-gpace,
a quasi-F-norm being provided by

] = sup¢ (@ d
lalgg, , =290 L} y

and we have 0% < 0%, continuous embedding.
Let now ¢, @, and @, have the same significance as in Section A. In
particular, we thus assume (0.3).

TupoREM B.1. Assume further that ¢ is absolutely continuous with

(B.1) f @' ()min (o (@) /94 (1), 2.(%) [ (1) dt < Op ()

and that oeB+=. Consider any bounded linear mapping T: 0"’—+Owaak (in
a similar sense as in Theorem A.1). Then we have T: 0°—>0% and 1 Tall,,
< Clall,p

Proof. Put w(z, a) = p({(a] = 2}). Then we have, as is well-known,
(B.2) o (@, @+ t;) < 0(2/2, t) +w(2/2, ay)

+ and (since ¢ is absolutely’ continuous)

(B3)  flall,, frplal = f D) do (¢, @) = | ¢ (@) w(z, a)de.

g

Consider now any decomposition ¢ = ay+a, with a;¢0,, ; (1 =0,1). Then
from (B.2) applied with Ta; and ¢; (¢ = 0, 1) using the We&k type estimate

o(@, Ta;) < Ollaf] g, fps(@) (i =0,1),
follows
© (2, Ta) < 0{lal] gy 50 (@) + 03] g, 2(2))-
In view of (A.l), this yields
(@, Ta) < C1/p, () L(‘Pi Meoo(@), )
Next we a;pply (B.3), with Ta, and (A.3). The result reads:

(B5) T, <0 [ ['9'(o)min{po(ja) )I90(2), @1(1a)fpx (o)) dw .
0

It we finally invoke (B.1), the proof iy complete. "
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Now we discuss condition (B.1). Let us put y = ¢,/p,. We assume
that y is an increasing (absolutely continuous) function with y(RX) = RX
and cePT(1). Then (B.1l) can be written as

B1) [ (el )} po(t)min(L, p(@)/y (1) dt < Cop(@)).
0

Since

' (Poo () fpo = " ()7 +0ulpoc(¥),
the integral breaks up into two. The first one becomes, after % change of
variables, viz. (1) = 7, y(z) = §, sxmply

[ ¢ (x)min(1, &/z)dv
0

which in view of Remark 1.1 can be estimated in terms of

(B.6) [ o(zx)min(1, &fx)dr/

0
which again can be estimated by Co(£). There remains the second integral,
viz.

[ o) /ot oy (0)) min(L, y () y ()t
0
To treat it we need some additional hypothesis. One way out would be
simply to postulate
(B.7) Polpo < CY' [y )
The same change of variables again leads to (B.6). It is easy to give further
conditions which imply (B.7). For example, if we assume that ¢eZT(0, p; 1)
for some p, then Remark 1.1 gives @, ()< ppy(#) so (B.7) will be a conse-
quence of @y’ (%) 2 gy (%) (¢ > 0) which again is fulfilled if yeZ(g, p;1).
‘We summarize our findings in the following
COROLLARY B.1. Theorem B.1 is applicable when ¢o<T(0, p) for some
P < oo and @ilpeeX(g,1) for some g > 0. (Analogous result with g, and
@, reversed.) ’ '
Proof. There remains just the application of Lemma 1.1. m
Remark B.1. A quite different way out, -applicable when ¢ is in
T(0, p; 1), is simply to postulate

(B1") @ (4)in (2 () Jgo (2) @2() Ju (1)) [t < Cop ().

6%8

Indeed, Remark 1.1 shows that (B.1”) implies (B.1). Condition (B.1”)
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appears if we apply directly the method of [12]. There only the case
@ =9p,{4-==0, 1) is -considered. In that-case (B.1")-and thus (B.1)-are
always fulfilled if geP+—.

Remark B.2. If the measure ux is finite, we can somewhat relax
the assumption of 0. Indeed, it suffices to assume that oeP~ (1) and that

f o)/t < Oo(w).]

1
‘With such & ¢ we can. just apply Theorem B.1 to 5, defined by
_ a(@) if 2>1,
o(a) = .
vo(l) o<l

The result is only a slightly weaker, in the respect that we get the in .

" equality
”Ta/” < 0y Ialloq-i- 0,.
‘We omit the details.

With Remark B.2 we have completely covered the case of Theorem
(422) in [18], and we can safely turn to the case of Theorem (4.34). It
is about the special case gy = @, i.e. L =11,

" TEEOREM B.2. Assume that @ 48 of the form

i z
(B.8) 9(@) = f x(O)ft dift,
where y is a,bsolutely continuous increasing. Assume further that o(z)/x is
increasing, that ¢(z) — o(zpl(m) as w-»o0 and that (c¢f. (B1'))
0
(B.1") [ o(lpu()at /i < Op(a)fpy ().

x

Finally, asswme that p, is differentiable with absolutely continuous derivative
“and sabisfies

(B.9)  (olpu(@))” < O(1/{wps (@))).
Consider amy bounded linear mapping T: {L*, 0™}~ {TYeue, Ok}
Then we have T: 0°->0% and ||Tal Ioz\(}lla”

Proof From the proof of Theorem B.1 (cf. in particular (B.5)), noting

that % (%) = ap’ (@), in view of (B.8), we see that we have to consider
the integral ‘

= [ ¢" (tymin(o, g, (@) /p, (1)) dt.
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Integrating by parts twice, we get

=- f g t¢1<w)/¢1(t)

< [ o) (tos(@) fa(0)) 2.

Using (B.9) and (B.1"), we therefore obtain I < G(]J(w), which is all we
need. m

Remark B.3. As in the case of Theorem B.1 (see Remark B.2), the
conditions can be somewhat relaxed in the case of a finite measure.

Remark B.4. It is needless to point out that all the results of this
section, as always in the case of weak type interpolation, extend to the
case of bounded gquasi-sublinear operators. We can also allow d@fferent
meagures on both sides.

C. Application to Hausdorff-Young(-Paley) estimates. In this section
we use the results of Section B to prove two results which can be found
in Bennett [3], p. 269. (Theorem C.2 can also be found in Zygmund [18],
Vol. IT, p. 158; the case ¢ = 1 is due to Hardy—Littlewood.)

We consider the Fourier transform & on G =T = R/Z, the dual
group : being as usual 1dent1f1ed with Z (cf Example 9.1). (Analogous
results hold with ¢ = R, G = R) We write f Zf and denote by f the
decreasing rearrangement of f on N =1,2,...

T
TrpoREM C.1. If feL®(logL)?, 1<p <2, ¢=> 0, then
. +
(©1) D (logm) (£ < € [ 1f(@)/?(log f(@)])da+C
neN T
with C independent of f.

Proof. Put Tf = {nf*},.w. Then we have
T: D' >ly, T: LT

Here L* is with respect to Haar (Lebesgue) measure on 7' and Hweay With
respect to the (discrete) measure on N which to the point n asmgns mass
1/m*. By Remark B.4, Theorem B.1 is still applicable. With @o(x) = =,
0, (0) = 2%, o(a) = mp“l(log e-+))?, we have ¢(x) = 2®(log(e+))?. The
result reads:

©2) > (fye(og(o+ a2 <0 [ @i{ioglo+ If(@)]pde
neN T '

It is easy to see that (C.2) entails (0.1) — consider separately the cases
nf,,< 123 and. nfn >Vn — but we omit the details.
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(0.3).

J. Gustavsson and J. Peetre

+
TegorEM C.2. If feL(logL)?,

) (lognytf7 <0 [ If(

n=2
Proof. We apply Theorem B.2 in the situation when

(@) = (o [(e-+ ) (log (e +2))*™"

q> 0, then

log If (@))% -+ C.

s0 that (B.8) gives

o) = 1w((log(e+w))‘1~1).
We obtain
(©4) X ((Farle+nfa) (log(e+nfm)*™
neN

<0 [ If(o)l (log(e+ If(@)])i~1)do+0
o \

Again we omit the somewhat tedious verification that (C.3) follows
from (C.4). m
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