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Elliptically contoured measures
on infinite-dimensional Banach spaces

by
JOHN J. CRAWFORD (Madison, Wise.)

Abstract. In the getting of an infinite-dimensional Banach space we derive sufficient
conditions for the existence of a Gaussian measure with a given covariance funetion.
Elliptically contoured measures are characterized as averages of Gaussian measures.
This characterization is then used to prove existence and weak covergence results
for elliptically contoured measures.

1. In this paper & will denote a real separable infinite-dimensional
Banach space with norm | . 2* will denote the topological dual space of Z.
A mean 0 measure u satisfying

(1.1) [ Il dp(@) < oo

z
induces a continuous, bilinear functional 8 on &* xZ* given by
(1.2) S(z*, y*) fw* du(x) (&%, y*e X%

called the covariance functzon of u.

A measure u is said to be mean 0 Gaussian if every continuous linear
function #* on Z has a mean 0 Gaussian distribution with variance par-
ameter [[z*(2)]*du(z) on the real line. Tt is known that a mean 0 Gaussian

. &

measure is unigquely determined by its covariance function.

Let x4 be a mean 0 measure satisfying (1.1) with covariance S. In
Section 2 of this paper we will obtain sufficient conditions under which
there is a mean 0 Gaussian measure with covariance function §. When wch
a Gaussian measure exists, 4 and S are called pre-Gaussian.

Not all covariance operators arising from measures satisfying (1.1)
are pre-Gaussian as can be seen from the following example.

Bxawere 1.1. Let & =T7'. Let ¢, = (0,...,0,1,0,...,0), where
the 1 appears as the kth element. Let {Z,(w): k> 1} be independent real-
valued random variables with distribution

1 - with prob. pg,
Zy, = 1—1 with -prob. p;,
0 with prob. 1—2p;,
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where Epk< co. Let X = ZZ,, Ve, and u = S,P(X). Then

Xl = Zfzk W) < oo as.,

k=1

by the Borel-Cantelli lemma. u satisfies (1.1) because
E)X = ZEizk N 1Zi()l = D) BIZy(o)|BZ)(0)l+ Y BlZ (o)
kesj I

= 22Pk2?1+zpk<4(217k)2+22?k< o0.
k] '
Let f;el™ be defined by f; = (0,...,0,1,0,...,0), where 1 is in
jth position. Then ‘
{0 J#k,

S(fy:fk) =Efj(m)fk(m) = 21’]0 ] =F.

Vakhania [9] has shown that the covariance of y is pre-Gaussian iff

28 (S i)™ = 21 3pif* < oo,

The technique of proof used in Section 2. has been previously employed
by Wichura [10]. For completeness his result on the tightness of Gaussian
measures will be restated and proven. Also we give two smlple cor-
ollaries.

‘Wichura has also observed that his tightness result about Gaussian
Ineasures can be generalized to the case where the measures are “elliptically
contoured”. His technique is basically the same as in Section 2. We will
prove this Section 4 using & new technique.

More important, however, are the results in Section 3 which charac-
terize the class of all “elliptically contoured” measures on %. It is surprising
that this class of measures is so meager, and that all such measures are
averages of Gaussian measures. To be more precise, we now give some
definitions. A measure u, on R is elliptically contoured with parameters
fond 2 (u, =EO(f, Z, n)) if the density of u, is given by |Z|"V*f(2Z'a"),
where f: [0, co)—[0, oo) satisfies

(1.3) I (1% dr < oo

s g

and Xis an n X n symmetric, positive definite matrix.

A measure  is elliptically contoured on the infinite-dimensional, separ-

able Banach space %, if for every linearly independent {«7, ..., x5} < &%,
the projection z,: & (af(®), ..., #}(«)) induces an. elliptically contoured
measure on R". That is, if u, is this measure, then u, = BEC(f, X, n)
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for some f and Z, as above. In particular, we see that the smallest closed
subspace supporting such a measure must be &.

Any mean 0 measure satisfying (1.1) has a Hilbert space H, contained
in & constructed in the following way. Let 4: &*—& be defmed in the
Bochner sense by As* = {az-a*(z)du(z). Clearly, then (Aw*, y*

. z

= §(x*, y*). The range of A can then be completed under the norm induced
by the inner product

(1.4) (Aa*, 4y*), f o*(@)y*(@)du (@) = S(a*, y*).

ICuelbs [6] has shown that this completion H, can be realized as a subseb
of & and that the identity i: H,—~& is contmuous Also he points out
that, if H}, is identified with H, in the usual way, then * < H, < %.
If the ormmal measure was Gaussmn, then H, is precisely the generatlng
Hilbert space for % in the sense that H, is the unique Hilbert space in & so
that when we extend the Canonical Normal Cylinder Measure (CNOM)
with variance parameter one on H, to % we get the Gaussian measure u.

In Section 3 of this paper we will establish that, if u is elliptically
contoured on &, then u is an average of Gaussian measures in the sense that

= [ w(4)da(t),

where g is the extension of the CNCOM with variance parameter ¢ and ais
a probability measure on (0, o) with first moment equal to 1.

2. In this section we state and prove some results about the existence
and weak convergence of Gaussian measures. First we will need to establish
three lemmas. )

Lemma 2.1. Let oy, ..., ke X™ and o, be a cylinder set determined by
(®1, ..., ). Let K be a compact, convex balanced set such that K < o,.
Then there is a convem, balanced cylinder set &, determined by (a3, ..., @y
such that K < %, < o,. ;

Proof. Let m,(w) = (#}(#),..., 75(%)). Then K < of, implies that
n(K) € m,(t,). Hence my (my(K)) S my' (my(fp)) = of,. Let #, =
Ty ‘{arn(lf)); then 4, is clearly a cylinder set because =,(K) is compact.
It iv also convex and balanced because K is.

Lmmya 2.2. Let o, be a conven, balanced cylinder set determined by

(@15« ., W), where @y, ..., TpeX™. Let p, v be two Gaussian cylinder measures
with covariance operators 8 and T, respectively, such that

(2.1) T(a*, %) < S{@*, o%)  (2*<Z).

Then

(2.2) v(oly) = p( )

2. — Studia Mathematica 60.1
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Proof. Let m,(s,) = A4, which is Borel measurable in R". Let
4™ and »™ be the measures on R" induced by the projection m,. If we let
8" and T" be the covariance matrices for 4™ and »™, respectively, then
it is easy to see that

(S")ij = S(w}", 59:),

(IM)y = T(«}, -'”;)7
From (2.1) and (2.3) it follows that §*—7T™ is positive semi-definite.
According to Anderson ([1], p. 178), »™(4,) > u™(4,,) since 4, is convex
and balanced. Thus we have (2.2).

LemuA 2.3. Let K be a compact set in &. Then there is a {ofy: k> 1}
< B(L, XYY, the Z* induced cylinder sets in %, such that

(2.3)

(2.4) Ay Sy (k=1)
and
(2.5) N oy = K.

k=1

Proof. Let {#;: k> 1} be a weak-star dense subset of the unit ball

of Z* and let () = (@] (@), ..., #,(®)) as before. Define sy = a7 (m,(K).

Then &), = K -+ Null(s,). Clearly, we will have (2.4). The &, will decrease

to K. To see this, let {x,} be a sequence such that each ¢}, andlimg, = .
: %

Then #, = Y -+2, Where e K and 2, Null(m,). Then, since K is compact,
there is a subsequence {y;} such that limy, = vy. Let # = x—y. Then
o

@ () = 0 for all o}, in our weak-star dense set. If 2 5= 0,then by the Hahn—
Banach theorem there is an #*<&* so that |w*| =1 and a*(s) 0.
For some subsequence, lima}, = o* in the weak-star topology. Thus,

oy

(2.6) 2*(2) = lima}(s) = 0.
n
Since the weak-star topology separates points, 2 = 0.
‘We are now ready to prove the main result of this section.
TrEOREM 2.4. Let u be a mean 0 Gaussian measure on % with covariance
8. Let T: &* xZ*—R be a positive definite bilinear functional satisfying

(2.7 T(x*, o*) < S(a*, a*)  (w*eX™).

Then there is a mean 0 Gaussian measure on & with covariance T.

Proof. The operator T is clearly continuous in the weak-gtar sense
along the diagonal at the origin and so by the infinite-dimensional version.
of Bochner’s theorem, see Prohorov [8], there is 2 mean 0 Ganssian cylinder
measure » defined on #(%, £*) with covariance 7.

‘We wish to show that » extends to a countably additive measure on
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the Borel sets of . One way to do this is from Prohorov [8]. Define »* on

the Borel sets by
(2.8) v*(B) = .inf

S2E
A H(T,E*)

v(L).

Then » will extend to a counmioly additive_m;aasure, if for every £ >0,
there is a compact set K such that.

(2.9) y*(K)>1—s.

Since u is a measure on & , there is a compact set K such that
(2.10) u(E)>1—e.

‘We lose no generality by assuming that X is convex and balanced because
the convex, balanced closure of a compact set is compact in a Banach space.
Thus we have from (2.8), (2.10) and Lemmasg 2.1 and 2.2 that

y*(K)> inf »(of) = inf »(B) > inf u(B)
A2K #2K B2K
A E(E, %% RBeE(2, HeE(%,2%)

(%, 2*)
B # couvex, balanced

>p(E)>1—e.

& convex, balanced

Thus we have (2.9) and the theorem is proved.

THBOREM 2.5. Let {v,: n =1}, u be o collection of Gaussian measures
with covariance operators {T,: n>1} and 8, respectively. Suppose there is
a function T on &* X &* such that

(2.11) limTﬂ(w*7 y*) =T (x*, y*) (w*, y*eﬂ*),

(2:12) T, (o*, %) < S(z*, %) (s*<ZF*,n>=1).

Then (a) T is the covariance operator of a mean 0 Gaussian measure
v, and (b)

(2.13) :

Proof. (a) Condition (2.11) tells us that T is positive definite and con-
ditions (2.11) and (2.12) together tell us that the hypotheses of Theorem 2.4
are satisfied and hence there is a mean 0 Gaussian measure » with co-
variance T

(b) The Levy continuity theorem easily yields that the finite-dimen-
sional distributions of the », converge to those of ». Thus for weak conver-
gence we need only verify that {»,: » > 1} are tight. That is for every
&> 0 there is a compact set K such that

(2.14) sup, (K)>1—e.
n

Yy = V.

So fix ¢ > 0. As before, since x is a measure, we can find a compact, convex

i
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and balanced set K such that (2.10) is satisfied. It is this K that we will
use in showing (2.14). Let {«): k> 1} be as in Lemma 2.3. By Lemma
2.1, we can assume that each is convex and balanced. Hence, by Lemma
(2.2), we have :

v(K) =limy, (&) Zlimu( ) = u(K) =1 —s.
k k
This completes the proof of Theorem 2.5.

Next we have some corollaries of the previous theorems.
CoROLLARY 2.6. Let X be a mean 0 Gaussian Z-valued random variable.

Define
y_[X i IEi<e
a {0 elsewhere.

Let 8 and T be the covariance operators of the measures induced by X and Y.
Let u be the measure on & induced by X. Then
' (a) BY = 0;

(b) T'here is @ mean 0 Gaussian measure v with covariance T.

Proof. (a) To establish this part, we show that Y is symmetric

P(YeB) =P(YeBnin: |w]| < c})

0 if 0eB
' 0 if O0eB
=P(—XeBn{z: ol < G}H‘{P(” —X|>¢) if 0¢B

=P(Xe—Bn{z: |w|< 0}+{

P(|X]|>¢c). if 0¢B

=P(Ye—B).
(b) This part is a trivial consequence of Theorelﬁ 2.2 because T'(z*, z*)
< 8(a*, x*).
CoROLLARY 2.7. Let X be a mean 0 Gaussian random variable taking
values in %. Let {c,: n>1} be any sequence increasing to - oco. Define

Y, by
¥ - X i X< ey,
» 0 elsewhere.

Let {T,} and S be the covariance operators of the measures induced by {¥,}
and X, respectively. Let u = the measure induced by X and for each n let
v, be the mean O Gaussian measure with covariance T,. Then

'Vn=>‘l[.
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Proof. This is obvious irom Theorem 2.. s'nee T, (z*, 2*) < 8(a*, 2%)
and

Hm |8 (a*, y*) — Tu(a*, y¥)|=lim| [ a*(@)y*(@)dp(a)]

% lzll>ep,

<limje*| ly* [ lolfdu(e) = 0.
- i lizli>ey,

3. In this section we will characterize elliptically contoured measures
on #. We first show that if g, is elliptically contoured on R™ then f and
2’ can be chosen so that X is its covariance matrix.

Lemma 3.1. Let p, = EC(f, 2, n) on R™ have covariance matriz T,,-
Then ' '

(a)
(3.1) T, =%,
where
(3.2) ot = [ f@i+ ... 4y dy; ... dyy;
£
(b)
(3.3) pn, = EO(f, 2, n),
where
(3.4) 1= (6@t .. +92)dy; ... dy,
and i
(3.5) . I=r,.

Proof. (a) Define the radial measure », by

(3-6) v(B) = [fFYHEY = [ 157 PF(@I)ds
pA EA

= u,(BA), where FEA ={zd: 3eh},
where X = AA. Since v, is 1adial, its covariance matrix T,, is also radial

in the sense that :

T,@,8) =T, G, i @ =@
Hence,

et

e [y GYha =1, (8716, B6) =1, ,3)
RN
= [ @ VGG

R
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[ @*, 4727 @ 0 dw

I

i

R

f@h« _1 |2|_1/zf 2—1 )d"
/

— Tﬂﬂ@’*(_A—l)t’ m*(A—l)t)_ /
Thus we have

T

”n(;'*’m T (+ At Ai -1 "'*At At —l) . T (-’D*.At —)-*.A‘)

= @AY [y dy =3"a'Az* [ yif(yYIay

R? . R®
— I [ RGTN = 2E, 5% [ ET .
R7 RM

(b) Suppose that o® in (3.2) is not 1. Let £(r2) = of (s*r?) and £ = ¢*Z.
Then we will have (3.4) because .

oy e 1 o
G [ @fG7d = [ == [ @ =1,
R" ., R® o R"
Also u, = EC(f, Z-', n) because
~ ~ ey 297 Tyt - -
B EET = 5 e (TS ) < iz,

Thus we have (3.3). Part (a) together with (3.7) yields (3.5).

Henceforward we will assume that any given elliptically contoured
measure will have its parameters adjusted so that the matrix parameter
is in fact ‘the covariance matrix for the measure. Under this assumption
it is clear that finite-dimensional elliptically contoured measures are
uniquely determined by their parameters.

LEMMA 3.2, Let u,, = BO(f, Z, n) with £ = A*A. Let B be an nXn
non-singular matriz. Then

(a) if A, (B) = p, (BB~ A), then i, = BO(f, B'B, n), and
(0 if A,(B) = u,(EB™), then 2, = BO(f, B'ZB, n).
Proof. (a) Let », be as in (3.8), then
In(B) = (BB A) =0, (BB™) = [ f@"dy
EB-

i

f IB]-lf(‘;B—l( —-l)t”’t) da)
pol

e

(b)y Apply (a), and we have A,(H) = u,(BB~'4~*4). Hence,
2 = BO(f, (ABf AB, n) = BO(f, B'A'AB, n) = BO(f, B'SB, n).

icm
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LeMmMA 3.3. Let u be elliptically contoured on Z as defined in Section
1 with covariance S. Then for each w there is a function f,: [0, c0)—[0, oo0)
such that, if af, ..., @ are linearly independent in Z* and p, is the measure
induced by (2F,...,a%), then p, = BCO(fy, Z,n) with (Z); = 8=}, #}).

Proof. By definition, there iy some f, (possibly depending on (27,.. ., ;)
so that g = EO(f,, Z,n). By Lemma 3.1, (X); =S(m;‘,w}"). Thus we
will be done if we can show that f, does not depend on (&, ..., %)) but

only on n. So let ¥}, ..., ¥s be some other lmearly independent set in
Z* which induces a measure z, which is EC( f,,, z, n).

Case 1. Assume that both 7, ..., ) and y{, ..., ¥5 are orthonormal

in the H, inner product. Take #,...,2, orthonormal and orthogonal
to both af, .. ,w* and o7,..., ¥, and suppose it induces a measure u,

which is EO( f., 2, ). Clearly, = = = Z = Tdentity. We will show

that f, = f,, and hence, by symmetry, fn = fn and thus f, = fn. Let u,, be
the measure induced by (#7,...,%5, 27, ...,2};) which i 1s EC( fon, Identity, 2n).

Let F,, I’n, F,, be the distribution funcmons for u,, ,u,, and gs,, respectm ely.

Then we have, using the consistency of F,,, with both F, and F that
Fo(@yy .oey %)
= Foyp(B1y +2 ey Bpy 00y ony )
= f f f ff:m gt +gin)dyzﬂ---dy1
©0 o0 zy
= f f[ f f S+ - +?/zn)df’/n d?/l]df'lm oo Wy
—00  —00
; an(le_o, ey OO, By eeny By) = Fo(@1y .00y @)
Hence f = f
Case 2. Let {a}, ..., #n}, {47, ..., Yn} be arbitrary linearly independent

setsin 2*. Let 2 = A‘A and v, (B) = u,(BA). Thenw, = EC(f,, Identlty, 'n)
= measure induced on R" by (ml, .., @A, Similarly, let I = yon
and %, (B) = ,u,,(EA) then 7, = EC fn, Identity, n) = measure on R" in-
duced by (7, - ,yn)A Then Case 1 applies to (¥, ..., o) A and (¥7, ..., yp) A

and thus f, = fn This completes the proof of Lemma 3.3.

Let {ap: k> 1} be a complete orthonormal basis of H, obtained by
a,pplymg the Gram-Schmidt orthonormalization process to Z*. Thus all
the of are also in £*. Let V = linear span of {a;} which is an infinite-
dimensional subspace of Z*. Let #(Z, V) be the cylinder sets of £ deter-
mined by V. We will use the notation /(z*) to mean [exp {iz"(s)}du(»)
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LemMA 3.4. Let 92 V—>R be given by

plogal+ ... 4,08 = fleiaf + ... +e,ar).
Then
(3.8) @(eaf 4+ ... +opap) =p(d+... +6),
where

p(t) = [ ¢ fi(z%) ds
R
Proof. Assume for now that all the ¢; # 0, then
[ eZef, (5" dy .

Rﬂ«
2%Y;
26

orthonormal completion of R"™. Then d% = dy and thus

plerat+ ... +opay) =

Then change variables by letting 2, = Jand 2,,...,%, be an

n
{Ecjl —)—» -

@(eiof+ ... +o,ah f 2hde

~fﬁ“hm%—ﬂf7

7=1

The case when some of the ¢ are 0 follows similarly since f,, does
not depend on the choice of the of, ..., a.

‘We are now ready to state the magor theorem.

THEOREM 3.5. (a) If a measure u with covariance S satisfying (1.1)
is elliptically contoured on %, then the CNCM on H, extends to a Gaussian
measure w, on % and there is a probability measure a on (0, o) such thab

(3.9) fmtda(z) =

and

(3.10) w(B) = [ w(B)da(t) (B Borel set in %),
0

where w(B) = py (ﬂ_)
Vil
(b) Conversely, if u, is a mean 0 Gaussian measure supported by & with
covariance 8 and a is a probability measure on (0, oo) so that (3.9) holds,
then (3.10) defines an elliptically contoured measure on & with covariance 8.
Also (1.1) s satisfied. .

icm
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Proof. (a) Let {ay: n =1},

V, ¢ and y be as in Lemma 3.4 Then
from Lemma 3.4 we have .

(@) =g(a*) =p(S(@*, a*) (a*T).

Then, according to Kuelbs ([7], p. 415), we have for #* eV

3 S(z*, x*)

ﬁww==fem{———7§~i

0

(8.11) } da(i),

where ¢ is & finite non-negative measure on [0, co). The function ¢,(4)
= 1 (%a}) is the characteristic function of a probability measure on R with
a density so by the Rieman—Lebesgue lemma ¢,(1)—>0 as |A|]—occ. Hence
a(0) = 0 and thus « is a measure on (0, co). It is also evident that « is
a probability measure since both sides of (3.12) are continuous at A =0,

N 3 2t
(3.12) ou) = tial) = [ exp{ -t dat.
¥ ;
Now define a cylinder measure » on (%, V) by
(8.13) »(B) = [ m(B)da(y),
0

where y, is the CNCM with variance péma,meter t defined on H,. Then
we have

(3.14) §(a%) = f @ gy (z)
=f f &% (2t S (o, w*))"mexp{—— v

218 (v*, *)
=f xp{ S(a*, m*)}da(t).

So it we pick z* = 0 in V, then the measures induced on R by #* by » and
4 are identical. Thus '

} dy da(?)}

(3.15) 8(a*, &%) = f[m*(m)]zdv(m)
&

I

r " v
Rfy“‘of (2mt8 (%, w*)) exp{— W}da(t)dy
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- r 2 -1p2 ______,_?/_2___}
;fnfy (2nt8 (w*, z*)) exp{ 580", o) dyda(t)

= S(@*, o*) | tda(t)
/

Thus we have (3.9).
Tt is also clear from (3.14) that for He% (¥, V) we have

= [ w(B)da(t)

In order to show that (3.16) holds for all Borel sets of &, we first show that
» extends to ‘2 countably additive measure on the Borel sets. In order
to do this, it suffices to show g extends for all ¢ which will be so iff p,
extends. Assume p; does not extend. Then there is an &> 0 such that
for every compact set K

(3.16) w(B) = (Be®(Z, V).

p(E)<1l—e.
Thus for every ¢ > 0 and compact set K

wi(E) =1—¢,
where
p(K) = inf u(H).
Eet(Z,7)
E2K

. The set {n;" (m,(K)): n>1}, where sm,(®) = (o] (@), ... (z)) forms a
fundamental system for K. That is, for any Be®(%,7V) such that K < B
we know there is an » so that K < =, ( K)) < E. Now take a K, com-
pact so that

(3.17) (K =1— g

Then, combining (3.16) and (3.17),

1——<

£ < timp o () = i gy () ()
0
llm,ut(nn (7 (E5) )da j?,u (Ky)da(t
0

< [ —e)da(t) =1 —e.

e.“g ev"g 3:

Thus we have a contradiction and so u, and hence » can be extended to

the smallest o-algebra containing (%, V) which is the Borel set. Since -

g =von%(Z, V), u = von all Borel sets and (3.13) holds on the Borel sets.
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(b) It is clear that if (3.9) is valid (3.10) defines a countably additive
measure on %. Let H, be the generating space for p, and {a;: k>1}
be a CON sequence in H . Let v, be the radial measure induced by =,

(al Yoy O )

[ wlz* @)

=(f (Ef (2nt)""’2exp{——

2 2
_ f(f (27t)~"2exp {__ U+ 2 +u"}d‘u1
B

0
‘We see then that v, = BC(f,, Identity, n), where

(318) wm(B) = p(we®: my(w)eE) = )da(t)

2 2
+ 9 +u,,}d#

4 ees dyn) da(t)

. d,u,,) da(t).

-

= f (2nt)~*exp { — 1;} do(t).

0

f(r®)

Tt is clear that (3.18) is independent of the orthonormalization used.
80 (w,, ..., @) will induce an elliptically contoured measure on R" if
the {a7, . ,wn} are linearly independent. Thus g is elliptically contoured
on Z. A computatlon similar to (3.5) shows that the covariance of S is .
We will now show that (1.1) is satisfied. From Kuelbs [6] we know
there is a sequence {#;: % > 1} in the unit ball of Z* so that for zeX

{3.19) ] = supjay(@)] (weZ).
n
Thus, if (Z)y; = 8(#}, «}), then, using the Monotone and Dominated

‘Convergence Theorems, we have

f ol dps(a) = f sup |2 () du (z)

y :’ }da(t) @y

__hm ff sup |yl* (2= )‘"’"]2["‘"‘exp{
1<i<n

VY
= 11mf j sup ly;[F(2m) ™" 12]“””@2:1){ g——o—y—}d@/da(t)

1<ji<n

r yz iyt
= f thim f sup |y; ) (2m) " |Z|‘”2exp{ 5 }dy da(t)
h n

1<ji<sn
v, <<
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fth fsup |m;(m)|2d/,¢1(w)da(t)
e 1<i<n

= fw f P dgey (@) datt) = [ lolFdus(t) < oo.

&

It is interesting to note that Theorem 3.5 can be extended to the
case where g is elliptically contoured on some infinite-dimensional cloged
subspace of &.

THEOREM 3.6. (a) Let the smallest closed subspace containing the support
of ube M. Suppose i satisfies (1.1) and is elliptically contoured on M.
Then there is a probability measure on (0, oo) so that (3.9) and (3.10) hold.

(b) Conversely, let u, be an infinite-dimensional Gaussion measure
on & and a a probability measure on (0, oo) so that (3.9) holds. Then (3.10)
defines an elliptically contoured measure on M = support of u,.

Proof. (a) This can be proved easily by applying Theorem 3.5 to
the Banach space M and noting that M* ¢ H, < M. (3.10) will then be
valid for Borel sets of M. We extend (3.10) to & by letting u, (M)
= u(M7) = 0.

(b) is similar,

Another point worth mentioning is that the most common examples
of elliptically contoured measures on % are the Gaussian measures on .
In this case the measure induced by (27,...,#y) is BC(f,, T, n), where
Fulr®) = (2m)"™exp{—72/2}). One might a.sk are there any other ellip-
tlea,lly contoured measures where f, = c,f, where ¢, is come constant
depending only on n? The answer is that this property characterizes
Gaussian measures.

‘THEOREM 3.7. Let u be elliptically contoured on some mﬁmte -dimen~
sional subspace M in &. Suppose the elliptically contoured measure induced
by any linearly independent set (af, ..., o) in M* is denoted by BO(f,, =, n).
(As before (Z)y = S(#}, 7). Then fn = ¢, iff u is Gaussian.

Proof. As before ta.ke {of: k>1} CON in H,. The the measure
4y, induced by (af, ..., a}) will be EO (fn, Identity, ) Because the area
of 8™ is 21:”’2/]’(%/2) and u,(R") =1 it is easy to show

(5)

(3.20) 0, = =
27 [ "L f(r2) dy
0

Next we verify that all moments of f are determined. The set of
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radial measures {u,:

ﬂn(A X R) = I"n-—l(A)

n 2 1} must all be consistent, that is,

(4eB™h),
(8.21)

f.‘.ffcnf(m%—{—...—I—mﬁ)dwl...dmn=f...fc",1f(m§+...—I—wf,_l)dmA B
4" R : 4

Thus for each n,

[ caf(a@l+

it
By letting 2} + ...

[ eaf (2 + 0% do = cpf(y?)
R

CRER)Am, = o f@E . FaRy) B [dey ... dB]
+2i_y =Y, %, = o, we have
a.s. [dy].

Therefore there is a common set B < R such that m(B°) = 0 and

,.
[rr+ondo, =220y weBn>2).
R

n

In particular, we have ¢, /¢, is independent of »

7
1Cp—1

{3.22) = K = constant.

Cq
Thus, using (3.20) and (3.22),
,Kr(%) w

f P I = f 2 f(r2) dr
' r (T) wi

and, by induc‘nion, we will know all moments of f when we compute K

because ff 72)dr ——%ff(v2 Y@r = %. But, by Lemma 3.1, [r*f(r®)dr
0

=3 f r2f( rz dr = %. Therefore, by (3.23) applied twice,

(3.23)

1 Ereg [ KT 1
2T T Ilzf P = O S
Therefore, .
(3.24) K = (WII:((‘,,”))) = (2m)H.
2

Thus formula (3.24) dictates all moments of f and because the moments
satisty /
—— ([7*f (v2) dr)*
lim——~————————U f(k) ) <

n
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we know from Brieman ([2], p. 182) that f is determined by its moments.

2 .
Since f(r?) = —== exp(-——%—) generates a consistent family of radiab
27 4
measures, it is the only possible function. Hence our original measure

# was Gaussian.

4. In this section we establish some consequences of the results
contained in Section 3. First, we are justified in using the notation s
=XEC(a, ) for a measure which is elliptically contoured on some infinite-
dimensional closed subspace M contained in %, where a i3 probability
measure on (0, oo) with first moment equal to 1 and 8 is a pre-Gaussian.
covariance operator so that S(a*, z*) % 0 if *e¢ M*. If u, is the Gaussian
meagure with covariance S8, then (3.9) translates into

) = [ (%)da(t).

0

(4.1)

Wichura has indicated that his weak covergence result given by
Theorem 3.5 can be generalized for appropriately parametered elliptically
contoured measures. His method of proof is exactly as in Theorem 3.5,
except in proving the crucial Lemma 3.2 when we employ Anderson’s
inequality he substitutes a result of Das Gupta, et al. [3] that given two
elliptically contoured measures on R", pu, = EO(f, X}, n) and pu,
= BC(f, 2,, n), and X, —2X, is positive semi-definite, then

(4.2) #a(4) 2 pa(4),

where 4 is a convex, balanced set in R™.
We shall establish his theorem as well as the analogous existence-
type result of Section 2 by combining results of Sections 2 and 3.
TEEOREM 4.1. Suppose u = BC(a, 8) on M & Z and suppose T:
Z*X X*>R is a bilinear operator such that

(4.3) T is positive semi-definite,
and
(4.4) To*, %) < S(a*, a*)  (z*eZ™).

Then there is am elliptically contoured measure p = BC(a, T) with support
equal to T(z*, a*)*.
Proof. Because of (4.3) and (4.4) and Theorem 2.4, it is clear that
there is a Gaussian measure with covariance T. By Theorem 3.6, u exists.
THEOREM 4.2. Let {v,: n>=1} be a sequence of elliptically contoured
measures so that v, = BC(a, T,). Suppose 8 is a pre-Gaussian covariance
operator such that

(4.3) Ty (a*, x%) < S(x*, a*)  (v*eX”).
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Also let .
(4.4) HmT, (z*, z*) = T(z*, %) (8*<Z™).
n
Then
(4.5) v, = v = EC(a, T).

Proof. From Theorem 4.1 we know that v exists. We know the finite-
dimensional distributions of », converge to those » by looking at the charac-
teristic functions,

lim#, (%) = Lim f =0 @y ()

n

&

= i *  p¥y)—-l2 ____L__
h;nafi!@ntl’ﬂ(w , @ ))‘ exy{ 2tTﬂ(m*,w*)}dyda(t)
hmf exp{ n(@% m*)}da‘(_f,)

1T (2*, x*)

=f exp{
d 2

Next we show that the {»,: n>1} are tight. Let u = EC(qa, S).
Fix ¢ > 0. Let K be a compact, convex symmetric set so that

p(E)=1—e.
As in Lemma 2.1 and Lemma 2.3 we take o/,<%(%, Z"*) so that

o, are convex and symmetric and decrease to K. Then apply Lemma 2.2
and we have

}da(t) =3 (z%).

oo

Vo (K) = 1, (o) = lim [ v, () da(t) > lim [ e ) A (8)
m m g m g

=limu(sy) = /*"(-K) Zz1—e,

m
where »,; and yu, are the Gaussian measures with covariances '¢T, an
8, respectively.
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Interpolation of Orlicz spaces
by
JAN GUSTAVSSON and JAAK PEETRE (Lund)

Abstract. Let ¢, ¢, and ¢, be positive increasing funetions on [0, o) connected
by the formula ¢p~! = gyle(py /ey !) with & suitable g. Consider the corresponding
Orlicz spaces L%, L™ and L®L. It is shown that L® is an interpolation space with
respect to L™ and L™ provided g is “a little more than concave’.

0. Introduction. In this paper we give a contribution to the following

- problem: Given three Orlice spaces L?, L* and L% on some measure space M,

under what conditions is it true that L® is an interpolation space with respect
to L% and L** % Roughly speaking, we show that, assuming that @is expres-
sed in terms of ¢, and ¢, in the form ‘

(0.1) e =gt el o)

(where ¢! is the inverse of ¢, etc.), it is sufficient to assume that o is “a
little more than concave’. In particular, our result applies when

(0.2) o®) =4 (0<6<),
in which case (0.1) specializes to
(0.17) S (s i (o

covering thus the case treated by Rao [17] (cf. Kraynek [10]). As an
example of a function g, more general than the one in (0.2), to which our
theory applies, we mention

o(w) = 2°(log(e+ w))*(log (e +1/m))
(0 < 0<1, a, p arbitrary real).

(0.2

‘Whereas that author uses Thorin’s proof conveniently adapted, we shall
instead rely on an idea of Gagliardo [5], in the special case of L7 (cf.

Peetre [13]). More precisely, given any quasi-Banach couple 4= {4,, 4.}
we define interpolation spaces {4, g> = (44, 4,, ¢>- In the special case
when 4, and 4, are both rearrangement invariant spaces of measurable
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