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A compact convex set with no extreme points
by
JAMES W. ROBERTS (Columbia, 8. C.)

Abstract. The purpose of the paper is to show the existence of a Fréchet space
X containing a compact convex set A such that K contains no extreme points,

1. Introduction. The Krein-Milman theorem states that if K is
& compact convex subset of a Hausdorff locally convex topological vector
space X, then K is the closed convex hull of its extreme points ([2], p.70).
In this paper we shall produce a Hausdorff topological vector space X
containing a compact convex set K such that K has no extreme points.
The question of the existence of such a compact convex set is mentioned
in [1], p. 124, and [2], p. 70. The first step in the construction of the space
X will be to construct some fairly pathological paranorms on finite-di-
mensional spaces. This will be done in Section 2. In Section 3 we shall
induetively piece together the finite-dimensional spaces to obtain a linear
metric space V. The space X will be obtained by taking the completion
of V.

Lastly, the author would like to thank the referee for his very helpful
suggestions.

2. Paranorms on finite-dimensional spaces. This section will deal
almost exclusively with paranorms on finite-dimensional vector spaces.
Throughout this paper all vector spaces will be over the reals and 6§ will
always denote the zero element of the vector space. If V is a vector space,
then a nonnegative real valued function N on ¥V is ealled a paranorm if
for every x,ye V,

(1) XN =0,
) N(@) = N(—a),
B) N@+y) <N@)+N(y),
(4)  limN(az) = 0. *
a0

A paranorm N is total if N (z) 5= 0 for every ze V such that & == 0.

. NV is monotone if, for every ze V and ae [0, 1], N (az) < N () (equivalently,

if [B]< |yl, then N (fz) < N(y»)). If N is a total paranorm.on a vector

3— Studia Mathematica 60.3
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space V and d(z,y) = N(z~y) for every &,ye V, then @ is a metric
on V. With the metric given by d, V is called a linear metric space. It
@ is a complete metric, then V is called a Fréchet space. If V is a linear
metric space and &, ..., @, V, then we shall let [, .. oy @yl denote the
closed convex hull of {wl, cey wn}. More generally if B < V, then [E] will
denote the closed convex hull of B. If V is finite dimensional and N is
a paranorm on V, then we shall say that N is norm bounded if there exists
a norm ||-|] on V such that N ()< |z for every xe V. Since V is finite
dimensional, an equivalent formulation of this is that if ||| iy any norm
on V, then there exists a constant ¢ > 0 such that N (#) < ¢|lz| for every
zeV.If Visa flmte—d.lmenﬂona,l vector space with paranorm N and basis

B = {vy, ..., ¥} With 0 = )J v;, then for h, e > 0, v is called an e-needle
q=]

. point of height. h with respect to N and the basis B if

(1) N is monotone, total, and norm bounded.

(2) If @e[6, mvy, ..., mv,], then there exists ae[0,1] such that
N(z—av) < s.

(3) N (mv;) < ¢ for 1<

(4) If e [0,1], then N(aw) = ah.

The purpose of this section is to show that for any h, ¢ > 0 an e-needle
point of height h oceurs in spaces of suitably high dimension. This will
becrucial in the construction of the compact convex set with no extreme

points. We now obtain some results which will be useful in constructing
paranorms on finite-dimensional spaces.

i << m.

ProposITION 2.1. Let V be a finite-dimensional space and let o:
R*—~R* such that

(i) 0 = ¢(0) = limgp(a),
a0
(ii). @ is monotone increasing, and

(iii) there emist e > 0 and ¢ > 0 such that if 0 < a < &, then ¢(a) = ca.
If K is a compact subset of V that spans V and if for every we V we lot

= inf {Zm‘tp([a‘l): e R, % K, ﬁ’arw‘ == ,}

=] dma)

(2.1) N ()

then N is a monotoney total pamnorm on V.
Proof. Ifisclear that ¥ () = 0 and that if we V, then N (@) = N(—a).
Suppose ©,yeV and £> 0. Then there exiqtq g, Bre R e K, yye K

for1 i<y, 1<j

qsuchthatZa‘m _m,Zﬁj%‘-%pr lagl) — N (@)

icm
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{4
< /2, and ;‘1 @(18;1) — N (¥) < /2. Then

>2<p1a1+2¢|ﬂ] e>

I=
Since ¢ > 0 is arbitrary, N (z)+ N (y) > N(z+ y) Now suppose that ze V.
Let a;¢c R and ;¢ K for 1 <z<m such that 20‘:”1 = . Then for ac B

2 # (laagl)-

a pa,ra,norm on V.
Now suppose #< R* with © # 0. Since K is compact, there exists

)+ N(y 1'!/)‘;5-'

Since hmZ'qo (lagy]) = 0, th(aw) = 0. Thus N is

a0 i=

m
é > 0 such that if Y a@; =@ for ay, ..., o, e R and 2, ..
i=1

2 la;l = 6. Now let ay, ...
If ia,l > & for some Js then 3 ¢(los)) = @
PUCHET BRI

(m) mm{cé , @(e)} > 0. It is clear f10m the monotonicity of ¢ that N is

monotone.

If X and ¢ satisfy the conditions of Proposition 2.1, then N is called
the paranorm generated by (I, p) if N is defined by (2.1).

PROPOSITION 2.2. Let V be a finite-dimensional vector space over the
reals and let K be a compact subset which spans V. If z,e V and

., &ype K, then
, By K sueh that g‘a,m = 2.
(6)- I el <
cé. f; either case th (leg)) =

yape Ry 2y, ...
m
e for 1 < i << m, then

min {06, ¢(e)}.  Thus

n
n: Zaﬂc = %y, ¥;e K, ]aclgl} =M>1,

=1

mjn{

then there ewists a total, monotone parenorm N on V such that N ()
every we K and N (x,) = M —1.

Proof. If r>1, define ¢,(a) =max{d, '} for every a>>0. Let
N, beé the paranorm generated by (K, ¢,). Note that for every s« K, N,(x)
< 1. Obgerve also that if we V, then N, () is a monotone increasing function
of r for r > 1. We let 4, denote all finite sequences of pairs {(a;, 4;)>%,,

<1 for

where ay,..., a,e R with |o >

m
and 21' o, (la;]) < M —1. The result will follow if we can show that for

some r>1, A, =@. Observe that if 1< p < then 4, > 4,. By the
compactness of K, it is easily demonstrated that there exists ¢ > 0 such

. m

that if je;] <146 for 1<i<m< M —1 and @, ..., @ye K, then > a,u;
X . t=1

5 ®,. Since lim (14-¢)" = co, there exists 7, > 1 such that if a> 1+,

r—>00

m
= laply By onny Bpe K, Y oy, = @y,
i=1 N
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14-e
1+e}. Then E is a compact set

then g,(a) = M —1. Thus if r ry and {(a;, ;) i € A,y then o <

and m > M. Now let B = {Z‘ o oy <

and #,¢ B. Thus there exmbs a ne1ghb0rhood U of 6in V such that if ye @
and e U, then z-+y # @,. Since K is eompact there ex1sts é > 0 such

that if a;, ..., dpe By @y, ..., By e K with Z‘ 04 U, thenZ' log| = 8. Now

choose a positive integer f such that gé > M Now let 7 > 0 guch that if

0<a<y, then o'*> fa. Since 11m @e(n) =1, we may choose 7, >

max{2, r;} such that if r>r, and oy ) Yimge 4, then |ag| < n for
M<7, < m. We clmmtha.tforr> 'ra, A, =d.Suppose (o, m¢)>¢_1eA Then

ZW%}GE Thus E o;m¢ U and E o] > y )_7 7e(logl)

i-l
>me> s> M
=M

ProPOSITION 2.3. Let V be a finite-dimensional "space. If for 1< 1
< m, Vyis a subspace of V with a paranorm N; such that span {Vi, ..., Vp}
=V and for every xe V we let

m m
= inf {ZN‘(W‘): e Viy D wy = w},

i=1 ]

8. But since |o;] <

(2.2) N(z)

then N is o paranorm on V.
Furthermore:
(1) If each N, is monotone, then N is monotone.
(2) If each N is total on V;, then N is total on V.
(3) If each N; is norm bounded in V,, then N is norm bounded in V.

Proof. It is clear that N () =0, and N(») =N(—~w) for every
@< V. Suppose =, 2y V, e>0, and o, ¥, 17, such that Zwi =g and
2% =9 with Z‘Ni (#) — N (@) < £/2 and ZN, () ——N(y < /2. Then

N(z)+N(y) > Z Ny () + Ny(ys) —e = Z Nty —e = N(o+y)—
Smcc e> 0 is albxtrary, N(z)-+N(y) > N(z+y). Now suppose #e V.
and 2 mi =& with each #,¢ V. If aeR, then N (an) ‘\2 N, (ur,). Since

’ 1==1 dml

lim 2, Ni(am) =0, lunN (a) = 0. Thus N is a paranorm.
a0 f=1

It is easy to venfy (1). Suppose that each N, is total on. V;. Letb
@<V such that @ % 0. Let ||-|| be any norm on ¥V and let 0 < ¢ < |[#|//m.
Now define § = {yeV: [yl ¢} and let e = inf{N;(y): ye V;n S} for
L <i<<m. Since each N is total, each &> 0. Let 6 = min{sy, ..., &}

icm
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If 2;¢ V; and 2.50‘—1?, then ;¢ § for some 1 < j <

te=]
=>0. Thus N(z)> 6> 0.
Now suppose each N is norm bounded, i.e. for 1'<<i < m let N; be

a norm on V; such that for evely xe Vi, Ni(@) < Ny(2). NOW for we V
define N'(z) = mf[ZN;(m, Z‘w =@, 4e V,}. It is easily show that if

acR and ze V, then N (am) la|¥'(2). Thus N’ ig & norm. It is also
clear that if we V, then N (z) < N’ ().

If Ny,..., N, satisfy the conditions of Proposition 2.3, then the:
paranorm N defmed by (2.2) will be denoted inf{¥N,,..., N,}. Notice
that N is the largest paranorm on ¥V dominated by each N; m V.

m
m. But then Y N;(,)
=

LeMMA 2.4. If N is a monotone paranorm on & vector space V, weV,
and ae[0,1], then o (z) < 2N (a).

Proof. Letn be the least integer such that na>1. Then 1 <
Therefore o (v) < oV (naw) < anN (ew) < 2N (aw). i

PROPOSITION 2.5. If N, is a monotone, tolal paramorm on a Jfinite-
dimensional vector space V,z.e V with No(#,) =1, and k> 0, then there
exists a monotone, norm bounded, total paranorm N on V such that

(1) For every xe V,N(z) < 4 hNy ().
(2) For every ae[0,1], N(azy) = ah.

Proof. Let N’ be any norm on V and let Qn = int{2N,, mN'}.
Then hm Q,,,(m(,) =2. Thus for some m, Q,,(x,) = 1. Thus if Q = @,,

then Q 1s a monotone total paranorm such that @ (2) < 2N,(x) for every
we ¥V, ¢ is norm bounded (by m N'), and Q(z,)>1. Now let ae [o,1].
By Lemma 2.4, @(ax,) > a/2. Now define a norm P on Ra, by P (aw,)
= |a| for every ae R and let N, = inf{P, 2Q}. If f< [0, 1] and for ae R,
YeV, awy+y = fmw,, then y = (f—a)a,. If | —a|> 1, then 2Q((f— a)wo}
>1 It |f—al<1, then |a|4+2Q((f—a)wo) > lal-+1f—a| > |B]. Hence

Ny(Bzo) > p. Since N, is dominated by P on Rax,, we have Ny (Bzy) = B.
N, is also a monotone, norm bounded, total paranorm by Proposition
2.3. Also if @<V, then N,(»)<2Q(»)<4N,(x). Now for we V, define
N (%) = hN,(z). It is clear that NV satisfies the conditions of the proposition,

a< 2.

PRrOPOSITION 2.6. Let b, &> 0. Then there ewists an integer m such
that if V is an m-dimensional vector space with basis B = {1y .0y ¥} and
v = 2 v;, then there ewists a paramorm N on V such that v is an s-needle

g=1
point of height b with respect to N and the ‘basis B.

Proof. For each integer m, we shall construct a paranorm on R™
For 1 <i<n we let ¢; denote the coordinate vectors of R™ and we let
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e = ie,-. We will show that for m = n with n fsuibalbl'y large, ¢is an s-needle
poin;—gf helght h with respect to the paranorm constructed and the basis
{e,,...., ¢,}. This will prove the proposition since the basis used is irrelevent.
I‘01 ae (0, 1), define @, on nonnegative real numbers z by ¢,(®) = &"
Then g, is continuous, concave, monotone increasing, and subadditive.
Tt follows that if @,y 3> 0, then ¢, () + @u(y) < 20.((2 +¥) [2) = 2 pu (@ +9).
Thus for every 8 > 0, there exists d, > 0 such that if 1 —dJy < a <1, then

(2.3) 7a(@+Y) < 9u(@) + 0 (¥) < (1+ 0)pa(@-+9). .
Now fix an integer n. Let B = [0, ney, :.., ne,] and P = { Y oe;
i=l
"
a; >0} I & = 3 a;6;¢ P, we define
i=1 ) N
Palo) =2 Do) for ac(0,1).

Observe that y,(#) <

n n
L
v =~Z a6, and ¥y = Z Bets

=1 tm]

% 1 n
rlotg) = = gt B < D 720 +7a(60)]

i=1 i=1

1 if we B. If ¢, satisties (2.3), then for #,yeP,

Yalo) +7aly 2 (1+8)palas+ ) = (L+ ) vala+y).
Now let M be a positive integer such that (M —1)e > 8h. Now if @,y P
and y,(2), v.(y) < M +1, then it, easily follows from the above that for
every 6> 0, there exists 8,> 0 such that if 1 -, <a <1 and y,(®),
Ya(y) < M +1 for @,yeP, then 6> y (o )+7fa(1/) —Va(®-+¥) > 0. Hence
it can be easily shown by induction that if @, ..., 23, ¢ B, then

M1

M1
Moz Va(mi)—ya(z' »L,);O

Bl q=al

Suppo:ae fulther that a;e [0,1] for 1 <i << Then

| Va (2 o mi)

< M1,
M1 241

Vu(z a'imi)_zl 7”&(%“{)1""
= &

MA1 DAL

+\ S yale@) —acya(o)| < Mo+ 3 lpalas) — airala)

i=] qumal
< (M 41) (8 + max {|g,( M+1}).

m(wm

o) —olr 1< i
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Since ¢,(x) converges to » uniformly for # in [0, 1], we can obtain 61 >0

such that & < d and if 1 —6; < a <1, then

M1 M4l

va ) ww) = 3 ay(e)| <200 +1).

t=1

(2.4)

Now for weE define 9,(#) = y.()e. Thus y,(v.(®) = ¢u.(#)). Once
again since g, (#) converges to # uniformly for e [0, 1], we can find d; < d,
such that d; > 0 and if 1—-6,<a<1, then

M1

12 ai'yu m{)”z aiyn Wa

(2.5)

- Notice that the inequalities (2.4) and (2.3) are dependent only on the

pregiven M and 6. Now let 6> 0 be such that 2( +1)6<1/6 and
1—6; < a < 1. Suppose that for some a;, B;¢[0,1], #;, ¥;e B with 1<%
<rand 1<j<s with r+s = M we have

Z ai(wi - y"a(wi)) - 2 ﬂi(?/a

=1 J=1

—"Tpa(yj)) =e.

Then
Za %+ Zﬁ,% Y5} = Za,wa(w +Zﬂ;y,+e
But then .
74(20 % +2ﬂj% (%) ) Z%’)’u(%)‘*‘Zﬁj%(‘l’a(%))ﬂ'%
=1 =1 i=1

L

ai'ya(y)a &y ) + 25]}"0 yj +Vu(e) —1

i= 1,==1

<7a(20 Yal® +Zﬂ,y,)+y¢( )11

i=1

<. (2 ,wa(w@)+2ﬂ,?/1+e)+— ~1.

=1
This is a contradiction. Let I denote the identity map on R™ Then I —v,
is continuous. Since B is compact (I —v,)(H) =K is compact. By the

above argument, min{m: Za ;= 6, o) <1, we K} > M. Notice that

if pe[0,1], then (I— % ;S’e) (8—p4e # 6. Thus R-¢c spankK.
It is then easy to see that B < span K. Therefore K spans R™.

By Proposition 2.2, there exists a monotone, total paranorm N, on
R" such that N,(x) < 1 for every v« K and Ny(e) > M —1. Now by Prop-
osition 2.5, there exists a monotone, norm bounded, total paranorm N
on R™ such that N < (4h/No(e))N0 and - N (Be) = ph for every fe[0,1].
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- Bince all of the above is independent of #, we may choose m = n so.that
n* 'k < /2. Then for #¢ B,

N(o—yu(@)e) = N (0 —pu(®)) < (4b/(H —1)) N, (0 — p, (o))
< 4h/(M 1) < ¢f2.
Also for 1<i<m

N (ne)) < N (ne; —ya(ne;) -+ N (ya(ney)) < &2 + N (n° ) < 5.

3. The compact convex set. In this section we shall construct the com-
pact convex set K with no extreme. points and the containing topological
-vector space X which will, in fact, be a Fréchet gpace. Initially we shall
construct a linear metric space which will be a union of finite-dimensional
spaces. The construction will be by induction.

Let X be all functions on [0, 1] which are finite linear combinations
of characteristic functions of the form Aa,p) Where a, be [0, 1] If A < [0, 1)
is a finite disjoint union of intervals of the form [a, ), then define P,:
Y—>Y by P4(f) = yaf for all fe Y. We let D = {fe ¥: f>0, and [fdu
<1}, where u denotes Lebesgue measure on [0, 1). For fe ¥, |If| will
denote the usual I'([0, 1)) norm, i.e. ||fil = [I|fldy.

Now let (s,» be a monotone decreasing sequence of positive numbers
such that ¢ =4 and lime, = 0. We shall construct a sequence (m,>

N->00
of partitions of [0, 1] such that each =, consists of intervals of the form
[a, b) with each of equal length and =,,, will refine =, for every n. We let
V, =span{ys: dem,}. Thus V, = V,,, for every n. Let B, = V,n D.
Each. vector space V, will have a paranorm N,. We will show that there
exishs a sequence of positive integers (M,> such that the sequence
Ty Viuy Nyy My)> satisfies the following conditions:
(1) Each paranorm ¥, is monotone, norm bounded, and total.

(2) T w<<m, fe V,, then Np(f) < No(f) and Ny(f) = N, () it
() <4

(3) It Aem,, then sup{N,.(f): fe Py(B,)} < s, for every m3m.
(4) For every n, there exists M, many points {g,} < H, such that

;fl m>mn and B, denotes the open ep-ball in V,, centered at g,;, then
n

U B, > B,.
=1

(8) If Aem,, then there exist constants K (4)> 1 and 0 < s(d) <1
such that if feV, for m>mn, and N,(f)<e(4), then N, (P4(f)
S K(A) Ny (f)-

PropositIoN 3.1. If (s,) 45 '@ monotone decreasing sequence of positive
numbers with &, = 4 and lime, = 0, then there exists o sequence (v, V,,

. N~>0
N,y M,)> satisfying conditons (1)—(3).

icm

A compaoct comen seb with no emtreme points 263

Proof. The construetion is by induction on n. Let , consist of the
interval [0, 1), let N, (f) = |If] for fe V;, and let M, = 1. Ppy is the
identity map so we may take K([0,1)}.=1. Thus (m, V,, Ny, M)
satisfies (1)—(5). : i

Now suppose that the finite sequence <=, Vi, Ny, M;> satisfies
conditions (1)~(8) for 1<i<m. For each 1< i< m, there exist M;
many points {g,}% such that if fe H,, then for some 1 < j < My Np(f —9¢)
< &. Since B, is compact, there exists §; > 0 such that for every fe B,
and 1<i<n, there exists 1< j<< My such that N,(f—gy) < &—0;.
For each Aem, with 1<i<n, sup{WN,(f): fe P (H,)} < ¢. Because

n

P,(B,) is compact and because |J = is finite, there exists ;> 0 such
=1

that if Aewm, with 1<i<n, then sup{N,(f): feP (B,)} < &—9,.
Lastly since sup{N,(f): fe B,} <2, there exists d;> 0 such that
Sup {N,(f): fe B} < 2—8. Now ‘let 8 =min{é, d,, o). Now let d

- .denote the dimension of V,, and let ¢ = min{6/2d, &,41/2}.

Let m, = {4;: 1 <4< d}. Bach 4, is a half-open interval of length
1/d. Since N, is norm bounded, there exists a constant ¢> 0 such that
for every fe V,, N,(f) < ¢||f|l. Thus there exists h > 4 such that if ae.[O, 1],
then for every 1<<i<<d, N, (a-dx 4’.) < ah. We now choose an mtlzeger
m satisfying the conditions of Proposition 2.6 for k, &> 0. Subdivide
each A; into m many intervals {44,1<j<m} each of length 1/md.'
Let B; = {dy, Aq} and let W; =span B;. By Propositifm 2.6, tlhlere exv.sts
a paranorm N,; on W, such that dy,, is an eneedle point of height % with
respect to the basis B;. Let >0 such that N, (Bdz) <4. It follows
that B <1 since if f>1, then N, (fdys) > Nu(dis) =h=>4 Thus
Nog(Bdgs) = Bh > No(Bdya). Henco if Nou(Pdys) <4, then No(fiz)
< Nou(Blsy)- _

Now define m,,, = {4y 1<i<d, 1<j<m}and V. = span{y,:
Aem,,}. Define N,y on Vpy by Npyy = inf{N,, Nuiy -y Naa}

(1) follows by Proposition 2.1. It is clear that if fe V,,, then Npa(f)
< N,(f). Suppose further that ;Z\T,,(f) < 4. To see that N,.1(f)=> N, (f),

let ge V,, fie W; such that g+ fi =1 and we may suppose that N,;(f;)
a i=1 a . .
< 4. Butnow > f; = f—ge V,. Thus f—g =iZ; a4, tor e R, 1< 4
i=1 & i
Sinee the spaces W, are in direct sum, the functions f; ave uniquely detei-
mined. Hence f; = a;x4,- But as we have already c_lemonstrated Nas( )
> N, (f)- Thus

4 a
Nl @)+ D Fuslfi) > Nal@)+ ) Nalfi) = Nalf)-

q=1 i=1

Therefore N,,;(f) = N,(f) and we have verified condition (2).


GUEST


264 J. W. Roberts.

Suppose that fe W,n D= W, B,y = [0, mdyy,, ..., mdy,, ) Since
dyy, is an. sneedle point of height & with respect to N,; and the basis B,
there exists ae [0, 1] such that Nm(f ady,) < & Hence Nn.(.l(f——adgu y
< e Also we have NM.L(WMZA )< (mdxA g <e if Aye B;. SuPPQSe

feB, . Then for 1< i< d, there exist fre W;n D, ;> 0 with Z’a
such that Z‘aif,; f. Now let B;e[0;1] such that Nn+1(fz-ﬂidx4¢

i=1
<sg Thusafg-—Zaiﬁ,dxA,then ge B, and Nn+,f g) < Z Ny (@ (fi~
—Bidiya,) < ZNn+1 (fi—Plxs) < de < 6/2. For 1<i< ’”f:
1<i< M; such that N, (9 —gy) < &;— 06y Thus Npyo(f —9y) < Vg (F —
— )+ Npa(9—0y) < 6/248—06;, < ¢. Hence H, samsﬂes condmon
(4). Since E,, is compact in' V,,,,, there exist M, ,, many points L/~

such that if fe B, ., then N,y (f—gpprap) < gnqr for some 1 <4< M, ;.
Now let Aemg for K such that 1 <K < n and let fe PA( 1) AS

> 0 with 2 afi =
i=1

We have o; =0 if 4; < A° For each ¢ such that 4, = A there exists

ﬁge [0,1] such that Np,q4(f;—PBsdxa,) < s (take B; = 0 if 4; = 4°). Hence

there exists

we have observed earlier there exist f;e Wyn D and o;

‘;aiﬂfdm,e PA(En)' Also N, (f- 2 a;fidys,) < 6/2. Thus -Nn+1(f)
< 82+ sup{N,(9): ge Py(B,)} < ak——6+ 4/2. Hence e:up{l\fm_]l )i fe
Py(Ba)} < ek—6—|~ 8/2 < ey Tt Aemy, and feP,(B,,,), then f

= amdy for ae[0,1]. But then N,.,(f) <N, (mdy,) < e Therefore
SUP{N 41 (f): fe Py(Byi1)} < & < g,,,. Thus condition (3) holds.

Now suppose Aem; for 1<j<n and feV,,, with N,.(f)
< g(4) < 1. Take & > 0. Let ge ¥V, aynd fie Wi, 1< i< d, be such that

~9+2ff and N, (f) > —szm (f)—¢. Let m, ={d; 1<

< d}. ThenPA f)=fit A4;c 4 or PA (f;) =0if 4;< 4° Since N,(g)
< ¢(4) for sufficiently small #,

a ‘ ’ d
N+ D N (Palf)) S K(A)No(g)+ ¥ Noulf)

==l gual

+Z%L)(

=l

N1 (Pa(f) < N, (Palg)

<K(4) ( ) (Nga () +¢).-

Since & is arbitrary, -Nn+1 (PaN)) S E(AYNppa(f). Now let Aem,,,.
Since ¥, ., is norm bounded, there exists a constant ¢ > 0 such that N, a1 ()
< o|f| for every fe V,,,,. Since V,,, is finite dimensional, the Np4a tOp-
ology and the norm topology coincide. Thus there existy 0 < e(d) <1
such that if fe V,,,, and N, ., (f) < s(A), then ||f]| < 1 and if Ny (f) <e(4),

icm
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then there exists > 1 such that N, (8f) = e(4). Now let feV,
with N,..,(f) = ¢(4) and let ae [0,1]. Then

Noia (Palef)) < ellaPy () < callfll < ca = (eafe(4)) Npiy (f)-

By Lemma 2.4, a¥,.,(f) <2N,,,(af). Thus if we take K(4) =
max {2¢/e(4),1} and ge V, ., with N,,.;(g) < a(A), then

No (PA(.‘])) < KE(A)N,..(9).
This completes the proof.

THEOREM. There ewists a Hausdorff topological vector space X which
contains a compact convew set K such that K contains no ewlreme poiris.

Proof. Let {¢,> be a monotone decreasing sequence of positive num-
bers such that & = 4 and lime, = 0 and let {(=,, Vn,N”, M,)> be the

N300

sequence constructed in Proposition 3.1. Let V = UV Then V is

=1
a subspace of Y. For any fe V; = V, the sequence (¥, ( f)>m—; is monotone

decreasing and is therefore convergent. Define N, on V by N,(f)
=UmN,(f). I fe V; and N,(f) <4, then Ny(f) = N:(f). Now let B
N—>00

=J En and. let d be the metric given by N,.

n=1

By construction, ¥ can be covered by M, many open g,-balls. Thus ¥
is totally bounded. Now let X be the completion of V and let & be the
total paranorm obtained on X. We shall consider V and F as subsets of
X. Let F Dbe the closure of E. Since ¥ is totally bounded, F is compact
and since F is convex, F is convex. Suppose A e, for some n. If fe V
and No(f) < &(4), then No(P,(f)) < K(4)N,(f). Hence P, can be exten-
ded to a continuous linear operator on X which will also be denoted P,.
Algo P, is a projection on X, sinee it is a projection when it is restricted to
V. It is easily seen that P, (E) = E. If we let I denote the identity oper-
ator, then (I—P,)(E) < E also. Therefore P (F) = F and (I—P,)(F)
< . It is easily verifed that

= {af + (L —a)g: feP4(B), ge (I—P4)(E), ae[0,1]}.

Therefore

= [B] = [Py(E)v(I-Py)(B)] = [Py(F)0(I—-P)(E)] = F,
i.e. F =[P Fyu(I—P,)(F)]. Therefore F = {af+(1—a)g: feP,(F),
ge (I—P,)(F)} since P,(F) and (I —P,)(F) are compact convex sets.

It is also easily seen that sup {N(f): fe P (F)} < s,.

We claim that 6 is the only possible extreme point of F. Let f be
an extreme point of F. If Aem,, then there exist ae[0,1] and f; fae F
such that f = aP 4 (fr) + (1 —a)(I~P4)(fo). Since Py(fr), I—Po)(fa)e T,
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either @ = 0 or a = 1. Thus either P, (f) =for Py(f) = 0. Let =, =
d .
{4,)%,. Then I = Y P,. Therefore P, (f) =f for some . But then
f=1 .
N(f) = N(P4(f)) < &, Since lime, =0, f = 0.
n~r00

Finally we let K = [F, —F]. Therefore K = {af—(l——a)g:_f, ge F,
since F is a compact convex set. Now & is not an extreme point of 13?,
gince F < K and if fe F with f 5= 0, then 3f-+-3(—f) = 0. Suppose g is
an extreme point in K. Then ¢ = af;+(L—a)(—f.) for fi, f, ¢ F. Bub
then either @ = 0 or @ = 1. Thus g F' or ge — F. Without loss of gener-

ality, we may suppose ge F. Since g == 8, g is not an extreme point of F.
Thus K has no extreme points. This completes the proof.
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On the Jordan model of C, operators

by
- HARI BERCOVICI (Bucharest)

Abstract. The aim of Part I of this note is to find a Jordan quasisimilarity model
for 0, operators acting on Hilbert spaces of arbitrary dimensions. In § 1 the “non-sep-
arable” quasisimilarity invariants of a 0, contraction are found. The main result of
Part Iis Theorem 1 (§ 2) which asserts the existence and the uniqueness of the Jordan
model. In our proof we use the existence of the Jordan model, already known for O,
operators -acting on separable Hilbert spaces ([1]).

The second, part of this note is a continuation of [3]. We apply the Jordan model
of (), operators to the problem of classifying the representations of the convolution
algebra I'(0,1). In §3 the canonical representations of I'(0,1) are defined and
they are shown to be unitarily equivalent to some “obvious” representatioms. The
main result of Part IT is Theorem 2 (§-4) where each representation of I(0, 1) into
a Hilbert space is asserted to be quasisimilar to a wunique represemtation whioh is
the direct (orthogonal) sum of a canonical representation and a trivial representation.

In [2] the C, operators acting on a separable Hilbert space were
shown to be quasisimilar to Jordan operators. The main result of Part
I of this note is to extend this result to arbitrary C, operators.

The general result of Part I has been suggested by the particular
case used in Part IT. In the particular case of nilpotent operators, the
problem of the Jordan model is already solved in [1]. The problem of
clagsifying the representations of the convolution algebra ZL'(0, 1) has
been suggested by C. Foias.

Preliminaries. () Let us recall that 0, is the class of those completely
nonunitary (cnu) contractions 7' of a Hilbert space, for which there exists
a function we H®, w 5 0, such that «(T) = 0. Among the functions u
satisfying the relation % (T) = 0 there is an inner one which divides all
the others. This function, determined up to a scalar multiplicative con-
stant of modulus one, is called the minimal function of T and is denoted
by mgp. The function myp is constant if and only if 7' acts on the trivial
space {0}. )

For each nonconstant inner function m there exists an operator T
of class €, for which my = m. Such an operator is S(m) acting on H (m)
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