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Approximation of analytic and continuous mappings
by polynomials in Fréchet spaces

by
CZESEAW MATYSZCZYK (Warsaw)

Abstract. In the paper it is shown that a complex or rea.l Fréchet space X with
the bounded approximation property has the strong polynomial approximation
property (shortly SPAP, see Definition 0.1) if and only if there exists a continuous
norm on X. Moreover, any separable real Banach space has the SPAP.

0. Imtroduction. The following theorem of Oka—Weil is well known.:

If K is a compact polynomially convex subset of the space C* =
Cx...xC, then every complex valued function, analytic in a netghbour-
hood of K, is the uniform limit of a sequence of polynomials on K.

C. E. Rickart [19] has extended this theorem to the space CF — H Cy,

where T' is an arbitrary set and C; = C for every teT; the topology
in €7 iy product.

Ph. Noverraz [13] (see also, 8. Dineen [6], R. Aron and M. Schot-
tenloher [2]) has obtained an analogous theorem for complex Banach
spaces with a Schauder basis (in papers [14] and [15] Noverraz gives
a proof of the Oka—Weil theorem for spaces with “the stlong approxima-
tion property”).

From the Oka-Weil theorem it follows that the space X = C" has
the property:

(x) For every open polynomially convew subset Q of X and for every

Junction U analytic on @ there ewists a sequence of polynomials convergent

o U almost uniformly on Q, i.e., uniformly on each compact subset of Q.

In author’s paper [12] it is shown that every complex Banach space
with the bounded approximation property has the property (%), too.
(A Fréchet space X is said to have the bounded appromimation property,
shortly BAP, if the identibty operator on X is the pointwise limit of a se-
quence of finite-dimensional bounded linear operators [17].)

Since not every Fréchet space with the BAP has the property (),
we introduce the following '

DerFiNtrioN 0.1. Let X be a complex (resp. real) Fréchet space,
i.e., a complete locally convex metric space.
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(a) We say that X has the strong polynomial approximation property,
shortly SPAP, if for every open polynomially convex (resp. open) sub-
set @ of X, for every complex (resp. real) Fréchet space Y and for every
napping U analytic (resp. continuous) on @ with values in ¥, there exists
a sequence of polynomials convergent to U almost uniformly on ¢.

(b) We say that X has the polynomial approzimation property, shortly
PAP, if for any @, Y, U as above and for every compact subset I of ¢
there exists a sequence of polynomials convergent to U uniformly on K.

In the present paper it is shown that:

T1. A complex or real TFréchet space X with the BAP has the SPAP
if and only if there ewists a continuous norm on X.

T2. Any separable real Banach space has the SPAP.

T3. Any complex Fréchet space with the Grothendieck approzimation
property has the PAP (a Fréchet space X is said to have the Grothendieck
approvimation property, shortly GAP, if for every compact subset K of X
there is 2 sequence of finite-dimensional bounded linear operators, con-
vergent to the identity operator uniformly on K [8]).

T4. If Q is an open polynomially conves subset of C¥, where N is
the set of all positive integers, then the following conditions are equivalent:

(i) any complex valued function, analytic on @, is the almost uni-

form limit of a sequence of polynomials on Q,

(ii) @ comsists of a finite number of conmected components.

The problem of the approximation of continuous mappings by poly-
nomials was investigated by 8. Mazur around 1955. He obtained the
following result (unpublished):

Let X, ¥ be two real Fréchet spaces, M a closed separable subseb
of X and let U be a continuous mapping from M to Y.

(a) It M = J M,, where M, are bounded, then U is the pointwise
n=1

limit of a sequence of polynomials on M.

(b) If M is locally bounded, then U is the almost uniform limit of
a sequence of polynomials.

S. Mazur has posed the problem: is there a real Fréchet (but not
Banach) space X such that every continuous function on X is the limit
of a sequence of polynomials on the whole space X ¢ Theorem T1 (the real
case) is the solution to this problem.

The paper is divided into two parts. In the first part we give some
notation and some basic properties of polynomially convex subsets of
Fréchet spaces. In the second part we give the main results of this paper.

The paper is a part of author’s Ph. D. Th. written under the
supervision of Professor W. Zelazko whom we would like to thank for his

icm

Approzimation of analytic and continuous mappings 225
guidance. We. would like also to express .our gratitude to Professor
8. Msj\,zur for 11.1troduemg us to the subject and for making available for
us his unpublished results. Finally we are indebted to Dr. K. Ligocka
and Professor A. Pelczyriski for valuable discussions.

1. Preliminaries. Throughout the paper. K denotes either the field
of real numbers R or the field of complex numbers C. If the field is not
explicitly indicated, the results are valid in both cases.

Let X, ¥ be two Fréchet spaces over K. We denote by 2[X, Y]
the space of all continuous polynomials on X with values in Y, ar'xd, by
.{V[X » ¥ the subspace of #[X, ¥] defined as follows: Pe N [X Yj
if and only if there exist a positive integer », elements #f, ..., oF in71‘,he
topologically conjugate space X* and a polynomial f’eﬂ’[K’”, Y] such

that P(z) =;’(mf(w), :..,a:;‘:(m)) for #¢X. If X has a Schauder basis,
then, for a given bagis ¢ = (e;), we denote by A4 ,[X, ¥] the space of
ail polynomials of the form P(z) = P(e} (v), ..., ¢4 (®)), where Pe P[R* Y]

X ! ? 2
¢; are the epordmate functionals and # = 1,2, ... The space of all analytic
(resp. continnous) mappings from an open subset Q@ of X to Y is denoted
by g[Q, Y] (resp. ?[Q, ¥7]). The most important facts concerning poly-
nomials and analytic mappings are gathered in papers [4], [5].

Asgume now that the spaces X, Y are complex, (] |,) is 2 fequence
of. seminorms determining the topology on ¥ (if ¥ is a Banach space
with a n(?rnl 1, we put || l, =1 [|for k =1, 2,...), @ is an open subset
of X, # is a subfamily of ¢[Q, ¥].

DerINmrIoN 1.1. The subset @ is said to be % -convex if for a
g ny compact
subset K of @ the set v pae

K% = {peQ: ]]F(m)[]kgsuzlza I# ()l for each FeF and k =1,2,...}
e

is a compact subset of @, too.

Obviously, if #, « &, c ?[Q, ¥] and @ is #,-convex, then @ is
Fp-convex. )

P?OP(BKSITION 1.2. Let F = {f<¥[Q, Cl: f = 4*oF for some FeF
and Y e XY If for every feF' there emists Ye X, y # 0, such that yfeF
(wf) (@) = yf(@), then KE = K$, for any compact subset K of §.

Pr?of. We first show that K is contained in K. Let ze KZ.
If fe#', then there is 0 # ye ¥ such that yfeF, therefore |yf(m)ll,
< Sup Iyf (@)1l Sinee flyll, 7 0 for some % and |lyf(@)l, = [yl |f (@)], we can

& 1
write |f(#,)] < sup |f(#)]. Hence @,¢ K2,.
e,

Let now #ye Kg.. For every Fe# and for every k there is y*e ¥*
such that |y*(F(x,))| = |F(x)ll, and |y*(#)| < [ol,, for @e V. From this

.we have |[F(2,)l, < sgly*(ﬁ’(m))] < $up |F (@), hence @y« K3.
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COROLIARY 1.3. The subset @ is «[Q, Y], #[X, X] or #'[X, Y]
convew (N[ X, Y]-convew, if X has a basis) if and only if @ is &[Q, C],
P[X, C] or N[X, Cl-convex (N [X, Cl-conver), respectively.

DerINmioN 1.4, #[X, Cl-convex (resp. & [@, Cl-convex) subsets of
X are called polynomially (resp. amalytically) conves.

Levva 1.5. If F is a subfamily of ¥[Q, C] such that 2+ F for
any ze C and o*e X* ((z+a")(0) = 2+0*(®), we X), then K% is con-
tained in conv K for each compact subset K of ¢).

Proof. Let wog‘coan Then there is &*e¢ X* such that (@) ¢Z

= g*(convK) (ef. [20]). Since Z is a convex compact subset of C, there
exists a constant ce € such that sup |2+ ¢l < |&* (2,) +-¢|]. Butb qup [* () -+ ¢]

< suple+e¢|, and this implies mo¢ KS.
27

COROLLARY 1.6. Open convexr subsets of a Fréchet space are poly-
nomially and analytically convesw.

So-called polynomial polyhedrons in Fréchet spaces are also poly-
nomially and analytically convex.

In the next section we use frequently the following

LemMmA 1.7. Let X, E be complew Fréchet spaces.

() If B is a subspace of X, then for every open 2[X, CJ-conves subset
Q of X the intersection QNH is P[E, Cl-convex.

(il) If B = L(X), where L is a bounded linear operator from X to B,
then for every open P [ B, Cl-conves subset D of H the set L~YD)is 2[X, C]-
CONVeT.

(ili) If L: X—~E is a topological isomorphism (i.e., a bicontinuous
algebraic isomorphism) between X and E, then an open subset @ of X s
P[X, OF-convez if and only if the set L(Q) is #[E, Cl-conves.

Proof. (i) If @ satisfies the assumption and K is a compact subset
of @QnE, then Kg[xm is compact. Bub Kg,[E o1 is a subset of the last seb
and it is closed in this set, therefore Kg’bq is compact.

(ii) Let K be a compact subset of L71(D), let K; = Kg[x 0} and K,
== L(K),[E o We must show that K, is compact. First we show that
L(K,) is contained in K,.

Let yoe L(K,), ie, ¥y, = L(x,) for some x,e K.
then PoLe#[X,C]l. Hence we have |P(y,)| [P (L(mg)) <

It Pe2H,C),
sup|P(L(w )|

= sup |P(y)|, and this implies y,e K,. Now we can write K1 < conv. KN

veI{E)
NLY(K,). Since the set on the mght -hand side is & compact subset of
X, K, is compact. :

(iii) follows from: (ii).

icm
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COROLLARY 1.8. If Fréchet spaces X, are toyologwall y isomorphic
and X has the SPAP, then B has this property, too.

2. Main results. For a Fréchet space X over K with a Schauder
basis, say ¢ = (¢;), we shall use the following notation:

X, =span{e;, ..., e}, n =1,2,...;

L(61F ... F28,) = (21, ...,2,) for 21, ...,2,6e K, n=1,2,... (I,
is a topological lsomorphlsm between X, and K")

| lo is a Fréchet norm defining the topology on X such that
(2.1)

P131+ -t 2plpfy < Izlel_,' +zn+pen+plo

,H_ﬂeK nyp =1,2,... ([1])

2*

coordinate functlonals.

for 2, .

@)e; for 3¢ X and m =1,2,..., where ¢* ave the

The operators S,: X X, are continuous linear projections and
8,(») converges to x for every weX. Thus, according to the Banach-
Steinhaus principle, they are equicontinuous on X and the convergence
is almost uniform.

Inequality (2.1) implies

<kl for

(2.2) e 8 zeX and n =1,2,...,

and this implies
lh@ed <2l for

DzrrFiNiTIoN 2.1. We shall say that a subset M of a Fréchet space X
over K, with a basis e = (¢;), is locally ¢*-bounded, if for every point z
in M there exists & neighbourhood ¥, of  such that the set ¢} (M N V)
is bounded, as a subset of K, for i = 1,2, ...

It is evident that the whole space X is locally ¢*-bounded if and
only if for some neighbourhood ¥V of 0 the sets ef (V) are bounded.

The following theorem is fundamental in our study.

THROREM 2.2. Let X, Y be two real (resp. complex) Fréchet spaces
and let X have a Schauder basis, say, e = (¢;), ¢ = 1,2, ... Then for every
open (resp. open polynomially convex) subset Q of X, for every locally e*-
bounded subset M of @ and for every mapping Ue €[Q, Y] (resp. Ue[Q, X])
there ewists a sequence of polynomials P,.e & [X, Y] convergent almost
uniformly to U on M.

Proof. Denote by W the set of all linear combinations z;¢;,+...+
+2p€n, = 1,2,..., with rational (resp. complex rational) coefficients.
Obviously, this set is dense in X. If @ is a non-empty open subset of X

(2.3) veX and n =1, 2, ...
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and M is a non-empty locally e*-bounded subset of @, then we can find
closed balls B; = {we X: p—m], < 7, 7,> 0} such that:

meW and Bj=Q forj=1,2, vy Me U IntBj;
=1
(2.4) the set e;‘(MnB]) is bounded for i,j =1,2,
m
Now put @, = U B; for m =1,2,... We shall show that the se-
j=1

quence (@,,) has the following properties:
() M= UQu=q,q, is closed and @, < Qpyi for m =1,2,...;
m=1

(ii) for any compact subset K of M there is an index m, such that
K = @, for all m = my;

(iii) for any m there is a positive integer n,, > m such that 8,(Q,,)
=Q,NX, for all n>n,,. i

Properties (i) and (ii) are obvious. To prove property (iii), it is enough
to show that for any j there is n; such that 8,(B;) = B;n.X, for n = ny,

m
because 8,(@,,) = U 8,(B;) for n,m =1,2,...

For any flxed j the centre @; of B; belongs to some subspace X,,

If n>n; and y,e 8,(By), ie., y, =8 (mo) for some m,e B;, then yo——a;i
= 8, (% —®;) and, recalling (2.2), we have y,c B;. The inclusion B;NnX,
< 8,,(By) is evident.

Let now Ue #[Q, Y] (UeA[Q, Y], here @ is polynomially convex)
and G, =1, (QnX, ),m=1,2,... Then for each m the set G, is
a non-empty open (resp. open polynomially convex, by Lemma 1.7)
subset of R™m (resp. C"™m); moreover, the vector valued function U (2,6, ...

o +2,,6,,) of the variables 2y, ..., 7, is well defined and continuous
(resp. analytic) on G,

Further, denote by K, the closure of I, ( nm(anM)) m=1,2,

It follows from (i), (iii) and (2.4) that K,, is a bounded, and conxequeniyly
a compact subset of @,. Therefore, by the theorem of Bernstein [18]
(resp. of Oka—Weil()) for vector valued functions, for every m there exixty

2 polynomial ﬁme 2[R, Y] (vesp. Pme P[C"™, Y]) such that

U(zei .. 42y 0 ) —Pulzy, ..y i l<m™  for (2., 2,,) Ky

(Here | | denotes a Fréchet norm defining the topology on ¥.) From. the

above inequality we obtain

25)  [U(8,, @) —Pulef@), ..., & (@) <

for e anM and m =1,2,...

() This theorem may be deduced from the integral formula of Weil for vector
valued functions.

icm
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Now consider the sequence (P,,), where P, (2) = P (ef (2), ..., &5 (2)),
zeX and m =1,2,... It is clear that P,e 4, [X, Y] for m =1,2,...
We shall prove that this sequence converges to U almost uniformly on 3.

If K is a compact subset of M, then aceordmg to property (ii) there
is m, such that K <= @, nM for m > m,. By ) 1U(8,,, (m)—P (@)
<m” lfor we K and m > m,. Since |U(w)— |<|U w)—U(S (@) -+

+|U(8,,, (#) =P, (@)] for z< E and m—l 2 .., in order to finish
our proot it suffices to show that
(%) U(Snm(w))AU(w) uniformly on K.

Let #,¢ K for m = 1,2, ... and let z,,—>x, From the uniform con-
vergence of the sequence (8,) on K and the eontinuity of U, it follows
that U(Snm(mm))eU(m,,). This proves (x), and the proof is complete.

Setting in the last theorem M = @, we obtain

CorOLLARY 2.3. If a Fréchet space X with a Schauder basis is locally
¢*-bounded for some basis e, then X has the SPAP.

The space KV of all sequences z = (2,), 2,¢ K for k = 1,2, vy I8
not locally e*-bounded. Here e; = (1,0,0,...), € =(0,1,0,...),...,

and the topology on K¥ is defined by the Fréchet norm % =k§1 2Rzl (1 +
+ [2])"*. We shall prove that this space has not the SPAP.

It is known that if Pe #[KY, K], then there is a positive integer
% and a polynomial ﬁgg’[K", K] such  that f(a:) = ﬁ(zl, Zyyeiny By,
x = (2)e K. o

Let P,e #[K¥, K], n = 1,2, ... According to this remark, for every
n we can find j, and f;ne #[K'n, K] such that P, () = f‘n(zl, -y 2,) and
P, ¢ P[K», K]

LeMMA 2.4. If the sequence (j,) 48 not bounded, then the sequence (P,)
is mot comvergent almost wniformly in any ball B(wmy, B) = {ze KY: p—x)]
< R}, woe B¥, R > 0.

Proof. It is enmough to show that for every ball B(z,, R) = KY
there exist a sequence (@,) and a subsequence (P, ) of (P,) such that
By, = By, Bpe B2y, B) and |P,, - (w,)| > m for m =1,2,... Put z, = (2%)
and B,, = B(%,, Bm™") for m =1,2,... Then for every m there are
a real number r,, > 0 and a positive integer 4, such that the set 2, =
{ = (2) e KY: |z, —2p| <7 for k =1,...,4,} is contained in B,,. If (j, )
is a subsequence of (j,) such that j, > i, for m =1,2,..., then for
any m there is @,e M, such that |P, (@) >m, since the polynomial

= f’nm(zl, . zjnm) is unbounded on M, . It is evident that x,—x,

an(w)

§ M—-00.


GUEST


230 C. Matyszezyk
DErFINITION 2.5. Let ¥ be a function defined on a subset Q of KV,
We say that F is globally finitely determined on @ if there is a positive
integer » such that for every we @ this function is constant on the set
QN8 (S, (@), where 8, (®) = (21, ..., 2,y 0, 0,...) for & = (23).

From Lemma 2.4, it easily follows

COROLLARY 2.6. If a function U: Q—>K, where @ is an open subset
of K, is the almost uniform limit of & sequence of polynomials, then U is
globally finitely determined on Q. In particular, if U is analytic on Q, then
U is locally finitely determined.

THEOREM 2.7. If & real (resp. complex) Fréchel space X contains
a subspace B topologically isomorphic to RN (resp. CN), then for every
real (resp. complex) Fréchet space X there exwists am open (resp. open poly-
nomially conves) subset @ of X and a mapping Uest[Q, Y] which is not
the almost uniform limit of any polynomial sequence; in particular, X has
not the SPAP. .

Proof. Suppose that X is complex. Let G be an open polynomially
-convex subset of €V consisting of infinitely many connected components
Gnym =1,2,... To show that such a subset & exists it suffices to choose
such an open polynomially convex set D in € (D is polynomially convex
if and only if ¢ — D ig connected) and put & = §~*(D), where S(2) = 2,
as @ = (2,). Then, by (i) of Lemma 1.7, @ is polynomially convex.

Setting u(2) =2, for o = (g)e@,,n = 1,2, ..., we have ue[G, C].
Since w is not globally finitely determined on &, according to Corollary
2.6, % is not the almost uniform limit of any sequence of polynomials
on G. ’

If a subspace Z of X is topologically isomorphic to C¥, then there
exists a continuous linear projection P: XZH (cf. O. Bessaga and A. Pel-
czytski [3]). Now put @ = P! (I (G)), where I is a topologically isomorphic
mapping from CV onto B, Ulw) = u(I“(P(m))) for e Q, and U(w) = y U (»)
for ¢ Q;y # 6 is a fixed point in Y. Tt can easily be shown that @ and

U have the desired properties.

The above method holds equally well for real spaces. m

Remark 2.8. If a real Fréchet space X contains a gubspace H
topologically isomorphic to R¥, then for every real Fréchet space ¥
there is a mapping Fe ¥[X, Y] which is not even the pointwise limit ot
any polynomial sequence in any open subset of X. This follows from the
fact that the functional | | is not such a limit in any open subset of
RY (A. Pelezytiski [18]).

THEOREM 2.9.. Let X be a comples (resp. real) Hréchet space with
@ Schauder basis, let ¢ = (e;) be any such basis in X, (py) an arbitrary se-
quence of seminorms defining the topology on X and by = min{k: pyle)

icm°
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#0},1=1,2,... Then the following properties are equivalent:
(i) X has the SPAP;
(i) mo subspace of X is topologically isomorphic to the space C¥ (resp.
RY);

(iii) there is a continuous norm on X ;
(iv) the topology on X may be defined by a sequence of norms;
(v) X ds locally €*-bounded;

(vi) the sequence (k;) is bounded.

Proof. The implications (ii) < (iii) < (iv) hold for arbitrary Fréchet
spaces (cf. 0. Bessaga and A. Pelezynski [3]). »

(v) =(i) follows from Theorem 2.2, and (i)=-(ii) follows from The-
orem 2.7.

(iif) = (vi).’'If || || is & continuous. norm on X, then there exists
a positive real number M and a positive integer k, such that |zi] <M
ig)pk(w) for weX. Hence ;<< kyfori =1,2,...

n(vi) = (v). If the sequence (k;) is bounded, then there is a positive
00

real number C such that 27> C for i =1,2, ... Let ] = 3 27%p, (o)
k=1

(14pi(®) ™ B ={wcX: |y < B, 0<R< 0}, let » be a positive reat
number such that the set {ze X: Mo < 2r} is contained in B, and write
V = {we X: |}, < 7}. We shall show that ¢; (V) is bounded fori =1, 2, ...

Suppose that there is i, sueh that e}‘D(V) is unbounded. Then for
every m there exists x,¢ V such that ]e;‘; (z,)| = n. From thiz and from
(2.3) we get the inequality

0>R=> le’,‘;(mn) al=2" "0”277.:,.0(%) (1 +"Z’ki-o(6-.‘o))_l

for » =1,2,... Letting n—>co, we obtain (>R>=2%>0(. m

COROLLARY 2.10 If & = (&), & = (&;) are two Schauder bases in a Fré-
chet space X and if X is locally &*-bounded, them X is locally 6*-bounded.

Denote by Mt the class of all Fréchet spaces with a continuous norm.
To extend Theorem 2.9 on Fréchet spaces belonging to Mt which have
BAP we need the following result of Pelezyniski (announced in [17]) who
communicated to us the proof presented below.

TurorEM 2.11. If a Préchet space X has BAP, then there exists a Fréchet
space X, with o basis and an isomorphic embedding I: X— X, such that
I(X) s o complemented subspace of X,.

Moreover, if X< N, then X, may be chosen from M.

Proof. Pick a system of pseudonorms (|- [l) defining the topology
of X so that ||, < [[*l.<... (if Xe M, one may also assume that all
the |-|’s are norms). Let (4,) be a sequence of finite-dimensional
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continuous linear operators from X to X such that A4, # 6 for
p=1,2,... and

veX and k =1, 2, ...

(2.6) lim“w—ﬁAp(w)”kv:O for

By the Banach-Steinhaus principle the operators Z 4, n=1,2,
p=1
equicontinuous on X. Thus for every & there is a positive number M}, and

2 positive integer 4, such that

sup”ZA

This implies

., are

2.7) for weX.

L < M [l

{2.8) sup A, (2)lly < 2Myljwlly, for weX and k=1,2,...
"

Put E,
there are one-dimensional bounded lmear operators

= A,(X) and m, = dim B, for p =1,2,... For every p
§‘°) from B, to B,,

j= 1, 2,..., My, such that
™p

(2:9) DIBP(e) =¢ for ecD,.
j=1

Choose a positive number R, such that

(210) max [BP ()]l < By el eeB, and b =1,2,...,p.
1<j<my

for

If a positive integer NV, satisffes the inequality

(2.11) my Ry N7 < 1
and if 0P = N;'BP for ¢ = rm,+j (r =0,1, ..., Ny—1;§ =1, ..., my),
then :
mpr
{2.12) CP(e) =e and max OP ey || < 2 elly
X | S vl < 2ie
for ¢e B, and k =1,2,...,p.

The last inequality follows from (2.9),
that for every ¢, 1 < g < mp N,

q My w
oW =7 3 N BP+ 3 N BP

q=1 J=1 F=1

(2.10), (2.11) and the fact

for some » and w, 0 <r < N, —L, L <w < m,

b e
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Let 4, =0P4,
=0,p=1,2,...
kLl -
SA4,n=1,2,

§=1

for s =m0N0+ «Amy_; N, _,+14, where m,N,
yi=1,2,...,m,N,. We shaJl show that the operators

..., are equlcontmuous. For every == m,; N, there are

positive integers ¢ and ¢, 1 < ¢ < my,; Ny, such that

, ¢ Ml g
A= 2 X O A, YO Ay
s=1 p=1 i=1 im1

Let & be fixed. From (2.12),'(2.7) and (2.8), it follows that

» ¢
|2 4u@) [ < || 3 45 @], +2 1400 @)1 < Mool +4 il
s=1 p=1
for #¢ X and for almost all #. It hence follows that 3 4, are equicontinu-
s=1

ous. Consequently, for every k there are positive integers K, and u; such
that

{2.13) for weX.

| S0 =

§=1

From (2.13), (2.12) and (

1irn“ ﬁ’ A, ()
n =]

for ve X and k=1,2,...
Now denote by X, the Fréchet space consisting of all sequences

(y(s)) such that y(s)e A (X) for s = 1,2, ...

Ey |l

2.6), it follows that

MmNy

—af=m]3; 3 opayi—al| -

0
and the series Y'y(s) con-
8=1
verges, the topology on X, is defined by the Fréchet norm “=
n
S27FN X+ 111 )7 where [[|(y(3)[[l = sup || X 5 (s)]|e for (y(s)) e Xo-
~= n §==1

Obviously, if [|-]|; are continuous norms, so are the [||-||l,- We shall show
that X, has a basis.

Choose a sequence (y,) such that y, e AB(X) and y, # 0fors =1,2,...
Since dim 4,(X) = 1, then for every ye AS(X) there exists a scalar ¢
such that y = cy,. Let §,(t) = 0 for t # s, §,(5) =y, and e, = (,(t)).
Then it can easily be verified that the subspace span {e;: s =1,2,...}
is dense in X, and ‘

n-+1
1 el 3 el

§=1
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for n, %5 = 1,2, ... and for arbitrary scalar sequences (¢,). Hence the anal-

ogous inequality holds for | | Consequently, (¢,) is a Schauder basis

in X, (ef. [1]). )
Moreover, the mapping I: X—X,, defined by I(x) = (4,(»)

ze X, is a topological isomorphism between X and I(X). The continuity

of T and I™* follows from the inequalities

() 1l < K ol (4, (#) Il for we X and % =1,2, .

The mapping IL: X,—I(X), defined. by L((y(s))):(ﬁa(‘gy(t)))

for (y(s))eXo, is a continuous linear projection of X, onto I(X). The
continuity of I follows from the inequality:

LAY

TEREOREM 2.12. If a Fréchet space X over R (rvesp. over C) has the BAP,

then the following properties are equivalent:
(i) X has the SPAP,

(ii) mo subspace of X 1s topologically isomorphic to the space RY (resp.
ey,

(iil) there is & comtinuous norm on X,

(iv) the topology on X may be defined by o sequence of norms.

Proof. It is enough to prove that (iii) implies (i) (see the proof of
Theorem 2.9).

If X has the BAP and Xe 9N, then, by Theorem 2.11, there exists
X,e M with a Schauder basis and a topological isomorphism I: X —X,
such that I(X) is a continuous linear projection of X,. Denote this pro-
jection by L.

Let @ be an open (resp. open polynomially convex) subset of X, ¥
a Fréchet space over R (resp. over C) and Ue €[Q, Y] (resp. Uenk[@, Y]).
Then the subset D = L~(I (Q)) is an open (resp. polynomially convex,
by Lemmsa 1.7) subset of X, and F = UoIoLe%[D, Y| (esp. I
el [D, YY) Thus, if ¢ = (¢;) is a Schauder basis in X,, then, according
to Theorem 2.9 and Theorem 2.2, there exists a sequence of polynomials
P,e N, [X,, 'Y] convergent almost uniformly to F on D.

Putting P,n =P,ol forn =1,2,..., we obtain that (P ) converges
to U almost uniformly on @ and 13,,e ./V[X, Ylforn =1,2,... m

TEROREM 2.13. Any Fréchet space X with the Grothendieck approwi-
mation, property (GAP) has the PAP.

Proof. If X is real, this theorem follows lmmedutely from the
theorem of 8. Mazur, (see Introduction).

lllhe <

e <Eello@)lloe for e)exs mma w=1,2,...

) for -
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Let X be complex, let @ be an open polynomially convex subset of -
X, Y an arbitrary complex Fréchet space, Ueo/[Q, Y]and let K be a com-
pact subset of . There exists a sequence of finite-dimensional continuous
linear operators B, from X to X convergent to the identity operator
uniformly on K (cf. Grothendieck [8]). Obviously, we can suppose that
B, (K) is contained in @ forn =1,2,.

Let X, = B,(X)and U, = U[annfor'n =1,2,.... By (i) of Lemma
1.7, @ n X, is an open polynomially convex subset of X, ; B,(K) is a com-
pact subset of QN X, and U, is analytic on @NX,. Since dimX, < oo,
there is a polynomial P, e#[X,, ¥] such tha,t [T.(5) =B, ( |<7F1 for
all y< B, (K), and hence |U(B, (X)) —P, (B, (X)) < n~* for all z¢ K.’ (Here
H | denotes a Fréchet norm defining the topology on Y.)

Let now P, :f’,an for » =1,2,... Then P,e #'[X, Y] for all
n and P, (z)—U(x) for ze¢ K. To show that the convergence is uniform
on K, it suffices to repeat the last part of the proof of Theorem 2.2.

Remark. Conversely, if for every open polynomially convex subset
@ of X, for every Ue[Q, C] and for every compact subset K of @ there
is a sequence of polynomials P,e A [X, C] convergent to U uniformly
on I, then X has the GAP (see [2], Section 2).

COROLLARY 2.14. Let X be a complex Fréchet space and @ an open
subset of X. If X has the GAP, then the following conditions are equivalent:

i) @ is 2[X, C]-conves,

(ii) @ is A& [X, C)-conves.

If X has a Schauder basis e = (e;), then (1) and (ii) are also equivalent to

(iii) @ is A [X, C]-conven.

- Proof. (i)<«(ii). It suffices to show that Ky[x = Km[xo] for
compact subsets K -of @. The relation K < K$ i3 obvious. Let now
e K9 and Pe2[X, C]. Since the set Z = KU {#,} is a compact subset
of @, there exists a sequence of polynomials P,e 4 [X, C] convergent
to P.uniformly on Z (see the proof of Theorem 2.12). But ¢ K%, therefore
[P ()] £ sup [Pp(2)] for m =1,2, ... Letting n—>co, we obtain |P(x,)]

weK
< sup |P(2)]. Consequently K9 < K$.
zeK

(i) <-(iii). Every compact subset I of X (with a basis) is locally ¢*-
bounded. Using Theorem 2.2 and arguments similar to those above, we
obtain K% ix0) = Kpx,0p-

COROLLARY 2.15. An open subset @ of a complew Fréchet space X with
the GAP is polynomially convex if and only if for every compact subset K
of Q the polynomial convew hull K = KFx o is contained in Q.
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Proof. Let K be an arbltra,ry non-empty compa.ot subset of .
If @ contains K then K = En Q = Kg[X o) But K is compact as a cloged
subset of the compact set conv.K. Therefore @ is polynomially convex.
Here the assumption that X has the GAP is not necessary.

Let now @ be polynomially convex. To prove that Ke @, it is enough
to show that the set K, = (X\Q)nl% iy empty. Suppose that K, is not
empty. Since K, and K, = Kg[x,o] are compact, there are open subsets
¥, and V, such that K, V, Ky < V, and V,nV, =@.

E. Ligocka has proved in [11] that if Z is a compact subset of a comp-
lete locally convex topo] ogical vector space X over C and if Z = /4, then
for every open V o Z there exists an open polynomially convex set ¢ such
that Z <G <= V.

Let G be such a set for Z = K and for V = VUV, If Ux) = 0 for
zeV, and U(x) =1 for zeV,, then UeL[V, C]. By Theorem 2.13,
there is a polynomial Pe#[X, C] such that |U(z)—P(z)| <27 for
s¢ K. This implies the contradictious inequality: 27! < |P(y)| < suz;? [P ()

e,

<27 for yeK,. m

In an analogous way we can obtain
COROLLARY 2.16. If X is a complex Fréchet space with the GAP, then:

(i) for every open polynomially convex subset @ of X the union of an
arbitrary nwmber of connected components of Q is polynomially convew,
(ii) for every connected compact subset K of X the polynomially conver
hll K of K 4s connected, too.
Now we return to the space CV.

THEROREM 2.17. If @ is an open polynomially convew subset of C¥,
then the following properties are equivalent:

i) for every UesA[Q, C) there exists a polynomial sequence conver-
gent to U almost uniformly on @,

(ii) the subset @ consisis of a finite number of commected components.

Proof. Proving Theorem 2.7, we showed that (i) implies (ii).

(ii) =(i). Let @ = D,uD,U...uD,, where D, are open connected
subsets of CV such that D;,nD, =@ for i + k. By (i) of Corollary 2.16,
D, is polynomially convex; therefore Dy, = S;(8,(Dy)) for almost all
p (here S,((2y, 25y ...)) = (zl, we12py 0, 0,...)); moreover, if Feo[Dy, ],
then U is globally finitely determined on Dy (ef. A. Hirschowitz [9]).
Hence, if Ues/[@, C], then U is globally finitely determined on @, i.e.,
there is a positive integer n, such that for every we@ the function U is
constant on QNS (S, (@)
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Let n, be so large that D;, = S ( (Dr)) for & =1,2, ..., n. Then
@ = 8;7)(8,,(9)), and from this 8, (¢) =@ X,,, Wwhere X =g, (CN)

By (i) of Lemma 1.7, 8, (@) 1s polynomladlv convex subset of X,
Since the restrietion U = Uls,z @ 18 ana.lytlc on 8, (@) and dlmX e < oo,
there exists a sequence of polynomials B me P[X C] convergent to U
almost uniformly on Sno(Q).

Setting P, =l3,,,o;8n0 for m =1,2,...,
convergent to U almost uniformly on Q. =

From the theorem of Mazur, it follows that for every separable real
Banach space X, for every real Fréchet space Y and for every Fe €[ X, Y]
there exists a sequence of polynomials convergent to F almost uniformly
on X. The following theorem is a generalization of this fact.

THEOREM 2.18. Bvery separable real Banach space X has the SPAP.

Proof. Without loss of generality we can suppose that X is a closed
subspace of the space ¥<0,1) of all continuous real valued functions
on the interval {0,1}.

‘Let @ be an open subset of X, ¥ a real Fréchet space and let
Fe?[Q, Y]. Obviously, for every xe@ there is 7,> 0 such that the ball
B, = {ye X|: lly—all <r,} is contained in @ (|| || denotes the norm in
%0,1%). Put B, = {ye €0, 1>: |y—al < .}, M = (% B, and dist (z, %)

el .
= o —vyl; #,ye M. Then M is a metric space and @ is a closed subset
of M (@ = Mn X).

By the theorem of Dugundji [7], there exists a continuous mapping F
from M to Y such that ﬁ'(m) = F'(x) for s ¢. On the other hand, M is
an open subset of the space <0, 1. Since ¥ {0, 1) is a Banach space with
a Schauder basis, then, according to Theorem. 2.2, there exists a sequence of
polynomials lAj e /' [¥0, 1), Y] convergent to 7 almost uniformly on M.

Let P, —P |x for n =1,2,... Then P,e #[X, Y] and (P,) con-
verges to F almost uniformly on ¢. m

Note that not every Banach space has the SPAP. An example of such
a space is %,<0, 1>, the space of all real valued functions & = x(t), de-
fined for te (0, 1}, such that for every r > 0 the set {te <0, 1>: x({)| > 7}
is finite; the norm on %<0, 1) is defined by ||| = sgp |z (?)]. A. Pelezyn-

we obtain a sequence

ski [16] has proved that the functional || || is not even the pointwise limit
of any polynomial sequence in the ball B(0, 1).
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A two-sided operational calcnlus
by
RAIMOND A. STRUBLE (Raleigh, N. c.)

Abstract. A two-sided operational caleulus on the real line is constructed using
the algebraic method introduced by Mikusifski. A field of two-sided operators is
obtained which contains a large subspace of distributions, including the Laplace
transformable distributions of Schwartz. The operator field is shown to be isomorphic
with a field of meromorphie functions. The isomorphism is an extension of the classical
(and distributional) Fourier transform, and is expressed by an integral of the classical
form which is defined relative to a type I-convergence notion. A similar expression
for the inverse Fourier transform is obtained, and the two are also expressed by se-
quential limits relative to-a. type Il-convergence notion. The representation of distri- -
butions by these operators is discussed.

1. Introduction. As is well known, Mikusitiski obtained ([7]) certain
generalized functions by considering an algebraic field of fractions for
the convolution ring of continuous functions on the half-line [0, co).
The result is a one-sided operational calculus which possesses all the advan-
tages of rigor supplied by the Laplace transform method and mone of
the limitations imposed by the underlying analysis.

Recently, Boehme and Wygant introduced ([11) a two-sided oper-
ational caleulus on the unit circle which is equivalent to a periodic oper-
ational calculus on the real line R. They constructed from the ring # of
continuous 2x-periodic functions on R, under convolution and addition,
the ring . of fractions f/g, where g has all of its Fourier coefficients nonzero,
The latter are the nondivisors of zero in %. These fractions are called oper-
ators (following Mikusifski’s example), and the ring # of operators is
found. to contain (isomoirphically) the ring 2’ of 2z-periodic distributions,
under convolution. They showed that this ring of operators is isomorphic
with the (convolution) ring of formal trigonometric series (equivalently,
the ring of doubly infinite series of complex numbers under coordinate
addition and multiplication), and that every operator can be expressed
a3 a Fourier series. For the latter, a convergence notion is introduced
into . which is analogous to that given by Mikusitiski, and is called
type I.

In this paper we introduce still ancther example of a two-sided oper-
ational caleulus on R which results in a field My of operators similar
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