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with the usual modification for g = oo, Here m’' = (my, ..., m,_;) and
o® = (P, ..., o). Tt o = ('@, 3), then it follows from Theorem 1
(iil) that the operator S,
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has the desired properties.
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Banach spaces quasi-reflexive of order one
by

ROBERT C. JAMES* (Claremont, Calif.)

Abstract. It is shown that the nonreflexive Banach space J which is isomorphic
to J** is not isomorphic to J*. In fact, J* is not isomorphic to any subspace of J.
‘Without explicitly deseribing the norm, it is shown that there is a Banach space
which is quasi-reflexive of order one and isomorphic to its first dual. It has a bagis
with several properties similar to properties of the bases for J and J*.

It is customary to use J to indicate any Banach space isomorphic
to the space introduced in [5]. Thus J is isomorphic to a space that is

- isometric to its second dual [6] and J is quasi-reflexive of order one (i.e.,

the quotient of J** and the natural image of J in J** has dimension
one). If J is isometric to J**, then the I,-product of J and J* is quasi-
reflexive of order two and irometric to its first dual.

It remains unknown whether J is isomorphic to some subspace of
J*. However, it seems to be a reasonable but difficult-to-prove con-
jecture that ¢, is not finitely representable in J*. In fact, the three-di-
mensional space I&) may not be representable in the predual I of J. Since
¢, is finitely representable in J ([4]), the truth of this conjecture would
imply J is not isomorphie to any subspace of I. It also remains unknown
whether there is a Banach space that is quasi-reflexive of order one and
isometric’ to its dual. The methods of this paper suggest heuristically
that no such space exists. \

1. The space I is not isomorphic to any subspace of J. A particular
norm will be chosen for J and the predual I will be evaluated explicitly.
Any such predual is isomorphic to J*. To prove that I is not isomorphie
to any subspace of J (Theorem 3), it will be shown that I contains sub-
spaces nearly isometric to X (Lemma 2) in such a way that T being
an lisomorphimn of I into J has the impossible consequence (Theorem 3)
that, for any 6 < 1 and any positive integer n, there are members {a", ...

n n —

<, @} of I such that || Y| > 6n and ||XTaf|| < |T|V/6. This is done
1 1

by constructing ¥{"-subspaces in I whose images in J are similar when

* Research sﬁpported in part by NSF Grant MPS71.02840 -A03. \
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regarded only as functions on the positive integers, but as normed spaces
are more like I{”-spaces. .
In this paper, the norm to be used for J is

(1) el = sup {Z [2(Pag_1) _m(-,p%)]z}l/z’
k=1

where the sup is over all positive integers » and all strictly imoreasing

sequences {p,} of positive integers. The space J it the Banach space of

all sequences » = {w(4)} of real numbers such that lim (%) =0 and
4-+00

llell is finite. Let {e,} be the natural basis for J with the norm (1). It
n

%, = >¢;, then
i=1

@ | Satm,

0 [} 0 .
= HZw(i)]el-k[Zw(i)]ez—[—[gw(i)vlea-k H
2 3

. n  Pap—l

= §up {2[ Z w(i)r}llz,

k=1 "pop_1y
where again the sup is over all positive integers » and all strictly inereasing
sequences {p} of positive integers. The natural basis {e,} for the norm (1)
is shrinking ([5]) and the natural basis {u,} for the norm (2) is boundedly
complete ([10], Corollary 6.1, p. 286).

The space J has a unigue predual in the sense that, if X iy a Banach
space for which X* is isomorphic to . , then X iy isomorphic to J* (r21,
Theorem 3.6, p. 908).

In order to define I for which I* it isometric to J, the following
special conventions will be used. A bump is a sequence of real numbers
@ = {w(3)} for which there is a bounded interval and a number a such
that #(¢) = a if 4 is in this interval and %(t) = 0 otherwise. The altitude
of the bump is a and its sign is the sign of a. Two bumps are disjoint if the
intersection of their associated intervaly iy empty, they are strongly disjoins
if these intervals are separated by at least one integer, and the firsg
bump contains the second if its interval contains the other infervalg

DrrInmrroN. The space I is the completion of the
space of sequences with finite support for which

n n
ol =it { Y a1 0 = 3o,
F=1 Jor1,
where [ ] is the function defined by f[u] = (2@5}”" if @iy the sum of
strongly disjoint bumps whose altitudes are {og}
It is known that the predual of J is isomorphic to the space obtained
by replacing strongly disjoint by disjoint in the Preceding definition (let

normed. linear

(3)
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X on page 279 of [7] be one-dimengional and @; = ¢ for all 4). This predual
will be used in Lemma 6. However, the use of strongly disjoint bumps
makes the following lemma, true, which simplifies computations leading
to the proof of Theorem 3.

LeMma 1. If o belongs to I and is the sum of finitely many strongly
disjoint bumps, then [z] = les]]. -

Proof. Let us observe first that if # and y are sums of strongly
disjoint bumps whose 'supports are the same sequence of intervals and
the respective altitudes are {a;} and {p;}, then

(4) le+91 < [+ [,

since this is equivalent to [ (a;+ AN DY @]+ 3 b Now let
be the sum of finitely many strongly disjoint bumps, so all the bumps
have supports in some bounded interval [0, N]. When estimating |||
by use of (3), we can restrict each s to have support in [0, ¥]. There
are only a finite number of sets of intervals in [0, N] such that any two
intervals are separated by at least one integer. For each such set, it follows
from (4) that in (3) there need be at mosk one z" whose bumps have the

n
intervals in this set as supports. Therefore, there exist {+*} with @ = D
and k=1
(5) el = > 12

k=1

Let I, and I, be the supports of the first two bumps in @, let s be the
last point in I;, and let ¢ be the first point in T,. Redefine each & so o* hag
the value 2%(s) on I, and is zero to the left of I,. This does not change
n .
Jak. Also, the sum in (b) is not increased, since there is no % for which
F=1 .
[#"] is increased. Therefore, the sum in (5) is not changed.

Let us now consider bumps of type B, for which the support of the
bump contains the closed interval [s, t]; bumps of type 8, for which the
support of the bump contains ¢ and not ¢ ; and bumps of type 8%, for which
the support of the bumyp contains s 41 and not s. We need the following
facts (1)—(iii).

(1) It 7 5 j and & is a bump in of and &, is a bump in 2, where the
absolute altitude of £, is 0 times the absolute altitude of & and 0 < § < 1,
then o’ can De replaced in (5) by the two vectors 62° and (1—6)#* so
that the new system will have bumps 6¢, and £, that have equal absolute
altitudes and have the same signs, respectively, as &, and &,.

(ii) AL bumps of type B or 8 have the same signs. Otherwise, it follows
from (i) that there is no losg of generality if we assume there are bumps
& and &, of opposite signs and equal absolute altitudes, both of which

4 — Studia Mathematica 60.2
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contain s. If & is the shorter bump, then £, can be discarded and &; replaced
by & &. This is impossible, since it would reduce the sum in (5).

(iii) There is no loss of generality if we assume all bumps of type B
or 8* have the same signs. Suppose & and &, are bumps of opposite signs,
& is a B-bump belonging to o’, and £, is an §-bump belonging to .
Again, we invoke (i) and assume & and £, have the same absolutie alti-
tudes. Then &, is the first bump in &7 and & and &, do not have the same
right ends, since if they did we could discard &, in #’ and replace & in
o' by & -+ &, which would reduce [#7] and not change [2]. Therefore
£+ & consists of two bumps, neither of which is of type B or §%. We
can replace & in &' by the first or the second of these bumps, according
as &, extends farther to the right than &, or §£; extends farther to the
right than ,, and then replace &, in &’ by the other bump. This changes
neither o] nor [#], but together with the possible use of (i) it results
in a net decrease of at least one in the suin of the number of B-bumps
and the number of S*-bumps. Successive application of this process leads
t0 a represenfation of # in (5) for which all remaining B-bumps and S
bumps have the same signs.

Since #(s+1) = 0 and all bumps that are nonzero at s--1 ave of
type B, 8 or §, it follows from (ii) and (iii) that there are no bumps of
type B. Since no bumps have both s and ¢ in their support, we shorten
all bumps with s in their support to end at s, shorten all bumps with
t to begin at ¢, and discard all bumps with support in (s, ). This does

n
not change Y «* and cannot decrease the sum in (B), so no bumps
k=1

had support in (s, ). n
The preceding process can be continued inductively to replace Y.a*
m k=1

by Z:E" that satisfies (5) and for which the supports of all bumps are

k=1
so supports of bumps in @. It follows from (4) that [»] = |#|.

TeEOREM 1. The dual of I is J and the natural basis of I is shrinking.
Proof. Let {¢} be the natural basis for I and {u;} be the correspond-

ing coefficient functionals. For a continuous linear functional f on I,

let (¢;, ) = f(j) for each j and [|f|l; be the norm of 3 f(4)u, as given by (2):

1

Suppose & = {x (i)} is the sum of » strongly disjoint bumps and let a, and
[Par—1s Par—1] be the altitude and the support of the kth bump. Then
Lemma 1 gives [l#| = (3 a;)'* and we have

n Pap—l
@, )l =| X t@a@]|< Y| X 16)|ia
' n Papt k=1 i’ik—l

<{ X[ X sl ) aa]” < ifis oo

k=1 2951 Te=1
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Since the unit ball is the closed convex span of such #’s, we have ||f|]

< |flly. For any &> 0, there is a strictly increasing sequence {p,} such
that :

n  Pop—1

Il < { 3 3 s +e.

k=1 "my_1
Dop—1
Let # have the value > f(i) on the interval [Por—1s Pore—1]- Then
Pop—1
) n Pap—1
@, 0= D[ X O] = (Fls—e) ).
k=1 pgp—1
Thus [Ifl 2 (Iflly —e) for all e > 0 and Ifl = Iflly, so I* is isometric to J.
Also, the coefficient functionals of the natural basis for I can be ident-
itied with the basis {u,} for J used in (2) and therefore the natural basis
for I is shrinking ([3], Lemma 1, p. 90).

It is known that a basis {e,} for a Banach space B is shrinking it
and only if the sequence of coefficient functionals {4} is a boundedly
complete basis for B* ([10], Corollary 6.1, p. 286). The space I has a
shrinking basis whose sequence of coefficient functionals {u,} is a bound-
edly complete basis for J, the basis used in (2). Also, {u,,u, —Ug, Uy —Uy,...}
"5 the natural shrinking basis for J with the norm (1). The next theorem
shows this behavior implies quasi-reflexivity of order one.

THEOREM 2. Suppose o Banach space B has a basis {e,} with coef-
o0
Jicient functionals {u,}. If ' e; is not norm-convergent and {thyy Ug — Ty, Uy —
1 B
—Uy,y ...} 98 @ Shrinking basis for B* with coefficient functionals {F}, then
n
(a) enF, —F, . defines an isometry of B onto the closure of {2 a,F;:
n 1
nz1 and Y a; = 0},
1

(b) B is quasi-reflexive of order ome.

Prooi. To show ¢,>F, —F, ., is the natural embedding of B into
B™, it is sufficient to show that (F,—F,,,, %) is identical to (tzey €4)
= 0. We have (¥, —Fp1;y ) = (Fpy ) — (Fy, 11, w), which is equal to
[(F'm U _'”'k—-l) -+ (-Fvw Up—y _ulc~2) + . + (Fn; “2"‘%1) + (Fny ul)] -
(B g — Wiy} + (Frpps Uy —Ugeg) + o+ (Fpgrs thg — Uy} + (Fyy, u1) 1,
50 (B, —F, 1, %) equals 1—0 =1 if ¥ =mn, equals 1 —1 =0 if n <k,
and equals 0 —0 = 0 if # > k. This completes the proof of (a). The iso-
metry in (a) is the natural embedding of B onto B = B**. Since {t, %, —
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—Uy, Uy —Ug, ...} i3 shrinking, the span of F, and Bis B*, and B has
the basis {F,—F,4}. If FyeB, then Iy = 21; ay(F;—Fy,,) and

n . oo
(0~ Fy+ D (4~ 0,0) Fy = @, Fopy — D ay(Ty—Fip)
2 -+l
for all n. This implies each a; is 1, Iy = 3 (F;—Fy,), and the contra-
1
b K 7 . .
diction that ) e; is convergent. Thus F,¢B and B is quasi-reflexive of
order one. *
LeMyMA 2. For the space I, any 6 <1, and any positive inleger n,
there are integers {r: 1<k << n} with v /ry, even and the property that

an Jag| = ” ‘i'aka;"” > 05: lagl  for all {az}

if §¥|| = 1 for each &, each o is the sum of 8,8, ... 8, strongly disjoint bumps
of alternating signs and equal absolute altitudes, each sy is even and s, = v [, ,
and each bump of o contains s,y of the bumps of &

[The first step in the proof of this lemma is to show that, for the
isometry of I info J* given by Theorem 2, a norm-one sum @ of 2¢ strongly
disjoint bumps of alternating signs corresponds to a member F of J*
for which (y, F) =1, where y in J is a sum of 7 disjoint “humps?”. It
then is noted that if each y* for 1 <k < n is of the same type as ¥, with
the 7,; “humps® in y*** spaced uniformly throughout the intervals on
which the slope of y* is nonzero, and if each ry,/r, is sufficiently large,
then the linear span of {y*} is nearly isometric to I%. The last step is to
show that if each y” is related to F* as y was related to F, then lin {#%}
is nearly isometric to I{”, which implies that the linear span of the #™s
that correspond to the F¥g is nearly isometric to i{.]

Proof. Lef r be a positive integer and u a positive humber for which
71 (2r)7Y iy a positive integer. Then let {pst 1<i< 47} e a strictly
increasing sequence of positive integers such that, if 1 <k <,

Datms Pty = Pz — Py = " ()7,

Define the function ¥ = {y(é)} on the positive integers by letting y be
linear on all intervals [p;, p;,] With 1< 4 < dr; y(3) =0 it i Py, if
02 Py OF i 4 s 4k —3 or 4k with L <k <r; and

YAk —2) = y(4k—1) = (21~ 1Lk,

Then with the norm given by (1), we have [y = 1. Also, y is the sum
of 7 disjoint “humps® in the sense that, on the interval [P4, p2], ¥ increases

icm
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linearly with slope p from 0 to (2r)™2; y is constant on the interval
[p2; Ps]; on the interval [ps, p,], y decreases linearly with slope —gu
t0 0; ¥ is zero on the interval [p,, ps]; ete.

Let {F(i)} be the coefficient functionals for the natural shrinking
basis for J. For y as deseribed in the preceding paragraph, let a corre-
sponding linear functional # be defined by

F =207 3 ([ —F(Pars) +F (Pas)]+ [F (Dups) —F (01}
k=1
Then

(Y, ) = (2r)7 3 {[ —0+(2r) 2]+ [(2r) 2~ 0]} =1..
Also, =
r  Par—2—Pap-3

= (27.)—1122{ 2

[=F (Parms+1—1) + P (pyes 1)1} +
k=1 i=1

r  Pap—Pag-1

+enTe 3y Y

k=1 i=1

[B(pagms+1—1) —F (Pgy +1)1}.

Thus it follows from Theorem 2 that the image # of F in the predual I
of J consists of 7 pairs of strongly disjoint bumps, the kth pair being
a bump of altitude — (2r)~"* on the interval [Py;_s, Pu_.—1] and a bump
of altitude (2r)~/2 on the interval [Pag—1s P —1]. From Lemma 1, we
have |#[| = 1. Therefore |F| = 1.

It follows by the gruesome arguments in [4] that if each #* for
1< k< nis of the same type as y in the preceding paragraphs, but with
7 = 13;1if each 74, /7, is a sufficiently large even integer; and if the “humps”
in 4*+ are spaced uniformly throughout the intervals on which the slope
of y* is nonzero, then lin {§*: 1< %< n} is nearly isometric to . Thus
if a set of linear functionals {F*} is such that |[F¥| =1 and (4%, F*) is
nearly 6 for all 4 and %, then {F*} has the property that lin {#*} is nearly
isometric to ¥™. If F* corresponds to ¥* as F corresponded to y in the
preceding paragraphs, then (y% F) = 0 if > j. If each P /T I8 suf-
ficiently large, then (y*, F7) is nearly zero for all i < j. Thus for any 6 < 1
we could have chosen {y*} and {F*} so that

“ 2 0> 03 ) torZall (0.
i

Each F* is the image of an element #* in I that has 27, bumps of alter-
nating signs. Moreover, for each bump & in &%, 7, /rz of the bumpsin
@ have support in the support of & Since the norm of I is repetition-
invariant in the sense that

M@ = Iz @), ..., (b —1), 2(k), 2(k), ¢ (k+1), @(k+2), ...}
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for all # and all k, Lemma 2 needs no restriction about uniformity of
lengths of bumps or uniformity of distances between bumps —only the
restriction that, for each bump & in %, 1y, /r, of the bumps in &% have
support in the support of £. ’

TurorEM 3. The space I is mot isomorphic to any subspace of J.

Proof. Let T be an isomorphism of I into J. We first establish
facts (A) and (B):

(A). For any &> 0 and %> 0, there exists an integer x such. that,
for each integer 2> x, there is an arbitrarily large &(A) such that the
bump & with altitude 1 on the interval [k, k(2)] has the property
that TE? can be made constant on [x, A] without changing its J-norm
by as much as e

To see that (A) is frue, first choose an increasing sequen’ce of in-
tegers {p,} so that, if £7is the bump with altitude 1 on the interval %, 2],
then ‘

lim (T'6"%)(4) = al(i)

J=oo
exists for each 4. Then there is a » such that, for any A > », the J-norm
of the sequence {a(¢)—a*(4)} is less than }e if {a*(i)} is obtained from
{a(i)} by replacing «(%) by a(x) for all 4 in the interval [, 1], since other-
wise there would be an infinite sequence of disjoint intervals [w, 4;]
and for each interval a sum of type

my
{ Dl — e}, w<pi< .o <phmg< A,
J=1
with these sums bounded away from zero. This contradicts boundedness
?f ’sh_e J-norms of T¢™. Tt follows now that for this » and any 4 > x, there
is & j(A) such that (T&"™)(i) approximates a(i) for ie[x, 4] well enough
that T&”% can be made constant on [x, 4] without changing its norm
by as mueh as & Let k(1) = pyy.
) (B). For any positive ¢ and x, there exists %(e, ») such that, if £
Is any bump of altitude 1 with &(4) =0 for i< k(e, »), then |(1&)(5)|
is small enough for ¢ < » that deleting the initial segment of T'¢ on [1, %]
does not change [T¢|; by more than .
To establish (B), it is sufficient to show that
lm sup {(T&H(5): <s<t} =0 tor cach 4,
F—00

where £ is a bump of altitude 1 on the interval [$, 7). Tf there were an 4
for which this limit is not zero, there would exist a positive 8 such that,
for any n, there is a sum & of n strongly disjoint bumps of absolute alti-
tudes 1 for which (Z%)()> nd, so that ||Tw|y>né. This contradicts
l#ll; = Vn; which follows from Lemma 1. ,

icm

Banach spaces quasi-reflexive 165

The proof of Theorem 3 will be completed by showing that if there
is an isomorphism T of I into o, then for any positive integer % and any
0 < 1, there is a set {#': 1< j<<n} of members of I such that

13-

which implies |T|| |77 > 6*Vn for all n. This will be done explicitly
only for n == 3, since this case clearly is typical.

Choose 7y, Ty, 75 a8 described in Lemma 2. For an arbitrary positive
g, let s; = r; and choose 8, > r,[r, and s; > r3/r, to be even integers such
that

(6) - osup {ly (9} < &fsq,

> 0n and ”Z"ij”‘,’<%-ufl’uﬁ,

sup {[2(6)]} < efs5s,

if y is the image of an element in I with norm not greater than (s;s,) ™2+
+(81885) "2 and 2 is the image of an element in I with norm not greater
than (s;8,8) "2 Now o', 2?, and #* will be constructed to satisfy Lemma 2
for m = 3. Choose 4 > 0 so that )

3(s]+slsz+slszsa) A< e,

With repeated applications of (A) and (B), choose the left end of the
first bump in ', then the left end of the first bump in #*, then the first
8, bumps in 2% then the right end of the first bump in #?, then fhe left
end of the second bump in &% then the second set of s; bumps in #*, ete.
The right end of the first bump in o' is chosen after the first s, bumps
in #* and the first s,8, bumps in 2° have been completed. This is continued
until all the s, bumps in 2%, 5,5, bumps in 2? and s;8,5; bumps in »* have
been completed.

This construction of ', 4* and &* can be done so that:

For j = 2 or j = 3, there are s;_, intervals on each of which Toi—?
can be made constant without changing T2 ; by more than 4. Moreover,
the image of each bump in 2’ can be truncated on the left and right with-
out changing the J-norm of this image by more than 24. This can all
be done so the supports of the modified images of bumps from #’ lie in
disjoint intervals and the set of these intervals can be partitioned into
8;_; disjoint sets of s; intervals each, all the intervals in the same set
lying in' an interval on which Ta'~! has been made constant. Then

7o' +Ta* 4Ty

is not changed by more than 3(sy+8;8,+8:8,8) 4 < ¢ if all these trunc-
ations are made and appropriate sections of images of bumps are replaced
by constant functions.
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Now consider a sum (7) of the type used in (1) for estimating the

3
square of the J-norm for w, where w is ' 7%’ modified as described above:
F=1

(7) D [ (Dages) — 0 (p2r) -

k=1
There are at most 2s, terms in (7) with the property that one of p,,_, or
P, 8 in one of the s, intervals on which the modified images of bumps
in @' are constant, but the other is not in the same such interval. If Py 8
not in an interval on which the modified image of a bump in &' is con-
stant, then w(p;) = Ta'(p;). Otherwise, w(p,) differs from the value at
p; of the modified T#' by not more than the sum of the sup norm of the
image of a bump in #* and the sup norm of a bump in #°. Becauxe of (6),
this difference is O(¢)/s;, so replacing this value of w in (7) by the cor-
responding value of the modified 7' makes a change O(s)/s, in (7).
Thus the sum of the terms in (7) with at most one of py,_, or Par in the
same “comstant section” of the image of a bump in &' differs by O(e)
from a sum of type (7) for estimating the squared J-norm of the modi-

fied Fa'. After deleting these terms, the remaining terms in (7) have

the property that both p,,_; and p,;, are in the same “constant section”
of the image of & bump in 4%, so their sum is a sum of type (1) for esti-
mating the squared J-norm of the modification of Ta®J-T4.

This and another application of the preceding procedure uging the
“constant sections” of Ta? and the sesond inequality in (6) enable us to

. 3
see that the squarved J-norm of the modification of 2 Ta is not larger
3 X 1 .
than (T2 ) oautieal® -+ O (¢). Since & was arbitrary, it could have been
1 .

chosen small enough that

|30 <33 e < s
1 1

2. A Banach space that is quasi-reflexive of order one and isomorphic
to its dual. For computational reasons, it will be useful to introduce the
concept of double basis and several related concepts, some of which are
extensions of familiar properties of bases. It should he noted that rep-
etition-invariance is somewhat dual to the equal-signs-additive prop-
erty studied by Brunel and Sucheston [17]. .

A double basis for a Banach space ¥ is a subset {tn: —o0 < m < 00}

00

such that each # in X has a unique representation as @ — D x(i)e; in the
sense that oo

”m—ﬁw(i)ei

lim
M, N-+00

| =o0.
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A bimonotone (double) basis is a (double) basis {e,} such that

“;‘m(i)ei = Hé:m(@')ei“ if

A shrinking double basis is a double basis {e,} such that each of the
basic sequences {e,: %< 0} and {e,: > 0} is shrinking. -
A neighborly (double) basis is a (double) basis {e,} such that 13 w(i)el)
-0

is not increased if some w(k) is replaced by either #(k—1) or o (k-+1).
A neighborly basis is of type P ([9], p. 354), but not conversely. Clearly,.
neighborliness implies monotonicity. Also, neighborliness implies what.
we shall call repetition-invariance, namely, for all 7,

=3
A
=
N

~
A

©

(8)] I Z”w(@')eiH || Setiretate,t Yofi) e I
-0 —00 r+1

and also implies translation-invariance for double bases (but not for
ordinary bases), namely,

©) ]1_§w<¢)e.~| = |1_§m(i—1>ef|[,

o .
since it is possible to transform > #(i)e; into the vector of the second
—00

member of (8) or (9) and back again by successive replacements of com-
ponents, each being replaced by ome of the two neighboring com-
Ponents —except that this is not possible for (9) with a basis {e,: n > 1}
unless z(1) = 0.

If {e,} is a double basis or a basis, inversion-invariance means that,
whenever & has finite support, there is an n such that | 2 (i) e,||=|| S (n—
—i)¢;|| and, when {e,} is a basis (and not a double basis), @ (i) = 0 if i > n.

With respect to a (double) basis {¢,}, a finite set {o*: 1<k < s}
being disjoint means each 2" is a linear combination of a finite set of con-
secutive members of {e,} and these sets are pairwise disjoint; if each
pair of sets is separated by at least one member of {e,}, then {*} is strongly
disjoint.

After proving a sequence of lemmas, we will obtain a norm for the
space of functions with finite support on the set of all integers. This norm
is constructed as the limit of a sequence of norms, the first norm being
similar to the norm of I and the second norm similar to the norm of J.
Inequality (10) will be preserved in the limit, so the natural basis will
be shrinking. Finally, the desired space will be the subspace consisting
of functions with support on the positive integers.


GUEST


168 R. C. James

LemMA 3. Let {e,} be o bimonotone double basis for a Banach space

X. Let M be a number such that,
i) if {e%} is strongly disjoint with respect to {e,}, tlbe'n

(10) | ek < [ 3 ]
1 1

* v
({) if & = 3 2(i)e;, {py} s a strictly increasing sequence of integers,
o0

and {{*} is a sequence such that {*(4) = 0 if © < Doy OF 5> Doy annd £°(4)
= 2(8) ~2(Pa—1) U Dor1 << Dy, them

) L3 ] < .
1

If {u,} are the coefficient functionals for {en} and {u, —w,_;} 18 repetition-
invariant, then {u,—u,_,} also satisfies (10) and (11).

Proof. Note that if f = 3 f(4)(u;—u;_;) with only finitely many

o
nonzero terms, and if # = 3 @(i)e;, then

—00

12) (z,f) = Z[f %+1]m@)—2f )[w(i) — (i —1)].

Suppose {f*: 1< k< s} is strongly disjoint with respect to {u, —uy,_;}
8

and let f = Y f% Then there is a strictly inereasing sequence {p,} o’ in-
. 1

tegers such that
Dok K
fr= D Fiw—u) # 1<k<s,
Por—1
and f(4) = 0 if ¢ < Py, 4> Pygy OF Ppp < 0 < Pojyy and 1K k< 8.

Since {e,} is bimonotone, it follows from (12) that there is an @ such
that (@, f) = [f]l |l and #(:) =0 if ¢ < p, or i> p,,. Now we use the
last member of (12) to see that, if £(i) = 0" when i < Py_y OF ¢ > Pyis
and £°(4) = o(i) — 0 (py_;) Wwhen Doy S 4 K Pyre; then

8 Dok 8
@)= 3 M) o) —oi-1)] = 2 (&7,
=1 py 141 =1
Therefore,

| 3=

< S _  SIE NP G
ol DI '{M[Z ”fl”,z.]
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Now sui)pose f = 2 f(@)(us—w;_,) and {p,} is a strictly increasing sequence

of integers. Since {u, —u,_;} is repetition-invariant, we can assume with-
out loss of generality that f(py,_1) = f(Pap +1HEI < E<s. Forl <k <s,
let ¢* satisfy ¢*(4) = 0 if < Py oOr ¢> py, and

@*(3) = f(3) —f[(Pag-1) I Doy << Doy

Since {e,} is bimonotone and ¢*(Pyy_;) = ¢*(Par_1+1) = 0, it follows
from (12) that there is an #* for each % such that

Dok
(% ¢") = ' ¢ () [2" () —a* (i —1)] = |¢¥] ]
Pok—1+2
and Jo¥|| = |lp*|, where (i) =0 if i< Py, Or > py. Then {#*} is

strongly disjoint and, since f(z*) = (2%, ¢*) for each %,

' S S 2 gl

17l = szk” = Hli’mk” M[ank” & = [Z "1l ]1/2

Levwa 4. Let {e,} be a neighborly double basis for a Banachk space B.
If {w,} are the coefficient functionals, then {1, —wu,_,} is & neighborly double
basis for its closed linear sp(m

Proof. Supp%e f= Zf

zero terms. Define ¢ by lettmg g( =f(4) if ¢ % r+1 and g(r+1) = f(r).
Because of (12) and {e,} being bimonotone, there is an # such that

—u;_1); with only finitely many non-

3 (i) — gli+D)]a ()
(13) ol =2

Since g(r) —g(r+1) == 0 and {e¢,} is neighborly, we can assume #(r)
= g(r-+1). Then

LFO) —F(r +1)]a(r) + [F(r-H1) — Fr+2) (1)
= [F(r) —f(r+2)Jo(r+1) = [g(r+1) —g(r+2)la(r+1),

80 the numerator in (13) is not changed if ¢ is replaced by f. Therefore,
= lgll- A similar argument can be used if g(r-—1) = f(#). Now that
{thy, — 1} is known to be neighborly, it follows that it also is bimonotone
and therefore basic.

LeMMA 5. Let X be the linear space of functions defined on the set
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of all integers and having finite support. Let M be a positive number and
Il Il b @ norm for X such that, if || ||, ¢s defined by

(14) ol = | fw(m’)(u,—uful)!l i {o(i}eX,

where {u,} is the set of coefficient functionals for the double basis {e,} and
Il s the dual norm of | |, then

(@) for | |li, the natural double basis {e,} for X s inversion-invariant,
neighborly, and satisfies (10) and (11) if M = H;

(b) for 1l llay {up—u,_1} 48 an inversion-invariant neighborly double
basis and satisfies (10) and (11) if M = M,

() l2lle < llolly if weX.

If Nellly = (3 (Il + l2l3) I for all @ in X, and ||| |||y s defined
relative to ||| |||, as | ||, was defined relative to || ||1Lthm Ny and |]] ]]]a
satisfy (a), (b), (c), satisfy (10) and (11) if M = M, and also satisfy

(d) lalla < Mll2llls < Hiolily < llly 3f weX.

Proof. With ||| |||, defined as stated, it follows that the natural
basis for X is inversion-invariant and neighborly, since Iy and | |,
have these properties and neighborliness implies translation-invariance.
If the finite set {2} is strongly disjoint, then :

<[ S+ 3w =] S ineng],

s0 (10) is satistied; (11) follows similarly. We have established (a).
Now define ||| ||i, by letting

(14’ e = || _ff(i)(u,-——u,-_l)ﬂl it f={f}eX,

where [|| ||| is the dual norm of || j||;. It follows from inversion-invariance
?Jm_i tra,n{slation-invariance of {e,} with respect to ||| |||, that {1y, — 1y}
is Inversion-invariant with respect to ||| IlI; it follows from TLemma 4
that {, —u,_,} is neighborly with respect to [|| [||; and it follows from
?Lemma 3 that {u,—w, } satisties (10) and (11) with vespect to ||| |||
it _M = M. Therefore, with respect to M Hay {€,} is inversion-invariant,
neighborly, and satisfies (10) and (11) if M = A,
To prove (c), we first note that, for positive ¢ and b,

(15) (@ + )1 > $(a+b) = [3(1/a-+1/b)]"
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With f= gf(i)ei in X and ¢ = Zm'f('fl)(u,-—u,:_l), it follows from the
definition of [|| |, and (15) that “
Hf e = sup {(=, )/lllzlll} = sup {(=, @) /[F Il + 2 ]2) ]2}
< sup {3{(, ¢)/leli+(@, ¢)/I])} -
It follows from (14) that (z, ) < |fl /], for all 2. Since

(@, 9) = 3 [F@) —fG+D]a() = 3 [w(5) —a(i—1)1F6),

it follows from translation-invariance of || |, and replacing & by —a
that (#, ¢) < llwlallfl, for all . Thus

£ e < FF e+ 1F 1) < B+ IFIBT? = 117 s
the second inequality following from (15).

To prove (d), note first that || [l < |/ |}, < Il i followsfrom || b <l s
and the definition of ||| |||,, and that we have just proved ||| [[la < l] -
Finally, note that || |, < ||| |||, follows from |]| |]l; < || |l; and the validity
of (14) for | l, and (14) for {|| |l

LevmA 6. Let X be the linear space‘ of functions defined on the set of
all integers amd having finite support. Let || |, and || ||, be defined analogously
to (3) and (1), respectively, with

n n
(16) Il = 2"int{ 304 @ = Y o,
k=1 f=1
where [#] = (3 02)'? if © is the sum of disjoint (not necessarily strongly
disjoint) bumps whose altitudes are {a,}, and

(17) ol = 272 sup { 3 [0(paa) —2 (22 T
k=1

where the sup is over all positive integers n and all increasing (but not necess-
arily strictly increasing) sequences {p;} of positive integers. Then for both
| l; and || lg, the natural basis {e,} for X is inversion-invariant and neigh-
borly. Also, these norms satisfy (14), they satisfy |»ll, < |2lly if weX, || |2
satisfies (10) and (11) with M = 22, and || ||, satisfies (10) and (11) with
M = 2(1+2"). '

Proot. It is easy to see that the matural basis for X, given || [,
is inversion-invariant and neighborly; this also is true for | [, since
it ig true for [ ]. But this would not have been true if the bumps in (16)
were required to be strongly disjoint, or if the sequence {p,} in (17) were
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required to be strictly increasing. Just as for the proof of Theorem 1,
it can be shown that the dual of X given the norm | ||, is isometrie to X

with the norm
no Doy
Ko =272sup{ D[ 3 wti)]",

k=1 Dog—1

where the sup is over all positive integers n and all strictly increasing
sequences {p;} of positive integers. Then the norm of the linear functional

= Da(i)

with X given the norm | [, is equal to

PICIGIET —w(i+1)]u,

2~ gup {Z[m Do) — 2 (Dop+1)] }1/2 = [[{@ (0},

Therefore (14) is satisfied. Since (@ —b)* < 2 (a*+b%) for numbers ¢ and b,
it follows from (17) that if » is the sum of disjoint bumps of altitudes

{t,}, then .
3 S = (S

(18)
Since the unit ball for || ||, is the closed convex span of such s which
also satisfy 2Y%(3 al)'* =1, we have |loll, < |l for all # in X.

Now we only need an M for which (10) and (11) are satisfied for
both | i, and || {l,. First, we shall consider || {,. Suppose {&*: 1< & = s}
iy strongly disjoint. For each interval [py,_,, Dy used in (17) that

8
contains a ¢ at which 2 = 3 2* is 0, we replace [2(Dy_,) —2(P)T by
1

2[2(Pyp—1) —2(0) T +2[#(g) —2(Pap) * and obtain

e, < 21 (Zs Mlzkng)uz = 9lf2 (287 ]Izklli)l/z,
T ‘ ! ‘

Now suppose z = {2(4)}, {g;} it a stiictly increasing
integers, and for 1<k <s each {* is defined by

sequence of

0 i
(1) —#(gop—) it

, G Qapeg OF 4>
th(s) = ‘ g kﬂ 1 Qons
Qor—1 %= 55 Qo
s ]
Since ¢ ( ) =01if i G-y OF 7> Gatr there are integers {rf} such that
Ppa<T<TES .. < 7'2m, -1 oy < Vzm,c and
Wl]c

IEHE = 3 1ek(rk ) ~

J=1

(lg) l-k(,',,;cf)]z.

icm
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Then the sum of the first m —1 terms in the right member of (19) is not
less than the last fterm, since otherwise the first m;,—1 terms could be
replaced by [Z*(gy—.) —* (75, 1) T to increase the right member of (19).
Therefore

mp~1 mp—1
< DT () — Bl = > el — azj)] :
=1 =1
s mp—1
Since [l2[; is at least as large as 3 3 3[2(+%;_1) —2(+E)]%, we have

=

-

Izl = 9 [Zs’“:k”g]llz ]
1

Thus (10) and (11) are satistied for | |, with M = 22
Now let # have the norm || f,. We know that {e,} is a neighborly

" double basis for X; if {u,} are the coefficient functionals, then {u, —w, .}

is a meighborly double basis for its closed linear span and

| NI (=) | = T @}

Let {F,} be the coefficient functionals for {w, —,_,}, considered as a basis

for its closed linear span. Then it follows from Lemma 4 that {F, —F, .}

is neighborly. Since || ||, satisfies (10) and (11) for M = 242 it follows

from Lemma 3 that this also is true for || || defined by letting [[{w ()}l
Ll

be the norm of the linear functional 3 @(
on lin {#, —#,.,}. Also, g

| j w(0) (B —TFs)

1) (F; —F;,1) a5 a linear functiona

(3 705) (4= t0-0), 3 @) (Fy—Fyy))
= sup | —=— il : {f(i)}eX
I __go FO) (g — i) |
3 @) [f i) —fli+1)]
= §up i f= 2]’ — Uy ]
(51 »(i ei,f)
= sup —?Elw— : felin {#4, — U, 1},
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while

(X w(i)es, 9) .
{21) {2 (4)}l; = sup - Tl cge X7t

Therefore || 32(i) (7 —Fepn) | < ot IE g = Dg(6);, then for any

< r—1 it is possible tio write ¢ as
8
g =ty tf, = a(Up—up)+ D) Gi(th— )]
-2

s ' .
where @ = >g(i). Note that [ty — %)l = llen4alla, and it follows from (17)
r

that epyills = 1. Also, [, = 27, sihce {e,} is bimonotone and it follows
from (16) that |le,]; = 2" Since {w,—u,_,} is bimonotone, we have

llgh = 171l — llanell = f 1 =27 (11 — %)l = (L —=272) [ f].

Therefore, it follows from (20) and (21) with g = au,--f, where n i
chosen so (2, ai,) =0, that we finally have

(127 fa( < | S0 B—Fern) | < Ho O

Since {F}—F,, } satisties (10) and (11) with M = 2"% this implies | [
satisfies (10) and (11) with M = 2(14-2'%),

LemwmA 7. Let X be the linear space of functions defined on the set of
all integers amd having finite support. There is a norm || || for X such that
{e,y 18 inversion-invariant, neighborly, and satisfies (10) and (11) with
M = 2(1+2"). Also, if each of || |, and || | is taken to be | ||, then (14)
is satisfied.

Proof. From Lemma 6, we have two norms that satisfy (14); satisty
(a), (b), (¢) of Lemma 5; and satisfy (10) and (11) with M = 2(14-2"%).
Then successive determinations of new pairs of norms (| J{, || ) by
use of Lemma B gives two pointwise-convergent sequences, {| [V} and
{ll 1§}. These sequences converge to the same limit Il 1, since

IO = LHO I 5 I, | < I s g e s ) (e

To show || || is the desired norm, the only serious question seems to
be whether, if each of || ||, and || ||y is taken to be || ly then (1L4) is satislied.

If w = } ®(i)e; belongs to X, let u|* be the norm of the linear

functional > #(4)(w;—u,_,), when X is given the norm I Since | |

—0o

icm
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< | I§” for all m, it follows from (14) being satistied for each pair (]| ™,
Il I§) that || [*= || & for each . Therefore, || [*> || . Let us show
00

that || |[*< || |l As noted in the proof of Lemma 5, if f = 3 f(4)e; belongs
to X and ¢ = 3 f(i)(u;—u,.1), then (o, ¢) < ol |£1{”. Since |z> o}
for each n, this implies (2, ¢) < llz| [ for each = and each # in .X.

Therefore {f|* < {If|™ for each n.

THEOREM 4. There is a Banach space B that is quasi-reflexive of
order one and isomorphic to B*. The space B is the completion of a normed
linear space of functions on the positive integers with Sfinite support and
has the properties:

(i) the natural basis {e,} is inversion-invariant, tramslation-invariant,
and neighborly, with 1< lle,| <V3/2;

(i) [Sa]'" < llwll < 2] 3 a2 if @ is & sum of strongly disjoint bumps
with altitudes {a,};

(i) +f {@*} is strongly disjoint, then

a4 S} < | S <00 S 1]

(iv) Bis isomorphicto a Banach space that is isomeiric to its second dual.

Proof. Let || | be the norm given by Lemma 7 for the space X,
with {u,} the coefficient functionals for the natural basis {€,}. As noted
in the proof of Lemma 6, [e,|l; = 2" and |||, = 1. Therefore,

L < lleall = It =%zl < [3(lenlh)? + 3 (llealla)*] = V32

Since fle,l > 1, we have [lu,|| < 1. Since {u,: —oo < n < oo} is inversion-
invariant and {u, —u,_;: —oo < m < oo} is bimonotone,
(22)  dist (wy, lin{u, —wup_y: 0 # 1}) = dist (e, lin {4, —w,_;: n % 1})
> } st (uy— g, lin {u, —u, : n %1}
2wy —wl = 3.
Let B be the completion of lin {¢,: %> 1}. Since {6,: —oo < n < oo}
is inversion-invariant and neighborly, {e,: n > 1} is inversion-invariant,

translation-invariant, and neighborly. It follows from (10) that {¢,: n > i}
is a shrinking basis for B. Since {¢,; —oo < < oo} is* bimonotone, the

norm of 3'a;u; is independent of whether it is regarded as a member
1

of B* or X* Since {u,—t,_,: —oo < n< oo} i shrinking and basie,
and ¢l [lin {u, —u,_,: % >1}], the sequence {u,, u, —ty, Uy—1bg, ...}

5 — Studia Mathematica 60.2
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is a shrinking basis for B*. Thus it follows from Theorem 2 that B is
quasi-reflexive of order one. Now let

oo o0
(23) [ Yatiye) = o(@yu+ X o) (4 —t).
T ) )

Because (14) is satisfied if each ofv I I, and || ||, is taken to be .|] Ity ‘ezuch
geries in'(23) converges if and only if the other converges. Thus T'is a linear

one-to-one map of B onto B*. Since

oyt gw(n(uf—um]] < I+ | g‘w(i)(ui—m,n”‘
< lai+ | ot)e]
1

< (1) e+ Hiw(w‘)e‘\\ <2| 250(%‘)64\\,
1
we have ITI < 2. Also, [T < 3, since
Hfm(i)e;ﬂ - Hf’éo(‘@'i(m—-u'_nu
1 1

< oLyl + 2w+ ali)u—uc],
., 2

|

< le@)l+[|@)m+ X @) ()
2

and this and (22) imply

| “Z’om(i)ei

Finally, (i) and (iii) follow from the fact that (i), and (10) and (11)
with M = 2 (14 2"%), are satisfied by both of the norms used to initiate
the convergence to the norm of Lemma 7; (iv) follows from Theorem 4 of [1]
and the fact that {e,} being neighborly implies the sequence of coetficient
functionals {u,} is equal-signs-additive.

<8]atwu+ Soti)m—u].
2
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