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Let f = éo:p and write p = %170, Clearly, fis 0* in || < 1. Because
f ( uw+gal( ) Vs gccl(‘]))'”’y-i'gy(‘]’)vy)y

from (¢) we see that f and Vf are continuous up to B thrf)ugh triangles
T(2)’s. From (b), (¢), (d) and the Cauchy—Riemann equations, we have
Vf = (0, 0) and is not normal to the unit circle. Since the level sets are
preserved under conformal mappings, we conclude Theorem 3 from
Theorem 2. )

Exampres. (1) The following result of Arsove ([1], p. 267) is a simple
consequence of Theorem 3 and the Riesz decomposition theorem: if A
is a subharmonic function on {|#| < 1, |¢—1| < ¢} with positive harmonic
magjorant then lim h(re”) exists for almost all é® in {|z] < 1, [z—1] < 8}

r—r1

(2) A and v are defined as in Theorem 3. Then at almost all points
of 34, where the tangents of 94 are not horizontal, v has horizontal limit
Zero.
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Multipliers and unconditional Schauder bases in Besov spaces

by
HANS TRIEBEL (Jena)

Abstract. The paper contains: (a) Explicit representations for distributions
belonging to Besov spaces, (b) A system of analytie functions which is an uncon-
ditional Schauder bagis in Besov spaces, (c) A necessary and sufficient algebraic

condition for multipliers in Besov spaces, (d) Remarks on embedding theorems for
Besov spaces.

1. Introduction. The paper deals with isotropic Besov spaces B,
(= Lipschitz spaces 4 ;) defined in R,,, where —oo < § < 00;1 < p < oo
and 1< g< oo. There exists a large variety of different characteriz-
ations of distributions belonging to these spaces [3]~[7]. A summary may
be found in [9], Chapter 2. In Section 2 of this paper a new representation
formula is given. As an immediate consequence there is obtained a com-
mon unconditional Schauder basis in all the spaces B;, . (provided that
g < o0), consisting of entire analytic functions of exponential type, Sec-
tion 3. A second application of the 1ep1'esentation formula yields a necess-
ary and sufficient condition for multipliers in BS ,, Section 4. A more
detailed discussion of this result will be given later on. Section 5 con-
tains remarks on embedding theorems.

2. Representations, R, denotes the n-dimensional real FEuclidean
space. The general point in R, is denoted by = (24, ..., 2,). 8 (= S(R,,))
is the usual Schwartz space of all complex-valued infinitely differen-
tiable rapidly decreasing functions, defined on R,. As usual, 8’ (= S'(R,,))
is the space of tempered distributions, the dual space to S. The Fourier
transform in 8’ is denoted by F, its inverse by F~'. If feS, then

@)@ = em) * S o (w)m,

n
where #¢ = 2«:-5,—. If —i is replaced by 4, then one obtains the corre-
i=

sponding formula, for P71
Use the followmg decomposition of R,: Let o = (oy,...,0,) be
a vector in R,, where each of the components o; is either 41 or -3,
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but at least one of them is +4-3. (This means that the vectors o, where
all the components are -1, are not considered here.) Let ¢® be the above
vectors, numbered in an arbitrary way; ! =1, ..., L,; the components
are denoted by of). Here I, = 2"(2"—1), Define

(1a) QP = {n] 2" (o —1) < m; < 25 M (o +1)},

for ©=1,2,3,... and I =1,..., L,, and

(1b) 00 = o] —2<a,<2).
The following hold '
. 00 Ly )
(@) R, =Q,vU U eP,
Il J=1
L,
- (3) zLj QP = (o] —2"' <oy <2 o] —2F <o, < 2Y).
=1

The last formula shows the meaning of the decomposition (2): By
fixed % the difference of the two cubes on the right-hand side of (3) is
divided in the disjoint cubes (1a), where | = 1, ..., L,. If 4{? is the charac-
teristic function of Q{, and if x, is the characteristic function of Qo,
then

(4) Byg ={fl fe&',

oo Ln. 1
Ifl e =T o Bf |z, + ‘22“2””17’-1%;})1«7”1‘ ) < oo},
Bﬂ,q ? k=1l=1 ? .

where —oo <§< 00, 1< p< 00; and 1< g oo (for ¢ = oo one must
replace the I,-norm in (4) by the corresponding I -norm). Here |- Ile is
the usual norm in L, (R,). These are the Besov spaces: One of the known
Possibilities to define Besov spaces is a formula of type (4), where z{ is
replaced by the characteristic functions of the sets on the right-hand
side of (3); see [3], p. 374, or [9]. Lemma 2.11.2. But the well-known
Lmultiplier properties of characteristic functions of cubes yield (4).
Remind that by the Paley—~Wiener-Schwartz theorem a  distribution
ge8’, whose Fourier transform Fg has a compact support, is an entire
analytic function of exponential type (see, for instance, [27], 1.7.7). In
particular, 4P Ff and F~1y, Ff are entire analytic functions of ex-

bonential type. Denote by N, the set of all lattice points m = (my, ..., my,),

n
where m; are integers. Furthermore, let wm = 2 @my, where zeR, and
meNN,. Similarly, ¢®z. . g=1

TEROREM 1. Lef —oco<s< 005 L<p < 005 and 1< g5 oo, Then
the following three assertions are equivalent:

(i) feByq;

icm
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(ii) feS has the representation

D a6 )+ ) 2,., S e 1

B f=
meNy, k=11=1
I o In s=2) a1
(6) (Y lan?f+[ 3 3 3 277 @l < oo
chn k=1 I=1 man
(with the usual modification for g = oo);
(iil) fe8' has the representation
"y sin 2z,
- b H#_
(7) f 2 [ " 250_7-—ij +
meNy, F=1 .
w Ly n . k—1
25w,
o —izk=1le0z sm i
+ 22 Plm® L L oF g —mr |’

k=1 I=1 i=1
o Iy :

® (3w [ 35 3 o< o

meNy, k=1 151 meNy,
(with the usual modification for ¢ = oo).
Remark 1. The proof below shows that the norms described in (6)
and (8), and |f] gs o are equivalent norms in By ;. Furthermore, (iif) is
.2
simply a reformulation of (ii), namely:

sin 251 g

n n
=1 ,—ime—F+lgm Dy 7% okn ,—itk—lallz
(0) BT D) = (2m) T2 p=rom——

=1
and, consequently,
n
(10) bg,)m = (27‘:) 22’kna§cl,)m

and corresponding formulas for the first terms in (5)~(8). The conver-
gence in (5) and (7) is to be understood as convergent gseries in S8'. By
the above remarks concerning the Paley-Wiener-Schwartz theorem, or by
(9), it follows that

13
—'@wm

(11) Fe T ) and  Ji(gmimFtem, )

are enfive analytic functions of exponential type. Furthermore, the proof
below yields: If feBj , is given, then

(12) by = (F7 0 Ef) (gm) Wim = (P 2 Ff) (m2™54 m),

where meN,; &t =1,2,...; and I =1, ..., L,. Finally, we remark that
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(ii) and (iii) is also a description of the structure of the Besov spaces:
B, is isomorphic to f,(l,). Here —co <8< 00; l<p<oo; LK g< oo,
This was proved in [8] (see also [9], 2.11.2), but essentially this result
is due to J. Peetre.

Proof of Theorem 1. We give a formal proof and add in the Re-
mark 2 below some rigorous arguments. Develop Ff in QP in a Fourier

geries.

(13) Bf = 3 afe " am,  acqf.
. meN,
L[ i
(14) Ohm = o0 f ¢TI T dy
k Qs:)
R,

n

n
= 27 (9m)f (B D) (r2 ™ m).
Consequently,
) TR = ) affy B (e ),
meN,,
A corresponding formula holds for ¢,. Summing up all these series one
obtains (5), where af),, are determined by (10) and (12). (Similar formulas
hold for the case @,.) F~* 4.7, resp. Iy, F, is a projection in L,(R,);
1< p< oo
Now we use the following fact: The operator g—{g(n2 ™+ m)}yex,, i

a one-to-one map from the range of the projection F~ 4 F in L, ondo 1.

This is proved in [8] and [9], 2.11.2.
Applying this assertion to the above situation, it follows that

n 1
16) ol TPl <2 k”( D) e < o 1B P
meN,
where the positive numbers ¢ and ¢’ are independent of % and I (the
last statement is a consequence of an homogeneity-argument).

I feB, ,, then (4) yields (6). If fis given by (5) and (6), then it follows
from (8), (16), and (4) that f belongs to By ,- This proves the equivalence
of (i) and (ii). Denoting temporary the characteristic function of the
cube {o] |o;| <25} by w,. Then the reformulation of (ii), given in (iii),
follows from

[F—l(e*inz—k-rlmxg) (m))] (&) = [F* xg)(w)](f — 72 R )
= [F7 (2% 60 2)1 (£ —m2 7" m)
= g O oty (0)1(6 — 24 m)
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and

n

Ppe) = em o2 | |

i=1

sin 251
.

and corresponding formulas for the case @,. This proves the theorem,
including the statements in Remark 1.

Remark 2. In the above proof we did not carefully check the con-
ditions ensuring the convergence of the above series. But it is not very
hard to justify the calculations: If feS, such that Ff has a compact sup-
port, then (13), (14), (15), and (5) are meaningful in a classical sense.
If g < oo, then functions of such a type are dense in By ,. Now (i)—(ii)
follows for these spaces by a limit argument. Justify the converse direc-
tion: If only a finite number of the coefficients a,, and a{), is different
from zero, then there is no problem. In the case ¢ < co one obtains (ii)—(i)
again - by a limit argument. In particular,

f_> {“m y “gf,k}

is a one-to-one map from B} , onto a weighted space of type Iy (l,), pro-
vided that g < co. Then the same assertion is true for spaces obtained
by real interpolation (-, -)s e, in particular for

B;,oo = (B;“,u B_;l,l)ﬁ,oc,
—c0 < §L S LS < 005 §=(1 ~5)so+ 0s;, and the corresponding

weighted spaces of type l,(lp). (For details of the used interpolation we
refer to [9].) This proves the equivalence of (i) and (ii) for ¢ = oo, too.

3. Schauder bases.
THEOREM 2. Let —oo<s< 00; 1< p< co; and 1< g-<< co. Then

n . . —1
(17) { ___Em .2mj e“’izk“‘lo’(l)x sin 2k z; }
! k-1
i 2@; —mym ted 25wy —mym {‘=11’2’3§;"'
mel, "

is an wnconditional Schauder basis in By ,.
Proof. The proof is an immediate consequence of Theorem 1 and
Remark 1.
Remark 8. As remarked above, (17) consists of entire analytic
functions of exponential type. Smoothness properties for bases of such

- a type are necessary: If {g,}2, is & common Schauder basis in all spaces

B ,; g < oo; then it follows from Sobolev’s embedding theorem, that
all the functions g, are infinitely differentiable functions. If one assumes
additionally that for fixed p and g (for instance p = ¢ = 2) there exist


GUEST


150 H. Triebel

positive numbers ¢, such that

(18) gl s <@ for sz=0,
Bpa

then it follows that g.(z) is an entire analytic function of exponential
type: By Sobolev’s embedding theorem, (18) yields for all multi-indices o

sup [D%g, (2)] < ¢llg,| s o)
@ ey

by an appropriate choice of C,. But such a function is an entire analytic
funetion of exponential type. (17) satisfies a condition of type (18).

Remark 4. It will be useful to remind the reformulation given in
(9): The system

. —iZam _ g o1,
(19) I e ), Flem™ m%;?)}{c—ll,z,ai..
s

is also an unconditional Schauder basis in Bj ;, provided that —oo < s
< 005 1< p < oo; and 1<g< oo

Remark 5. The above argumentation fails for ¢ = oo. The spaces
B},  are isomorphic to loo (1) In particular, B}, . 18 not a separable Banach,
) ¥

space. If B} ., denotes the completion of § in By o then_it‘ follows by the
[

above argumentation that By, is isomorphic to ¢y(l,) (here bo is the

subspace of 1., consisting of all sequences whose components tend to

zero.). Then the above procedure yields that (17), resp. (19), is also an
0

unconditional Schauder basis in Bpw; —00<8< 051 <p< oo,

4. Multipliers. First we give some general assertions, similarly to
corresponding formulas by L. Hérmander [1]. All the used properties

for Besov spaces (lifting Property, duality, interpolation) may be found
in [7] or in [9], Chapter 2. A tempered distribution M is said to be a mulli-
plier in By, if there exists a non-negative number ¢ such that for all
feBS

0,9

(20) : HF“IMFJ”HB; . < Ol N6
g 2,Q

holds. Here —oo < s < e0; 1<p<oo;and 1< g5 oo

Obviously, one may generalize this definition, if one replaces, for -

instance, BS ; on the left-hand side by another Besov space or by a Le-
besgue space (= Liouville space = Bessel potential space). But wo shall

be concerned here only with multipliers in B2 in the above senge.
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Explain (20): -1y Ff is meaningful at least for fe8S. If there exists
8 number ¢ with (20) for all fe8, then the bounded and linear operator
F'MF, defined on 8§, can be extended by completion on B3, provided
that g < oo (8 is dense in these spaces). (20) for Bj , will be explained
rigorously below. If M is a multiplier in B, , (assume temporary ¢ < o),
then it is also a multiplier in B¢, Where o is an arbitrary real number.
This is a consequence of the lifting property,

G

- 1 BTF s o
7 (L 16 Bl ~ Ul

(equivalent norms). This shows that the following definition of a multi-
plier M in B} . is meaningful: For fixed D, where 1 < p < oo, there
exists a linear operator, mapping B ,, continuously into By for all
real numbers ¢, whose restriction on & coincides with F~' M F. In particu-
lar, the set of all multipliers in Bj,, does not depend on s here1 < P < oo
and 1< ¢< co. But it is also independent of g. This follows from the
above statement (independence of §), the interpolation property, and
the interpolation formula

s 30 1 .
’Bﬂﬂ' - (Bp,q’ B;,q)ﬂ,w

where —oo < 5,< § < 8, < 005 8 = (1—0)so+ 0815 1 < p < 005 1 < g<<oo;
and 1 <7< oo, So it is meaningful to denote the set of all multipliers
in Bj by ,. The set of all multipliers in the Lebesgue space L, is denoted
by M,. Here 1 < p < oo,

LEMMA. Tet 1 <p < o and 1/p +1/p’ = 1. Then the following hold

(21) M, < M,,
(22) - My = My,
(23) My < My = My = U, =L, “

provided that [1/g—1/2] < |1/p —1/2].

Proof. If M «M,, then M is also a multiplier in the Lebesgue
space (= Bessel potential space = Liouville space) Hj, where —oo < ¢
< co. The interpolation property and

By, = (Lpy Hplogs 8 #0; 0<0<1;1<q< 00}
yield Med,. This proves (21). The operator F'MT is formally self-

adjoint. Hence, (22) is a consequence of the duality property (Bj,,)’
= B},,. Let 1 <p < g < 2. Then the first two assertions in (23) follow
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from (22) and the interpelation formula
0 0 . po . 1 =
Bq,q (B:a 09 n’,p’)ﬁ,qi ’é’ = 'Y .

P1nally, By, = 1}2 and the well-known fact M, = L, yleld the equalities
n (23). ‘
Remark 6. In addition to (21) the following holds:
An essentially bounded fumction M (w) with compact support belongs
io A, if and only if it belongs to M. i
Assume, without loss of generality, supp M (w) =
it feS, then (4) yields

P MEf |z, = [T~ 27 (F ‘1MF1"‘1onf>“Lp
= |FMF(F 5, Ff) “Bs <ot

= 0P 4 By, < O ||f||L,,.

Hence Me M,. The converse assertion follows from (21).

XolﬂfHBa
0,2

The main aim of this section is the characterization of My Let
MeL,,. Then the Fourier coefficients of M in the cubes @ and Qo are
denoted by MQ,, and M,:

(242) M, =27 [ M(m)em "oy,
o

(24D) M, =4 [M(o R dm,
@

meNy; b=1,2,3,..;1=1,..., L.

THEOREM 3. If 1 < p < oo; then 4, is the set of all essentially bounded
functions in R, (with respect to the Lebesgue measure) with the additional
property. that there ewists a positive number B such that

c'th—m N %{: B X Mm‘p %7
) P

(2ba) ( 2

teN,, meN, meNy

1 1

(25D) (k;n‘mz; on M7 < (m%: onl?)?
n

hold for all sequences {entmem,, for which the vight-hand side of (25) is finite,
- for oll mumbers k, where k=1,2,8,...; and for all numbers 1, where
l=1,..., Ly,

Qo If M), and
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Proof. #,c L, was proved in the above lemma. Let M (2)eLy
and fe Q8. Let f be given by (5). Then

(26)  FUMEf = ) [anF7 M(2) e ) +
meN,,
o0 Lﬂ-
—. ~ina~R+lgm
+7§§a§c’}mﬁ’ M (w)e + x(,?)]

holds. Since MeL, the last series converges in L, and so also in 8.
Let

FOMEf = Y [b,,,F.-l(e“ig

Mme.

aoLn

_‘_Zzb(l) F—l —ing—k+1gm (Z))]

N, =1i=1

be the representation of #'MFf in the sense of Theorem 1 (ii). Develop
M (%) P

(27)

in @, in a Fourier series,
T
'L;:zt
2 M 1—m @ ?
teN,,

Corresponding formulas hold for the Fourier ‘series of M (w)e‘i"rk“’m
in @P. Comparison of (26) and (27) yields

(28) = Z “m-M-t—-m; = 2“(1) —m-

meN,, meN,

—w—mm
re,.

Ti (25) is satistied, then it follows from (28) and from Theorem 1 (ii) that
M Dbelongs to #,.

Prove the converse assertion. Let Me 4,. If f is given by (5), where
af,, = 0, then (25a) is a consequence of (6), (20), and (28). In the same
way one obtains (2B5b).

Remark 7. The proof shows that ¢ in (20) and B in (25) are corre-
lated by O = ¢B, where ¢ depends on m, s, p, g, but not on M.

Remark 8. Using Remark 6 one obtains the following statement:
An essentially bounded function M (z) with supp M(z) = Qq belongs to
M, if and only if (25a) is satisfied.

(Obviously, there is no difficulty to replace “supp M () =
“M(x) has a compact support”.)

ExAavpLE. Let MeL,, and let

D M, <B

meN, meN,,

for all Tt =1,2,3,... und oll 1 =1,...,L,. Then (25) is satisfied, and
consequently, Me 4, for oll p, where 1 < p < oo.

Q,” by

(29)

and D) |MPI<B
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This statement containg multipliers of Hérmander type: Let

(30) My(2) = yoM (2), Mg) (w) = %g)M(w),
' a7 _ kel
(31) IDMylyoy< €5 ID°MPY <03,
Lo(@,")

4

for |« <1+[§]. (Here [%] is the largest integer smaller fthan or

equal to %"—.) First assume additionally that M,(z), resp. MP (x), vanishes

near the boundary of @,, resp. Q. Using (24) and the fact that the ge-
quence of the Fourier coefficients belongs to 7,, provided that the corre-
sponding function belongs to L,, it follows that
) - 0 N0 e

IML,m‘ < (1+ |mI) IMIc,m|7 s I'Mla,m[ < 07
mENn
where ¢ depends only on 0, but not on % and I. For M, holds a corre-
sponding formula. But

D < Y @+ lmi)%[g]'z)%( N xﬂ;j}mﬂ)%go”,
meN

meN,, ) MmeNy,
and a corresponding formula for 3 |M,,|. Hence, (29) is satistied.
N,

me.

If M (%)< 4, then also M (a +h)e 42,. Let M be a function satistying
(31). Using -an appropriate partition of unity, M can be represented as
a finite sum of functions satisfying the counterpart to (31) and the above
additional property, and of functions of such a type shifted by constant
vectors. This proves Me.,,.

5. Embeddings. In Section 3 and in Section 4 two applications of
Theorem 1 are considered. The question arigzes whether other results
can be obtained from Theorem 1. We add here some remarks concerning
embedding theorems. :

(a) Embeddings for different metrics. In the embedding theory for
Besov spaces the following two well-known assertions play an import-
ant role:

w n
(32) Bj,< B, t——q~=s—~? L<pstg<oo; 17 o0
and
(33) BP0 1< p< co.

Here C = C(R,) is the space of complex-valued continuous functions
obmined by completion of § in the supremum-norm. Most of the other

icm
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embedding theorems for different metrics can be obtained from (32)
and (33) by interpolation, [9], §2.8. Since Il < 0+, for p<<gq, (32)
is an immediate consequence of Theorem 1 (ix).

Prove (33). Let 0 be the element of N, whose components are zero.
Then, by (7),

Using the fact that (8) with ¢ =1 and s = n/p is an equivalent norm
in B2, it follows that

]f(O)l < a”f“BnhlJ'
Replacing f(2) by f(#-1%), one obtains

If(R) < GHfHBﬂ,/p’ heR,,.
p.1

This proves (33).

(b) Traces. Beside the embedding theorems for different metrics,
the traces on hyperplanes of lower dimension for functions belonging to
Besov spaces are of interest. To indicate the dimension, the above Besov
spaces are denoted now by B; ,(R,). Let # = (2", @), where &’ = (By,y ov.

«y ®y—1). Then the well-known assertions hold:

() (direct embedding) f(z)—f(2',0) gives a Uinear and bounded oper-
ator from By ,(R,) onto B;,’QI"’(R,L_I), provided that oo > s> 1/p. Here
l<p<oo; 1@< oo,

(i) (inverse embedding) There ewists a linear and bounded operator 8
from B;jq"P(Rn_l) into By (R,) such that (Sg)(x', 0) = g(&') for all g(a')
eBSP(R,_,). Hore —co<s< 005 1< p< 005 1< g 0.

That f(#)->f(2', 0) is a bounded map from B} (R,) into By UP(R, )
can be obtained from (33) by interpolation, [9], 2.9.3. We do not go into
details here. We prove here the part (ii), which includes that the map
f(@)—=f(a', 0) of part (i) is a map “onto” (after it is proved that it is a map
“into”). Let g(w')eBSP(R, ;). Use the representation (7), (8), that

means
n—1 .
N sin 2,
g(a') = [ o
g(@") [m ” Fy———
m'eN, F=1
o0 Ln-1 n=l . . e
+ gﬂ, § b;gl) ,e—izk_la'(l).z sin 2 & ]
6= i=1 " =1 2 ay —myw |’
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llgHBs_llp(R o
g L
2 by l® )”" + [2 Z ( 2 |gHe=niz) b;ﬂll)m,lp)(l/p]llq’
meNy g k=10=1  m'eNy,_;

with the usual modification for g = oo, Here m’' = (my, ..., m,_;) and
o® = (P, ..., o). Tt o = ('@, 3), then it follows from Theorem 1
(iil) that the operator S,

1 sin 2,
E Dy et
J 285 —mym
meNy, j=1
m=(m',0)

(8g)(z) =

L —1
< 2"‘1w ——m,rc

has the desired properties.
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Banach spaces quasi-reflexive of order one
by

ROBERT C. JAMES* (Claremont, Calif.)

Abstract. It is shown that the nonreflexive Banach space J which is isomorphic
to J** is not isomorphic to J*. In fact, J* is not isomorphic to any subspace of J.
‘Without explicitly deseribing the norm, it is shown that there is a Banach space
which is quasi-reflexive of order one and isomorphic to its first dual. It has a bagis
with several properties similar to properties of the bases for J and J*.

It is customary to use J to indicate any Banach space isomorphic
to the space introduced in [5]. Thus J is isomorphic to a space that is

- isometric to its second dual [6] and J is quasi-reflexive of order one (i.e.,

the quotient of J** and the natural image of J in J** has dimension
one). If J is isometric to J**, then the I,-product of J and J* is quasi-
reflexive of order two and irometric to its first dual.

It remains unknown whether J is isomorphic to some subspace of
J*. However, it seems to be a reasonable but difficult-to-prove con-
jecture that ¢, is not finitely representable in J*. In fact, the three-di-
mensional space I&) may not be representable in the predual I of J. Since
¢, is finitely representable in J ([4]), the truth of this conjecture would
imply J is not isomorphie to any subspace of I. It also remains unknown
whether there is a Banach space that is quasi-reflexive of order one and
isometric’ to its dual. The methods of this paper suggest heuristically
that no such space exists. \

1. The space I is not isomorphic to any subspace of J. A particular
norm will be chosen for J and the predual I will be evaluated explicitly.
Any such predual is isomorphic to J*. To prove that I is not isomorphie
to any subspace of J (Theorem 3), it will be shown that I contains sub-
spaces nearly isometric to X (Lemma 2) in such a way that T being
an lisomorphimn of I into J has the impossible consequence (Theorem 3)
that, for any 6 < 1 and any positive integer n, there are members {a", ...

n n —

<, @} of I such that || Y| > 6n and ||XTaf|| < |T|V/6. This is done
1 1

by constructing ¥{"-subspaces in I whose images in J are similar when
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