Notes on orthogonal series III.

S. KACZMARZ (Lwów).

1. Let $\{\varphi_n(t)\}$ be an orthonormal system in the interval $\langle 0,1\rangle$. The system presents 1) the singularity $k_p(1\leqslant p<\infty)$, if there exists a function $f(t) \in L^p[f(t)]$ belongs to L^p if the function $|f(t)|^p$ is integrable over $\langle 0,1\rangle^2$, such that $\sum_{n=1}^{\infty} |f_n|^p n^{p-2} = \infty$, where f_n are the coefficients of f(t) with respect to the system $\{\varphi_n\}$. On the other hand, the singularity l_p $(1\leqslant p<\infty)$ requires the existence of an orthogonal series $\sum_{n=1}^{\infty} a_n \varphi_n(t)$ with the properties: 1) $\sum_{n=1}^{\infty} |a_n|^p n^{p-2} < \infty$, 2) the series is not the development of a function belonging to L^p .

The purpose of this paper is to extend these definitions to the case $p=\infty$. We define namely the singularity k_{∞} as the existence of a function $f(t) \in M$ (that is f(t) is bounded almost everywhere), such that $\lim_{n\to\infty} \sup n|f_n|=\infty$. If there is a nume-

rical sequence $\{a_n\}$ such that $n \mid a_n \mid$ is bounded and $\sum_{n=1}^{\infty} a_n \varphi_n(t)$ is not the development of a function belonging to M, we shall say that the system $\{\varphi_n\}$ presents the singularity l_{∞} .

2. The following theorems show the relations between the singularities k and l.

Theorem 1. If the system $\{\varphi_n\}$ presents the singularity l_{∞} , then the system presents also the singularity k_1 .

Suppose that the system does not present the singularity k_1 . We have then for any function $f(t) \varepsilon L$ the relation $\sum_{n=0}^{\infty} \frac{|f_n|}{n} < \infty$.

Let $\{a_n\}$ be a sequence with the properties: $n \mid a_n \mid < A$, $\sum_{n=1}^{\infty} a_n \varphi_n(t) \sim \varepsilon M$. Then for any $f(t) \varepsilon L$ we have $\sum_{n=1}^{\infty} |a_n f_n| < \infty$, hence $\{a_n\}$ is the sequence of coefficients of a function belonging to M, contrary to the property of $\{a_n\}$ and the theorem is proved.

Theorem 2. If the system $\{\varphi_n(t)\}$ presents the singularity k_1 , $\varphi_n(t) \in M$, $\{\varphi_n(t)\}$ complete in M, then $\{\varphi_n(t)\}$ presents also the singularity l_{∞} .

By the hypothesis there exists a function $f(t) \, \varepsilon \, L$, such that $\sum_{n=1}^{\infty} \frac{|f_n|}{n} = \infty$. Suppose that for any sequence $\{a_n\}$, such that $n \, |\, a_n \, | \, \leqslant 1$, we have $\sum_{n=1}^{\infty} a_n \, \varphi_n(t) \, \varepsilon \, M$; thus the sequence $\{\frac{1}{n}\}$ is a majorant s) for the space M. From the theorem [692] in OR s) follows that $\sum_{n=1}^{\infty} \frac{|f_n|}{n} < \infty$ for any $f(t) \, \varepsilon \, L$, contrary to the hypothesis. Consequently there exists a sequence $\{a_n\}$ such that $n \, |\, a_n \, | \, \leqslant 1$ and $\sum_{n=1}^{\infty} a_n \, \varphi_n(t) \sim \varepsilon \, M$.

Corollary. Under the assumptions: $\varphi_n \in M$, $\{\varphi_n\}$ complete in M, the singularities k_1 and l_{∞} are equivalent.

Theorem 3. If the system $\{\varphi_n\}$ presents the singularity l_1 , then it presents also the singularity k_{∞} .

Suppose that the system does not present the singularity k_{∞} . Then for any $f(t) \in M$ we have $n | f_n | < A$. Let $\{a_n\}$ be a se-

¹) See S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Monografie matematyczne t. VI, Warszawa-Lwów 1935 (referred in the sequence as OR) p. 237—238.

²⁾ We write $\sum_{n=1}^{\infty} a_n \varphi_n(t) \in L^p$, if this series is the development of a function f(t) belonging to L^p , otherwise $\sum_{n=1}^{\infty} a_n \varphi_n(t) \sim \varepsilon L^p$.

³⁾ OR, p. 240.

⁴⁾ OR, p. 240.

quence with the properties $\sum_{n=1}^{\infty} \frac{|a_n|}{n} < \infty$, $\sum_{n=1}^{\infty} a_n \varphi_n(t) \sim \varepsilon L$. The existence of such a sequence follows from the singularity l_1 . Then we have $\sum_{n=1}^{\infty} |a_n f_n| < \infty$ for every f(t) belonging to M, which 5) implies $\sum_{n=1}^{\infty} a_n \varphi_n(t) \varepsilon L$, contradictory to the singularity l_1 , and so the system $\{\varphi_n\}$ presents the singularity k_{∞} .

Theorem 4. The singularity k_{∞} with the completness of $\{\varphi_n\}$ in the space L implies the existence of the singularity l_1 .

From the singularity k_{∞} follows the existence of a function $f(t) \in M$, such that $\lim_{n \to \infty} \sup n |f_n| = \infty$. Consider the space X with elements $x = \{a_n\}$, such that $\sum_{n=1}^{\infty} \frac{|a_n|}{n} < \infty$. Define the norm of x by $||x|| = \sum_{n=1}^{\infty} \frac{|a_n|}{n}$; then X is a space of the type B (that is vectorial, complete and normed). Suppose now that the system $\{\varphi_n\}$ does not present the singularity l_1 . Thus every x is the sequence of coefficients of a function g(t) belonging to L and therefore l

$$\lim_{n\to\infty} \int_{0}^{1} |g(t) - \sum_{k=1}^{n} a_{k} \varphi_{k}(t)| dt = 0.$$

It follows that $\lim_{n\to\infty}\sum_{k=1}^n a_k f_k = \int_0^1 f(t)g(t) dt$ and $\sum_{n=1}^\infty |a_n f_n| < \infty$.

Hence for any $\{a_n\}$ with $\sum_{n=1}^{\infty} \frac{|a_n|}{n} < \infty$ we have

$$\sum_{n=1}^{\infty} \frac{|a_n|}{n} n |f_n| < \infty.$$

That implies $n|f_n| < A$, incompatible with the supposed property of f(t) and so the theorem is proved.

Corollary. Under the assumption: $\{\varphi_n(t)\}$ complete in L, the singularities k_{∞} and l_1 are equivalent.

3. The theorems proved above show the relations between singularities but they do not assure their existence. A sufficient condition for the existence gives the following

Theorem 5. The singularity k_{∞} exists, if $|\varphi_n(t)| \leq A$ for all n and almost all t.

Take a sequence $\{a_n\}$ with the properties: $\sum_{n=1}^{\infty} \frac{|a_n|}{n} < \infty$,

 $\sum_{n=1}^{\infty} a_n^2 = \infty$. Then on account of the boundedness of $\{\varphi_n\}$ we

have $\sum_{n=1}^{\infty} a_n^2 \varphi_n^2(t) = \infty$ on a set E of positive mesure 7). This implies the existence of a sequence of indices $\{n_i\}$, such that 8)

$$\lim_{k\to\infty}\sup_0\int_0^1|\sum_{i=1}^k\alpha_{n_i}\varphi_{n_i}(t)|\,dt=\infty.$$

Hence we can find a continuous function g(t) with coefficients g_n satisfying the relation

$$\lim_{k\to\infty}\sup\sum_{i=1}^k g_{n_i}a_{n_i}=\infty.$$

We have therefore $\sum_{n=1}^{\infty} |a_n g_n| = \infty$; but the series $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$ being convergent we have also $\lim_{n \to \infty} \sup n |g_n| = \infty$, which proves the existence of k_{∞} . Similarly we can prove:

Theorem 6. The singularity k_{∞} exists, if the system $\{\varphi_n\}$ is complete in L^2 .

A sufficient condition for the existence of the singularity l_{∞} gives the

Theorem 7. If $|\varphi_n(t)| \leq A$, then the system $\{\varphi_n\}$ presents the singularity l_{∞} .

Consider 9) a system $\{\psi_n(t)\}$, complete in M, containing the system $\{\varphi_n\}$. We can suppose that $\psi_n(t) \in M$ and that $\varphi_n(t) = \psi_{2n}(t)$, if the set of functions $\{\psi_n\} - \{\varphi_n\}$ is not finite. Then

⁵) OR, th. [646], p. 220.

⁾ OR, th. [673], p. 232.

⁷⁾ OR, th. [512], p. 150.

⁸⁾ OR, th. [676], p. 235.

⁹) OR, th. [614], p. 198.

we have 10)

$$\sum_{n=1}^{\infty} d_n |\psi_n(t)| \leqslant \alpha,$$

if the sequence $\{d_n\}$ is a majorant for $\{\psi_n\}$ in M.

Suppose now, that the system $\{\varphi_n\}$ does not present the singularity l_∞ . Then $\sum_{n=1}^\infty a_n \varphi_n(t) \, \varepsilon \, M$ for any $\{a_n\}$, such that $n \, |\, a_n | \ll 1$. The sequence $\{\frac{1}{n}\}$ is therefore a majorant for $\{\varphi_n\}$ and the squence $\{d_n\}$, where $d_{2n} = \frac{1}{n}$, $d_{2n+1} = 0$ is a majorant for $\{\psi_n\}$ hence, as mentioned above, $\sum_{n=1}^\infty \frac{|\varphi_n(t)|}{n} \ll \alpha$. The boundedness of $\{\varphi_n\}$ leads to the result $\sum_{n=1}^\infty \frac{1}{n} < \infty$. This contradiction implies the existence of l_∞ . The proof in the case, when $\{\psi_n\} - \{\varphi_n\}$ is finite, is quite similar.

Corollary. From theorems 1 and 7 follows the singularity k_1 for $|\varphi_n(t)| \leqslant A$.

Theorem 8. If $|\varphi_n(t)| \leqslant A$, then the singularity l_p exists for $1 \leqslant p < 2$.

Suppose, that for every $\{a_n\}$ such that $\sum_{n=1}^{\infty}|a_n|^p n^{p-2} < \infty$ we have $\sum_{n=1}^{\infty}a_n\,\varphi_n(t)\,\varepsilon\,L^p$. Take $a_n=1$ for $n=k^a,\,\alpha>\frac{1}{2-p}$ and $a_n=0$ for other n. Then the series $\sum_{k=1}^{\infty}k^{a\,(p-2)}$ is convergent and thus $\sum_{n=1}^{\infty}a_n\,\varphi_n(t)\,\varepsilon\,L^p$, contrary to the fact, that for bounded $\{\varphi_n\}$ we have $\lim_{n\to\infty}a_n=0$.

(Reçu par la Rédaction le 30. 4. 1936).

¹⁰⁾ OR, p. 242.