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hin impliziert L(E) = B(H#) die Normierbarkeit von Z. Uss fragt nun
in [6], ob aus der Tatsache, daB o(Z) beschrénkt ist fir alle T'eL(R)
schon folgt, daB F Banach ist. Dies ist nicht der Fall.

GEGENBEISPIEL. Sei # ein unendlichdimensionaler Banachraum
und E, dieser Raum ausgestattet mit seiner schwachen Topologie. Da die
Normtopologie zugleich die Mackey-Topologie ist, gilt L (W) = L(E,).
Damit besitzt jeder Operator Te L(I,) ein kompaktes Spektrum, ohne
da B, deshalb normierbar wire.
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On. semi-Fredholm operators and the conjugate of a product of operators
by
K.H. PORSTER and E.-0. LIEBETRATU (Oldenburg)

Abstract, The first part of this paper contains necessary and sufficient con-
ditions for a lincar operator between Banach gpaces to be semi-Fredholm. In the second
part it is shown that there is a duality between these conditions corresponding to
the duality of ¢~ - and @ -operators. In the third part these results are used to derive
a necossary and sufficiont condition for the equality (') = §'7".

1. Let X and Y be Banach spaces. For a linear operator T': X—Y
with domain D (T), range R(T), and null space N (T), let T denote the clos-
ure and T': ¥'->X’ the conjugate of T, if defined. Let B(X, ¥) and
K (X, Y) denote the linear spaces of bounded and compact linear oper-
ators with domain X and range in ¥, Uy the closed unit ball in X, &~ (X, ¥)
the set of semi-Fredholm operators with closed ranges and finite-
dimensional null spaces, and ¢+ (X, ¥) the set of semi-Fredholm oper-.
ators the ranges of which have finite deficiency in Y.

Wirst the ¢~ and P*-operators will be characterized.

1. TmgoreM. Let T: XY be a closable linear operator. The following
statements arc equivalent:

(1) Te (X, X);
(2) There are a Banach space Z, O0e K(X,Z), and a> 0 such that
loll < allToll+ (Coll for all @< D(T).

Proof. Tt is immediate that (2) is equivalent to

(2) There are o Banach space Z, O0cK(X,Z), and a> 0 such that
for @e DT, ol < o Tel+ |0al.

Thorefore 7' may be assumed. to be closed.

Suppose Te P~ (X, ¥), Z = X, and let 0 be a projection from X
onto N (7). Since N (T) is finite dimensional, 0 is compact. It aeD(T)
and we N (1), then [o] —0u| < (L —0)(@—w)l. Employing the reduced
minimum modulus y (27 ([8], p. 281) we have

]} ~ |0a]l < 1 — Clly (T)7* [Tl = o Ta]
with o = |[[—C]y(T)~! > 0. This implies (2).
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Suppose (2). Then for any bounded sequence (m,) in N(T) there
exists a subsequence (y,) such that (Oy,) comverges. Since Ty, =0, it
follows from (2) that (y,) converges. Thus Uy 18 relatively compact
and thevefore, ¥ (7)) is finite dimensional. If R(T) were not closed, then
7(T) = 0, which implies the existence of a bounded sequence () in D(T1)
without aceumulation point in N (7) but limTw, = 0. For a subsequence
(), (Oyy) converges. It follows from (2) that (y,) converges to some we X.
Since T is closed, #¢ N (T). This contradicts the choice of (a,), hence T'e
(X, X). ’

This characterization of @~ -operators has frequently been employed
for the treatment of differential operators. The following characteriz-
ation P+-operators seems to be new.

2. TEmoREM. Let I': XX be a closed Uinear operator. The Sollowing
statements are equivalent:

(1) TeP™(X, ¥);

(2) There are a Banach space Z, 0« K(Z,Y), and a>0 such that

Uy S aTUx+0U,.

Proof. Suppose T« *(X, ¥). Choose Z = Y and (== T ~Pe K(Z,Y)
with & projection P from ¥ onto R(7T). Let ye Uyp. It follows from ¥
=R(T)eR(0) that y = To+Cy with Te == Py. There iy a zeD(T)
such that Tz = Ta and

Y(D) el < 21|72 < 2P|
Taking a = 2P|y (T)™?, it follows that Tw = Tee aT'Ux. Since Oye OV,
(2) is proved.

‘Suppose (2). For every &> 0 there exists a finite-dimensional sub-
space M, of ¥ such that 0U, < sUyp -+, ([7],p. 146). Thus Uy € alUx--
+eUp-+M,. From this we shall derive Uy = R(T)+M, which implies
Y = R(T)+M,, that is, R(T) has finite deticiency. Now suppose ye Uy.

Inductively we obtain sequences (w) 0. Ug, (y) in Uy, and (wy) in M,
such that

Y = allmy 4 sy, +w,
and
Y = aTm]n+£?f}c+1 + Wy, k= 1,2,..
For every =, this implies

k3

| Yy =al (Z’ akmk) -+ 8n+1?/n+1 + j 8kwk'

Tom=) ]

o0
Suppose £ < 1. Then (s"y,) converges to zero and @ = Dlétam, exists.
0
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According to [6], there exists a norm | | on ¥ such that T: X—(Y,| |)
iy continuous and [y] < |ly|| for all ye ¥, Since

Wil << (Y5l -+ 8 Wpaa| + a| Tyl < L6+ T,

(wy) is bounded. On M, || | and | | are equivalent, hence the series ' &1,
converges to some w «M,. Then ) "I, converges, too. Since T is closed,
e D(T) and T = 3 e¥a,. B follows that y = aTe+w, hence Uy < R(T)+
b M g

If (2) is valid for a closable linear operator 7, then the inclusion is
valid for 7. Tn this case Te &7 (X, X,

2. The well-known duality of densely defined ®~-and @*- operators
is reflected by o duality between the conditions (2) of Theorems 1 and 2.
For this purpose we need the following result which is a special case of the
theorem in [8].

3. LumwmA. Let B and F be (veal or complex) lincar spaces, B* and F*
their (algebraical) duals, 8: B—F a linear map with domain B, v: F>R
o seminorm, and w*e B*. If [(u, w*D| < w(Su) for oll we B, there emists
a v eI™ suoh that [v*| < o and (u, w*) = (Su, ™) for all ueH.

For the next two theorems, let X, ¥ and Z be normed linear spaces
and let X', X', and Z' be their strong duals.

4, Toeoram, Let A: XY be a densely defined linear operator,,
0 e B(X,Z), and a > 0. The following statements are equivalent:

(1) loll < alldal|+ I0a]  for all @eD(A);

@) Uy < 0d’ Ug+0 Up.

Proof. Suppose (1) and @'e Uy and let B = D(4), F =Y XxZ,
Sy = (adw, 02), o(v, w) = o]+ |lwl, and »* = &". Then, for we D(;et), (1)
reads <@, @' < 0(Sw) and Lemma 3 yields a o* =(y’,2')¢ ™ such
that |[v*| < . Honce, v*¢ " and y'e Uyp; 2’ € Uz . Furthermore, for weD(4)

<, 0 = {8, v*> = alda, y> + {2, 0'4).

Then 4’ ¢ D(A’) and @' = ad'y'--0'#". Thus (2) follows,

Suppose (2). For each o' ¢ Uy there exist y'e UpN D(A') and #'¢ Uy
sueh that @' = ad'y' -+ C'2'. Hence, if we D(4), [z, 8| < alda]+ 0|
which implies (1).

5. Mumowmy. Let A: XY be a densely defined linear operator, Ce
B(Z,Y), and a> 0. The following statements are equivalent:

(1) (Ll—e)Ups adUyx+0Uz, 0<e<ly

(2) Iyl < alld’y'I+10"yll - for all y'e D(4).
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Proof. Suppose (1), 0 <& <1, and 4'¢ D(A'). Then
(1—e)ly'll = sup{Ky, ¥">|: ye(l—e) Uy}
< sup{Kedo+ 0z, y>|: #eUxnD(A), ze Uy}
< alld'y' |+ 10" y']-

Suppose (2). Up = adUx+C ﬁ; implies (1). If this inclusion were
false, there exist yoe Uy, Yo¢ad Ux-+C0Uy and 9,'¢ ¥’ such that

[<Y0s Yop| > sup {[{ada--Cz, yp|: we Uxn D(A), 2e Uy} == 4.

This implies «|<A%, yo>| < [Yo, Yo |+ IC][y5ll for @e UxnD (A), hence
Yoe D(A'). Now (2) implies [yl < alld gyll+ 110" yoll = % which contra-
diets 1 < [<¥o, Yo>| < Iygll-

For Banach spaces, 4 closed and ¢ compact, the duality between
@~- and PT-operators is obtained from Theorems 4 and § together with
Theorems 1 and 2.

Let 4: X—~Z and B: Y-—>Z be linear operators. According to [8],
B is called A-co-continuous, if there are non-negative constants a and
such that BUy = AUx+ U,. ’

The proof of the following lemma is similar to that of Theorem 5.

6. Lmmma ([3], 1.2.). Let A and B be densely defined. Then B is A-co-
continuous if and only if B' is A'-bounded, i.e. D(A') < D(B') and there
are non-negative constamis o and f such that for all '« D(A'), |B'2|<
ald’?|+ Bl Il

3. The concept of relative co-continuity in used to examine the
conjugate of a product of two operators. As is known, it § and 7' ave densely
defined linear operators, then merely 81" < (T8, even it 7S is densely
defined. .

(I8) = 8'T" implies that 1" is (T8)-bounded ([4], V. 3.3.), for it
follows that D((78)) < D(T'), the duals of normed linear spaces are
complete and conjugate operators are closed. Lemma. 6 then gives:

If (T8) = 8'T', then T is T8-co-continuous.

The following example shows that the converse of this vemark js

3
not true. Let = = a,D* be a differential expression, where the coefficionts
0

are constant, let I be an interval, T, the maximal operator corresponding
to 7 in Ly(I), and TF the restriction of T, to those fe D(T,) which have
compact supports in the interior of I. Then Ty. = T¥ iy the minimal

operator ([4], VI.2.1). Now let §: L,+L,x1L, and T: Ly x Tig o Ly,
be defined by *

D(8) =D(T.), 8f =(T.f, )
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and
D(T) = {(f,9): [, 9 DT}, T(f,9) =T

As a projection T is continuous, thus, in particular, T is TS-co-continuous.
Now T8 = T¥ implies (T8) = (Ty,) = T.. ([4], VI2.3), and §&'T"
s (T,) == Ty . Lt I be compact. Then T 5 T, o([4], VI.2.10.i) and in,
thiy case (I'8) # 8'T'.

Lot X, ¥, and Z be normed linear spaces, S: XY and T: ¥Y—>Z
linear operators. According to [B], p. 166, a linear submanifold D of X
is called & core of 8, it D < D(8) and G(8S) = G(S|p), where G(8§) denotes
the graph of §.

7. TmworuMm. Let S and T be densely defined and let D(T8S) be a core
of 8. Then T'S is densely defined and (T8) = 8'1" if and only if T is TS-co-
CONBINUOUS.

Prootf. It has already been shown that T is T'8-co-continuous, if
(1T8) == 8'7". Since .D(T'8) is a core of 8, D(I'8) is dense in D(S). Thus
T8 is densely defined. By Lemma 6, 7' is (I'S)-bounded, hence D ((T8)')
& D(I"). Since (I'S)’ is an extension of §'7", it remains to show that
D((T8)) & D(§'T"). For this purpose suppose #'«D((T8)), hence
2'e D(I"), For weD(T8), SweD(T) and

Sw, Ty = (T8, 2> = (m, (T)'2'>.

Since D (I'8) is a core of 8,
Sw, T'2" = <o, (T8)'2"y, weD(S).

Tt follows that T'#'eD(8'), hence 2’ <« D(S'T") and D((TS)) < D(8'T").
The following remarks serve the purpose of comparing Theorem
7 with known sufficient conditions for (I8)" = 8"1".
8. LmmMA (see [2], Lemma 5). Let X and Y be complete, let 8 ble closefjl
with dlosed range and let M Do a linear submanifold of Y. Then S' (M) 38

@ core of 8 if and only if R(8)nM = R(8).

Proof. Suppose B(8) NI = R(8). Let (x, 8) <G (8). Sinee Sz ek (8)
there oxists & soquence (¥,) in R(S)NM which converges tq Sm.l S1‘nce S is
closed and hax closed range, there exists a sequence (2,) with limit ?1 and
Sw, = 1,. Thus o, e 8 (M). (v,, Sv,) converges to (¢, Sz). Now S*I(M)
s D(8), thorefore, 8~*( M) is a core of 8. Conversely, suppose tha.t’S (M)
is & core of 8. If EFE’%'JE # R(8), there exists @y D(S) such tlh&t Yo
= 8wy d R(S)NM and yhe ¥’ such that (Yo, Yoy =1 a.ntli s Yoy = 0
whenever e R(8YNM. Theretore, it we S (M), (8, yq> = 0. Slpce
S=Y(M) is a core of 8, (Sw,y;> =0 for all we D(S). This contradicts

{8y, Yo> = Yoy Yo> = 1.

7 — Studla Mathematica LIX.3
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9. Luvma. Let X, Y and Z be complete, let T be closed and densely
definied and Se O (X, X). Then D(TS8) is a core of 8 and T' is T'8-co-con-
tinuous. S

Proof. Since R(8) has finite deficiency, R(S) = R(8)n.D(T) ([4],
Iv.2.8). Since R(S) is closed, D(T'S) is a core of § by Lemma 8. Theorem
2 yields Uy € aSUx 40Uy, where 0 may be chosen to be finite dimensio-
nal with range in D(T) ([4], IV.2.8). TC then has domain X and is closed,
hence TUy < aTSUx+ ||ITO|U; and therefore, T iz T'S-co-continuous.

Suppose that in Lemma 9 § is also dengely defined. Then Theorem. 7
implies (T'S)' = §'T". This has been proved in [9]. With similar conclu-
sions [2], Theorem 6 is obtained. A partial converse of Theorem 7 and
[1], Theorem 1, is given by

10. Levma. If (T8') = 8'T and R(T') = X', then D(TH) is a core
of 8.

Proof. D =D(T8) is a core of § if and only if §' = (§]|p). Since
8 = (8]p), it remains to show that D((S|p)) = D(§). It y' e D((8p)),
then there exists '« D(T") such that ' = T'a'. For me D,

<z, (8|p)'y">y = (S, T'a"y = (T8w,s">.
This implies &' <D ((T8)) = D(S'T’), hence y' = T'v’ « D().
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