

hin impliziert L(E) = B(E) die Normierbarkeit von E. Uss fragt nun in [6], ob aus der Tatsache, daß $\sigma(T)$ beschränkt ist für alle $T \in L(E)$ schon folgt, daß E Banach ist. Dies ist nicht der Fall.

GEGENBEISPIEL. Sei E ein unendlichdimensionaler Banachraum und E_s dieser Raum ausgestattet mit seiner schwachen Topologie. Da die Normtopologie zugleich die Mackey-Topologie ist, gilt $L(E) = L(E_s)$. Damit besitzt jeder Operator $T \in L(E_s)$ ein kompaktes Spektrum, ohne daß E_s deshalb normierbar wäre.

Literatur

- [1] T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), pp. 191-210.
- [2] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Springer Lecture Notes 56, 1968.
- [3] K. Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), pp. 155-195.
- [4] G. Köthe, Topologische lineare Räume I, Springer, Berlin-Heidelberg-New York 1966.
- [5] A. Pietsch, Theorie der Operatorenideale (Zusammenfassung), Universität Jena 1972.
- [6] P. Uss, Sur les opérateurs bornés dans les espaces localement convexes, Studia Math. 37 (1971), pp. 139-158.

MATHEMATISCHES SEMINAR DER UNIVERSITÄT, KIEL, BRD

Received August 8, 1975 (1057)

On semi-Fredholm operators and the conjugate of a product of operators

b;

K.-H. FÖRSTER and E.-O. LIEBETRAU (Oldenburg)

Abstract. The first part of this paper contains necessary and sufficient conditions for a linear operator between Banach spaces to be semi-Fredholm. In the second part it is shown that there is a duality between these conditions corresponding to the duality of Φ^- - and Φ^+ -operators. In the third part these results are used to derive a necessary and sufficient condition for the equality (TS)' = S'T'.

1. Let X and Y be Banach spaces. For a linear operator $T\colon X{\to}Y$ with domain D(T), range R(T), and null space N(T), let \overline{T} denote the closure and $T'\colon Y'{\to}X'$ the conjugate of T, if defined. Let B(X,Y) and K(X,Y) denote the linear spaces of bounded and compact linear operators with domain X and range in Y, U_X the closed unit ball in X, $\Phi^-(X,Y)$ the set of semi-Fredholm operators with closed ranges and finite-dimensional null spaces, and $\Phi^+(X,Y)$ the set of semi-Fredholm operators the ranges of which have finite deficiency in Y.

First the Φ^- and Φ^+ -operators will be characterized.

- 1. THEOREM. Let $T \colon X \rightarrow Y$ be a closable linear operator. The following statements are equivalent:
 - (1) $\overline{T} \in \Phi^-(X, Y)$;
 - (2) There are a Banach space Z, $C \in K(X, Z)$, and a > 0 such that

$$||x|| \leqslant a ||Tx|| + ||Cx||$$
 for all $x \in D(T)$.

Proof. It is immediate that (2) is equivalent to

(2) There are a Banach space Z, $C \in K(X, Z)$, and $\alpha > 0$ such that for $\omega \in D(\overline{T})$, $\|\omega\| \le \alpha \|\overline{T}\omega\| + \|C\omega\|$.

Therefore T may be assumed to be closed.

Suppose $T \in \mathcal{O}^-(X, Y)$, Z = X, and let C be a projection from X onto N(T). Since N(T) is finite dimensional, C is compact. If $x \in D(T)$ and $u \in N(T)$, then $||x|| - ||Cx|| \le ||(I - C)(x - u)||$. Employing the reduced minimum modulus $\gamma(T)$ ([5], p. 231) we have

$$\|x\|-\|Cx\|\leqslant \|I-C\|\gamma(T)^{-1}\|Tx\|=\alpha\|Tx\|$$
 with $\alpha=\|I-C\|\gamma(T)^{-1}>0.$ This implies (2).

Suppose (2). Then for any bounded sequence (x_n) in N(T) there exists a subsequence (y_k) such that (Cy_k) converges. Since $Ty_k = 0$, it follows from (2) that (y_k) converges. Thus $U_{N(T)}$ is relatively compact and therefore, N(T) is finite dimensional. If R(T) were not closed, then $\gamma(T) = 0$, which implies the existence of a bounded sequence (x_n) in D(T) without accumulation point in N(T) but $\lim Tx_n = 0$. For a subsequence (y_k) , (Cy_k) converges. It follows from (2) that (y_k) converges to some $x \in X$. Since T is closed, $x \in N(T)$. This contradicts the choice of (x_n) , hence $T \in \Phi^-(X, Y)$.

This characterization of Φ^- -operators has frequently been employed for the treatment of differential operators. The following characterization Φ^+ -operators seems to be new.

2. THEOREM. Let $T \colon X \rightarrow Y$ be a closed linear operator. The following statements are equivalent:

- (1) $T \in \Phi^+(X, Y)$;
- (2) There are a Banach space Z, $C \in K(Z, Y)$, and $\alpha > 0$ such that

$$U_{\mathbf{Y}} \subseteq \alpha T U_{\mathbf{X}} + C U_{\mathbf{Z}}$$
.

Proof. Suppose $T \in \Phi^+(X, Y)$. Choose Z = Y and $C = I - P \in K(Z, Y)$ with a projection P from Y onto R(T). Let $y \in U_Y$. It follows from $Y = R(T) \oplus R(C)$ that y = Tx + Cy with Tx = Py. There is a $z \in D(T)$ such that Tz = Tx and

$$\gamma(T)\|z\| \leqslant 2\|Tx\| \leqslant 2\|P\|.$$

Taking $\alpha = 2 \|P\| \gamma(T)^{-1}$, it follows that $Tx = Tz \in \alpha TU_X$. Since $Cy \in CU_Y$, (2) is proved.

Suppose (2). For every $\varepsilon > 0$ there exists a finite-dimensional subspace M_s of Y such that $UU_Z \subseteq \varepsilon U_Y + M_s$ ([7], p. 146). Thus $U_Y \subseteq \alpha T U_X + \varepsilon U_Y + M_s$. From this we shall derive $U_Y \subseteq R(T) + M_s$ which implies $Y \subseteq R(T) + M_s$, that is, R(T) has finite deficiency. Now suppose $y \in U_Y$. Inductively we obtain sequences (x_k) in U_X , (y_k) in U_Y , and (w_k) in M_s such that

$$y = \alpha T x_0 + \varepsilon y_1 + w_0$$

and

$$y_k = \alpha T x_k + \varepsilon y_{k+1} + w_k, \quad k = 1, 2, \dots$$

For every n, this implies

$$y = \alpha T \left(\sum_{k=0}^{n} \varepsilon^{k} x_{k} \right) + \varepsilon^{n+1} y_{n+1} + \sum_{k=0}^{n} \varepsilon^{k} w_{k}.$$

Suppose $\varepsilon < 1$. Then $(\varepsilon^n y_n)$ converges to zero and $x = \sum_{k=0}^{\infty} \varepsilon^k x_k$ exists.

According to [6], there exists a norm $| \ |$ on Y such that $T: X \rightarrow (Y, | \ |)$ is continuous and $|y| \leq ||y||$ for all $y \in Y$. Since

$$|w_k| \leq |y_k| + \varepsilon |y_{k+1}| + \alpha |Tx_k| \leq 1 + \varepsilon + |T|,$$

 (w_k) is bounded. On $M_s\parallel\parallel$ and \parallel are equivalent, hence the series $\sum \varepsilon^k w_k$ converges to some $w\in M_s$. Then $\sum \varepsilon^k T w_k$ converges, too. Since T is closed, $x\in D(T)$ and $Tx=\sum \varepsilon^k w_k$. It follows that $y=\alpha Tx+w$, hence $U_Y\subseteq R(T)+M_s$.

If (2) is valid for a closable linear operator T, then the inclusion is valid for \overline{T} . In this case $\overline{T} \in \Phi^+(X, Y)$.

- 2. The well-known duality of densely defined Φ^- -and Φ^+ operators is reflected by a duality between the conditions (2) of Theorems 1 and 2. For this purpose we need the following result which is a special case of the theorem in [8].
- 3. LEMMA. Let E and F be (real or complex) linear spaces, E* and F* their (algebraical) duals, S: $E \rightarrow F$ a linear map with domain E, ω : $F \rightarrow \mathbf{R}_+$ a seminorm, and $u^* \in E^*$. If $|\langle u, u^* \rangle| \leq \omega(Su)$ for all $u \in E$, there exists a $v^* \in F^*$ such that $|v^*| \leq \omega$ and $\langle u, u^* \rangle = \langle Su, v^* \rangle$ for all $u \in E$.

For the next two theorems, let X, Y and Z be normed linear spaces and let X', Y', and Z' be their strong duals.

4. THEOREM. Let $A: X \rightarrow Y$ be a densely defined linear operator,, $C \in B(X, Z)$, and $\alpha > 0$. The following statements are equivalent:

(1)
$$||x|| \leqslant \alpha ||Ax|| + ||Cx|| \quad \text{for all } x \in D(A);$$

$$(2) U_{\mathbf{x'}} \subseteq aA' U_{\mathbf{x'}} + C' U_{\mathbf{x'}}.$$

Proof. Suppose (1) and $w' \in U_{X'}$ and let E = D(A), $F = Y \times Z$, $Sw = (\alpha A x, C x)$, $\omega(v, w) = \|v\| + \|w\|$, and $u^* = x'$. Then, for $x \in D(A)$, (1) reads $|\langle x, x' \rangle| \leq \omega(S x)$ and Lemma 3 yields a $v^* = (y', z') \in F^*$ such that $|v^*| \leq \omega$. Hence, $v^* \in F'$ and $y' \in U_{Y'}$; $z' \in U_{Z'}$. Furthermore, for $x \in D(A)$

$$\langle x, x' \rangle = \langle Sx, x^* \rangle = \alpha \langle Ax, y' \rangle + \langle x, C'z' \rangle.$$

Then $y' \in D(A')$ and $x' = \alpha A' y' + C' z'$. Thus (2) follows.

Suppose (2). For each $w' \in U_{X'}$ there exist $y' \in U_{X'} \cap D(A')$ and $z' \in U_{Z'}$ such that $w' = \alpha A' y' + C' z'$. Hence, if $w \in D(A)$, $|\langle w, w' \rangle| \leq \alpha ||Aw|| + ||Cw||$ which implies (1).

5. THEOREM. Let $A: X \rightarrow Y$ be a densely defined linear operator, $C \in B(Z, Y)$, and a > 0. The following statements are equivalent:

$$(1) \qquad \qquad (1-\varepsilon)\; U_Y \subseteq aA\; U_X + CU_Z, \qquad 0 < \varepsilon < 1;$$

(2)
$$||y'|| \leqslant \alpha ||A'y'|| + ||C'y'|| \quad \text{for all } y' \in D(A').$$

Proof. Suppose (1), $0 < \varepsilon < 1$, and $y' \in D(A')$. Then

$$\begin{split} (1-\varepsilon)\|y'\| &= \sup\left\{|\langle y,y'\rangle|\colon y\,\epsilon(1-\varepsilon)\,U_X\right\} \\ &\leqslant \sup\left\{|\langle aAx + Cz,y'\rangle|\colon x\,\epsilon\,U_X \cap D(A),\; z\,\epsilon\,\,U_Z\right\} \\ &\leqslant a\|A'y'\| + \|C'y'\|. \end{split}$$

Suppose (2). $U_Y \subseteq \overline{\alpha A U_X + C U_Z}$ implies (1). If this inclusion were false, there exist $y_0 \in U_Y$, $y_0 \notin \overline{\alpha A U_X + C U_Z}$ and $y_0' \in Y'$ such that

$$|\langle y_0, y_0' \rangle| > \sup \{|\langle \alpha Ax + Cz, y_0' \rangle| \colon x \in U_X \cap D(A), \ z \in U_Z\} = \eta.$$

This implies $\alpha |\langle Ax, y_0' \rangle| < |\langle y_0, y_0' \rangle| + ||C|| ||y_0'||$ for $x \in U_X \cap D(A)$, hence $y_0' \in D(A')$. Now (2) implies $||y_0'|| \le \alpha ||A'y_0'|| + ||C'y_0'|| = \eta$ which contradicts $\eta < |\langle y_0, y_0' \rangle| \le ||y_0'||$.

For Banach spaces, A closed and C compact, the duality between Φ^- - and Φ^+ -operators is obtained from Theorems 4 and 5 together with Theorems 1 and 2.

Let $A\colon X\to Z$ and $B\colon Y\to Z$ be linear operators. According to [3], B is called A-co-continuous, if there are non-negative constants α and β such that $BU_Y\subseteq AU_X+\beta U_Z$.

The proof of the following lemma is similar to that of Theorem 5.

- 6. Lemma ([3], 1.2.). Let A and B be densely defined. Then B is A-co-continuous if and only if B' is A'-bounded, i.e. $D(A') \subseteq D(B')$ and there are non-negative constants a and β such that for all $z' \in D(A')$, $\|B'z'\| \leq a\|A'z'\| + \beta\|z'\|$.
- **3.** The concept of relative co-continuity is used to examine the conjugate of a product of two operators. As is known, if S and T are densely defined linear operators, then merely $S'T' \subseteq (TS)'$, even if TS is densely defined.
- (TS)' = S'T' implies that T' is (TS)'-bounded ([4], V. 3.3.), for it follows that $D((TS)') \subseteq D(T')$, the duals of normed linear spaces are complete and conjugate operators are closed. Lemma 6 then gives:

If
$$(TS)' = S'T'$$
, then T is TS -co-continuous.

The following example shows that the converse of this remark is not true. Let $\tau = \sum_{0}^{n} a_{k}D^{k}$ be a differential expression, where the coefficients are constant, let I be an interval, T_{τ} the maximal operator corresponding to τ in $L_{2}(I)$, and T_{τ}^{R} the restriction of T_{τ} to those $f \in D(T_{\tau})$ which have compact supports in the interior of I. Then $T_{0,\tau} = \overline{T_{\tau}^{R}}$ is the minimal operator ([4], VI.2.1). Now let $S: L_{2} \rightarrow L_{2} \times L_{2}$ and $T: L_{2} \times L_{2} \rightarrow L_{2}$ be defined by

$$D(S) = D(T_{\tau}), \quad Sf = (T_{\tau}f, f)$$

and

$$D(T) = \{(f, g) : f, g \in D(T_{\tau}^{R})\}, \quad T(f, g) = f.$$

As a projection T is continuous, thus, in particular, T is TS-co-continuous. Now $TS = T^{\mathbb{R}}_{\tau}$ implies $(TS)' = (T_{0,\tau})' = T_{\tau^*}$ ([4], VI.2.3), and $S'T' = (T_{\tau})' = T_{0,\tau^*}$. Let I be compact. Then $T_{\tau^*} \neq T_{0,\tau^*}$ ([4], VI.2.10.i) and in, this case $(TS)' \neq S'T'$.

Let X, Y, and Z be normed linear spaces, $S \colon X \to Y$ and $T \colon Y \to Z$ linear operators. According to [5], p. 166, a linear submanifold D of X is called a *core of* S, if $D \subseteq D(S)$ and $G(S) \subseteq \overline{G(S|_D)}$, where G(S) denotes the graph of S.

7. THEOREM. Let S and T be densely defined and let D(TS) be a core of S. Then TS is densely defined and (TS)' = S'T' if and only if T is TS-cocontinuous.

Proof. It has already been shown that T is TS-co-continuous, if (TS)' = S'T'. Since D(TS) is a core of S, D(TS) is dense in D(S). Thus TS is densely defined. By Lemma 6, T' is (TS)'-bounded, hence $D((TS)') \subseteq D(T')$. Since (TS)' is an extension of S'T', it remains to show that $D((TS)') \subseteq D(S'T')$. For this purpose suppose $z' \in D((TS)')$, hence $z' \in D(T')$. For $x \in D(TS)$, $Sx \in D(T)$ and

$$\langle Sx, T'z' \rangle = \langle TSx, z' \rangle = \langle x, (TS)'z' \rangle.$$

Since D(TS) is a core of S,

$$\langle Sx, T'z' \rangle = \langle x, (TS)'z' \rangle, \quad x \in D(S).$$

It follows that $T'z' \in D(S')$, hence $z' \in D(S'T')$ and $D(TS)' \subseteq D(S'T')$. The following remarks serve the purpose of comparing Theorem 7 with known sufficient conditions for TS' = S'T'.

8. Lemma (see [2], Lemma 5). Let X and Y be complete, let S be closed with closed range and let \underline{M} be a linear submanifold of Y. Then $S^{-1}(\underline{M})$ is a core of S if and only if $\overline{R(S) \cap M} = R(S)$.

Proof. Suppose $\overline{R(S) \cap M} = R(S)$. Let $(x, Sx) \in G(S)$. Since $Sx \in R(S)$ there exists a sequence (y_n) in $R(S) \cap M$ which converges to Sx. Since S is closed and has closed range, there exists a sequence (x_n) with limit x and $Sx_n = y_n$. Thus $x_n \in S^{-1}(M)$. (x_n, Sx_n) converges to (x, Sx). Now $S^{-1}(M) \subseteq D(S)$, therefore, $S^{-1}(M)$ is a core of S. Conversely, suppose that $S^{-1}(M)$ is a core of S. If $\overline{R(S) \cap M} \neq R(S)$, there exists $x_0 \in D(S)$ such that $y_0 = Sx_0 \notin \overline{R(S) \cap M}$ and $y_0' \in \overline{Y}'$ such that $\langle y_0, y_0' \rangle = 1$ and $\langle y, y_0' \rangle = 0$ whenever $y \in \overline{R(S) \cap M}$. Therefore, if $x \in S^{-1}(M)$, $\langle Sx, y_0' \rangle = 0$. Since $S^{-1}(M)$ is a core of S, $\langle Sx, y_0' \rangle = 0$ for all $x \in D(S)$. This contradicts $\langle Sx_0, y_0' \rangle = \langle y_0, y_0' \rangle = 1$.

9. LEMMA. Let X, Y and Z be complete, let T be closed and densely definied and $S \in \Phi^+(X, Y)$. Then D(TS) is a core of S and T is TS-co-continuous.

Proof. Since R(S) has finite deficiency, $R(S) = \overline{R(S) \cap D(T)}$ ([4], IV.2.8). Since R(S) is closed, D(TS) is a core of S by Lemma 8. Theorem 2 yields $U_Y \subseteq aSU_X + CU_Y$, where C may be chosen to be finite dimensional with range in D(T) ([4], IV.2.8). TC then has domain X and is closed, hence $TU_Y \subseteq aTSU_X + \|TC\|U_Z$ and therefore, T is TS-co-continuous.

Suppose that in Lemma 9 S is also densely defined. Then Theorem 7 implies (TS)' = S'T'. This has been proved in [9]. With similar conclusions [2], Theorem 6 is obtained. A partial converse of Theorem 7 and [1], Theorem 1, is given by

10. LEMMA. If (TS') = S'T' and R(T') = Y', then D(TS) is a core of S.

Proof. D=D(TS) is a core of S if and only if $S'=(S|_D)'$. Since $S'\subseteq (S|_D)'$, it remains to show that $D\left((S|_D)'\right)\subseteq D(S')$. If $y'\in D\left((S|_D)'\right)$, then there exists $x'\in D(T')$ such that y'=T'x'. For $x\in D$,

$$\langle x, (S|_D)'y' \rangle = \langle Sx, T'x' \rangle = \langle TSx, x' \rangle.$$

This implies $x' \in D((TS)') = D(S'T')$, hence $y' = T'x' \in D(S')$.

References

- J. van Casteren, Adjoints of products of operators in Banach space, Arch. Math. 23 (1972), pp. 73-76.
- [2] J. van Casteren and S. Goldberg, The conjugate of the product of operators, Studia Math. 38 (1970), pp. 125-130.
- [3] K.-H. Förster, Relativ co-stetige Operatoren in normierten Räumen. Arch. Math. 25 (1974), pp. 639-645.
- [4] S. Goldberg, Unbounded Linear Operators: Theory and Applications, New York 1966.
- [5] T. Kato, Perturbation theory for linear operators, New York 1966.
- [6] G. Köthe, General linear transformations of locally convex spaces, Math. Annalen 159 (1965), pp. 309-328.
- [7] A. Pietsch, Nuclear Locally Convex Spaces, New York 1972.
- [8] V. Pták, On a theorem of Mazur and Orlics, Studia Math. 15 (1956), pp. 365-366.
- [9] M. Schechter, The conjugate of a product of closed operators, J. Functional Analysis 6 (1970), pp. 26-28.

FACHBEREICH IV UNIVERSITÄT OLDENBURG, OLDENBURG, BRD