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Basic sequences in (s)

by
ED DUBINSKY (Potsdam, N.Y.)

Abstraet. A characlierization is given of when a nuclear Fréchet space with
bagis is isomorphic to the subspace generated by a basic sequence in the space (s) of
rapidly ¢1oo1~enmng soquoences. The characterization is in terms of a simple inequality
which tho basis must satisfy. Some consequences are derived and some information is
given on subspaces of (8) which do not have hases.

In this paper we study subspaces of the nuclear Fréchet space (s)
of rapidly decreasing sequences. Our main result is a theorem which gives
a complete characterization under the assumption that the subspace
hag @ basis. The condition is that there is a fundamental system of norms
for the subspace such that the basis satisfies condition (d,). This condition
i the same ay the condition of type d, of M. M. Dragilev [7] without the
requirernent that the basis be regular (Proposition 2).

Several consequences of this characterization are derived (Corollaries
1, 2, 3) and some open questions are mentioned.

In the last section, we give (without details of proof) some information
on subspaces of (s) which do not possess a basis. In this case, although
we know that such exist we do not have a complete characterization’.

It would be interesting to know which other nuclear Fréchet spaces
.can have their basic sequences so simply characterized (of course, for
the space w-countable product of one- -dimensional spaces, it is well known
{see [4], Theorem 6) where this space is called (s)).

The research for this paper was supported by the National Sclence
Toundation. We would like to thank W.B. Robinson for his assistance in
this work,

Preliminaries. We whall denote by N the set of posmve integers.
Because of the profusion of indices there may be ambiguity between super-
geripts and exp(monbﬁ To resolve this we shall, when it seems necess-
ary, write ¢* when % is a superseript and (¢)* when k is an exponent.

T¢ H is & nuclear Tréchet gpace, then a sequence (- )z of seminorms

! (A.ddar,l in proof). Such a characterisation has recently been obtained by D
Vogt.
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will be called a fundamental system of seminorms for H if ||, < o/,
wel and lemn =g in the topology of ¥ iff llm o, — @l =0, ke N,

Two sequences of seminorms (||-[l) and (|-[) are eqmmlent if

Vjdk and M > 05 o), < Mal,, @<k,
and
Vi3l and N > 05 @), < N |»l;,, @k,

Thus, as is well known, the two systems are equivalent iff they are funda-
mental for the same topology.

Tt is well known and easy to show that a nuclear Fréchet space B
has a continuous norm defined on it iff it has a fundamental system of
seminorms, each of which is a norm.

A sequence (#,) in a nuclear Fréchet space H is a basis if for each
2 e B there is a unique sequence (t,) of scalars such thata = Y't,a,. Olearly,
if (#,) is a basis and (d,) is a sequence of non-zero scalars, then (d,,)
is again a bagis. The sequence (d,,) is called a diagonal transformation
of (&,). It follows from the theorem of A.8. Dynin and B.S. Mitiagin [11]
that any permutation of a basis in a nuclear Fréchet space is again a basis.

Two bases (z,), (v,) for spaces H, F, respectively, are equivalent it
there is an isomorphism T': B—F such that T, = y,, neN. The bases
are semi-equivalent if one iz equivalent to some permutation of the other.

A sequence in a nuclear Fréchet space F is a basic sequence if it
is a basis for the closed subspace it generates. If (#,) is a basis for B and
0 =Py <Py <Pyy1yne N and

C
Yp = 2 t,,;-’ﬂ“
=Py 1+1
where (t;) is a sequence of scalars and ¥, 5 0, ne N, then (y,) is called
a block basic sequence with respect to (x,). It is easy to check that it is always
a basic sequence. Moreover, a diagonal transformation of a block basic
sequence is again a block basic sequence with respect to the same basis.

The most important example of a nuclear Fréchet space with con-

tinuous norm is the Kéthe space K (a) determined by an infinite matrix
@ = (af);, nev which satisfies

ne N,

- .
. @ :
0<ab< ol n ke N  and _>_ ma,ﬂil < o0, ke N.
k(3 n

Then
E(o) ={& = (&): el= D) 16a]dk < oo, ke N}

and the topology is determined by requiring that(||- [,) be a fundamental
sy.stem of norms. It is clear that, if e, is the sequence of sealars which is
1 in the nth place and 0 elsewhere, then (e,) is a basis for K(a) called the
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coordinate basis, Thus K(a) is 2 nuclear Fréchet space with basis and
continuous norm. It is not hcmd to see that every such space is isomorphic
to a Koéthe space.

If K () is a Kothe space and 1 < p < oo, then we obtain a fundamental
system of norms (f+];) equivalent to (- [l) by letting |&}; be the I,-norm
of the sequence (£,al),.

The space (s8) of rapidly decreasing sequences is the Kothe space
I (), where af ==n*. Thuy (¢") is a basis and a fundamental system of
norms is given by ([[-1), where

y=2&mm

fince (s) has a continuous norm, it is obvious that any subspace of (s)
also has a continuous norm.

ke N, for

Il == Hl::[) I‘::nlnk7

Bases of type (d,). A basis (@,) in a nuclear Fréchet space with
continnous norm. ¥ is said to be regular if there is a fundamental system
of norms (|| [|,) such that

198, e -1 [ e
2 1
A basis is said to be of fype d, if there is a fundamental system of
porms which satisfies (8,) and also the condition
lloa

(122511 12l

A Dasis is said to be of ype d, if there is a fundamental system of
norms which satisties (3,) and also the condition

(30)

I e N.
12l

S Jka V5 o s up

)

@) Vi3>V sup el
n “wn“j

These classifications were introduced by Dragilev [7] as generalizations
of power bases in spaces of analytic functions on the whole plane (type
dy) or the open unit disk (type d,).

For our purposes we will say that a basis (a,) in & nuclear Fréchet
space J with continnous norm ig of type dy if there is a fundamental sys-
tem of norms ([+]l) such that

{0 11 Nl et
(35) I il < il ,
l122, ool -1

Noblce that there is no assumption of regularity here. Notice also that
in view of thedefinition of fundamental system it would be equivalent
to require that (g, De any preassigned sequence of positive numbers.

Vicde, > 02 ¢, neN.


GUEST


286 E. Dubinsgky

icm

Condition (3,) very much depends on the choice of the fundamental

system of norms whereas (3;) and (3;) do not. Condition (8,) is somewhere
in the middle as indicated by the following proposition. On occasion we
will say that a space is of a certain type when the choice of basis is clear
or irrelevant.

ProprosrrIoN 1. If (w,) is o basis of type dg and (|-|;) is any fundamental
system of morms, then there is a subsequence (|- ["l)l such that condition (8,)
holds.

Proof. We may suppose that (3,) holds with the fundamental system
of norms (|| |l,) and &, = 1. We may choose %k, and M, such that |,
< My |,y ne N and Ty > ;. Asgume that b, < by <... <k and dy,...
...y 6;_, have been chosen such that

I.Wnlk,u,_l < Im"'i}"i»}-‘.'

B =1,2,...,l—2,‘n€N‘

?
lmnhc,t lmnllc.i_}_l

Then we choose & < j and M, N > 0 such that

”mn”k < M |m11,!l£l_.1 < M [mnlkz ‘<~ N ”mn”ﬂ . e N.
Hence, for ne N, we have
]wnl"l “mn”j _ [lmn”j HmnHIM»I
@aley_y [l 12 ls—x ol
< MN “wn”ﬁ—k . ”wn”j-{-l — ”wn“M—k
1@ /la -1 le,lly 1%l

< N2 ”mnuzj—k
]a;nlkl

It is then possible to complete the induction by choosing %;,; and R > 0

such that ]]m,,llz,-,_,,<1€lwn!kl+l, ne N go that &, , =1/RN?2. Thus (3,)
is established.

Remark. It is obvious from the form of (8,) that this condition
is unaffected if the basis (»,) is subjected to a permutation and a diagonal
transformation. Less on the surface is the fact that, if a space hay a basis
of type dy, then every complemented basic sequence is also of type dj.
This is an immediate consequence of a theorem of 0. Bessaga and j).l,'a.,c_,ri—

lev ([1], p. 315). Actually, we will show below that a mueh stronger state-
ment is true (Corollary 1). ’

) PROPOSITION 2. 4 basis (z,) in a wudlear Fréchet spaaé 8 of type &4 iff
it has o fundamental system of norms for which the relation (5,) holds.
Proof. We may first assume that

5

I 1% < ]l lealss 0y ke N
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so that

) 1)1 < Il nlisn < 10 el
which gives (3,), with &, = 1.
Conversely, if the basis is of type d;, then we may assume that (3;)
holds with g, == 1 go that, for n, ke N, '

[N P l#alls _ lallotma
Mol Wolies " loals ~ Ioals

which yields (3;).

The preceding result gives considerable. information about the class
of spaces of type dy. For example, in addition to the spaces of type d,
this elasy includes the metrizable Gy, spaces of T. Terzioglu [13]. It also
includes the spaces of class Ky, of Dragilev [8] (which are the same as
type. d;) but is disjoint from the seven other classes discussed in that
paper. Indeed, it is immediate from Proposition 2 that no basis of type d;
can. have a subsequence of type d, (which implies that all but E,, of the
remaining seven classes are disjoint from the class of spaces of type dj).
Tt we take any space of class H,, then the basis has no subsequence of
type da. On. the other hand, it is regular so, by Proposition 2, it is of type
d iff it is of type d, which it is not. All of these properties of a space of
clags My, ave ewtablished in [8]. .

Tf one invokes the theorem of Bessaga and Dragilev mentioned above,
then it follows immediately that if o space hag a basis of type d, then no
complemented basic sequence can be of type d,. The same example of
a space of class B, shows that the converse is again false.

_ lolsy
Il

(12 17041
{1l

Main. result. The following lemma is a gpecial case of Lemma, 2 ([9],
p. 261) along with equation (3) of ite proof. We omit the details of the
proof.

T, Let (o) be an infinite matria of positive numbers such tha

Jawk 1 Jot-1
a .
<=L my kel
Oy, 1

Givon numbers Ty, ..., by, we define, for ke N,
I
@ty .y ty) =max{g: max [tlag = [t aky.
1<isp

Then if 0 < gt < ...< "< p are inlegers, it 4s possible to choose mumbers

buy ooy by Wikh b = 0 bul otherwise arbitrary, t; = 0 for i 5 ¢ ...y 4" and
alk]-l-l I . '
T [ bpl L, To=1,2, ., m—1.
(1) [tgnl [”I;I'cl:\%l << 1] < [l @Z’”‘l ’ y 4y ’
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Moreover, if any sz_wh choice is made, then
g o ty) =¢% k=1,...,m.

THBEOREM. A nuclear Fréchet space B with a continuous norm and a
basis (y,) is isomorphic to o subspace of () iff the basis is of type d,.
Proof. First suppose that F is a subspace of (s) so we have the
" fundamental system of norms (|- [l;) defined above, and, for » == 31, ¢, (s),
we may define

, (@) = max{g: [loll, = It,(0)*}, TeN.
‘We may also write :

Yy = D Ehen, of =¢"(y;) for j, kel
n
Then, for any j, ke N, we have

1 1 Joek 1\ e
Epal @ 1)

=

(7 -

) Forf<1
11l [E5 (q?)’“
Yy

Feal(@yr Y
7

4 T 1\ T2 5! Y ok 2\ T2
B lfq}u-ﬁ-ll(q_i ) ‘ a}a~|~»,|<Qj ) _ ”:‘/ﬂ“lﬂ»i-z

= - - < 3 ez
1€ (G 10 1@ Tl
J ')

80 that (3;) is satistied with ¢, = 1, ke N.

For the converse, we assume that (d,) holds. Applying a result of
Bessaga and A. Pelezytski ([3], Lemma 2), the invariance of (3,) under
diagonal ‘transformations, Proposition 1 and the fact that (&) may be
preassigned, we may assume that & has a fundamental system of seminorms
(I'lg) such that setting ¢f = 19l yields the relations

§ - . c;c—kl 1 cjk-[-z
(2) [t =1, je N and 7 <—E“QE;}CTIM, ],7‘76.N.

Our next step is to observe that we can partition the basis (e,) into
countably many pairwise disjoint infinite subsequences, (

¢ : 5 _ g, meNsew
In sueh a way that if we set af ,, = (jm)* and write

WIE = 59D (&g, mlafym  for gy = 31 & 0 (5),
v.m Gm

then ([|-|%) is a fundamental system of norms for (s). To see this, we fivst
consider the following array of numbers jm, §, meN:

icm
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" 1 2 3 4 ° . .
— I
4 e 6 T . ° .
e ) 1|2 . . .
4 8 12 16 s . .
c . - . . . - A4

If we lineatly order this array by taking consecutively blocks consist-
ing of perimeters of increasing squares (as indicated in the diagram)
and then ordering within the block aceording to increasing magnitude,
then the »th block has the following 2»—1 terms:

Yy ¥y 2w, 20, 89, 89, ..., (v—=L)», (v—1)p, 2
which, in the linear order, occur at the places
(»=1)2+41, (»—1)2+2, ..., v2.

If we raise each term in the first list to the powér 2k, we get quantities
correspondingly larger them if we raise each term in the second list to
the power . Conversely, each term in the first list is less than or equal
to the corresponding term in the second list. It follows that the systerns
(Il ) and (|| ly) define the same topology on (s). (Of course this is just the
well-known argument showing that (s) is isomorphic to (s)®(s) .([12],
Pp. 207).)

Now we fix je N and proceed to construct a strictly increasing se-
quence (g¥), of positive integers such that

(3) igf < oMl <igitts  keN.

To do this we first observe that it follows from (2) that ¢}/c; > j so that
we may choose g to be the largest positive integer such that Gle} > ig},
and it follows that ¢j 3 L.

Suppose then that we have chosen g < g < ... < gf" so that (3)
holds and moreover, gf** is the smallest integer such that the right-hand
inequality in (3) holds. Then, since ¢¥*' > ¢} > 1, it follows from (2) that

o Koo . o 1 [ Al Jo Jet1
Ja < 25(ghH —1) < 20 of < of T lef T

This establishes the left-hand inequality in (3) for k replaced by k-1 and
also shows that if gf** is chosen to be the smallest integer such that 1;]1«;
right-hand inequality in (3) holds with % replaced by %-+1, then ar
> gf*, This completes the definition of (gf).

§ — Studla Mathematica LIX.3
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Let j still be fixed. We claim that there exists au #;e(s) of the form

N
(4) @ = f;ia}“e(i.a;?)
suech that
(5) lwjly, = ¢  for k=1,...,§.
In fact, we may define the coefficients in (4) by
(6) ta;a =g for b =1,...,].

The conditions (6) and (3) yield, for k¥ =1, ...,5—1,
|tq)‘.c|(j gt < |tq€g+1|(.7' Q;CM)EH < [tqgcl(j AR qz‘wl;
J

i.e., the coefficients in (4) defined by (6) satisty condition (1) of the lemma
with

a=@nt, p=qg, m=j, {=gtoi=1,...,m.
Henee the lemma yields (8). '

Finally, we note that (#;) is a block basic sequence in (s) so it is a basis
for the space it generates which is therefore a subspace of (s) isomorphic
(by (B)) to E. This completes the proof of the theorem.

CoroLLARY 1. If B is a nuclear Fréchet space with o basis of type dy,
then every basic sequence in B 8 of type d,.

‘Proof. We embed Z in (s) so that the subspace generated by a basie
sequence is also embedded in (s).

The next corollary is a strengthening of the observations made ab
the end of the last section. It follows from those observations and Corol-
lary 1.

COROLLARY 2. If B is a nuclear Fréchet space with o basis of type dy,
then mo basic sequence in B is of type d,.

Our last corollary follows from the actual construction in the proof
of the theorem.

CoROLLARY 3. Hvery basic sequence in (8) is semi-equivalent to a blook
basic sequence with respect to o permutation of the natural basis.

These results suggest the following questions.

ProBLEM 1. Is the converse of Corollary 1 true? That is, if # is & nu-
clear Fréchet space with a continuous norm and a basis (@,), does the fact
that no basic sequence in B iy of type d, imply that () is of type dy?

ProBLEM 2. Which nuclear Fréchet spaces B with continuous norm
and basis (,) have the property that every basic sequence in H is semi-

equivalent to a block basic sequence with respect to some permutation
of (»,)?
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Proprmm 3. Which basic sequences in (s) are semi-equivalent to
a block basic sequence with respect to the basis (¢,) ? (No permutation
of (e,) is permitted.)

Regarding Problem 3 we have some partial information. It is easy
to check that in (s) a block basic sequence with respect to (¢,) must be
regular and hence, by the theorem, of type d,. The converse is false,
even if ‘we permit & permutation of the block basie sequence.

ExAwers. It of = e”h, n, ke N and K(a) is the Kothe space deter-
mined by the matrix a = (a¥), then the coordinate basis in K (a) is of type
dy, but it is not semi-equivalent to a block basic sequence with respect
to the basis (e,) in (8).

Indeed, it is trivial to check that the basis is d,. On the other hand,
if it were semi-equivalent to a block basic sequence (y,) with respect to
(64) in. (8), then since (e,) in & (a) and (y,) are regular, it follows from the
theorem of L. Crone and Robinson ([5], Lemma 2) that there is a sequence
(d,) of positive numbers such that (d,y,) is equivalent to (e,) (in K (a)).

Thus we may write

P,
ApYy = 2 tey;, 0 =P, <Py < Ppyyy nelN,
Py +1
and
gn =max{g: max |41* = [t,](¢)%}
Dy —1<i<Dy,

From the equivalence, we obtain

(7 Vi3 b and M;> 056" < Myltyl(gh)  for ne N,
(]
(8) Vi3l and N, > 09|tqk|(q’,j)"<l\7ke"l for meN.
n \
Now for any positive integers %k, < k,, ky <k, and ne N, we have
1
I‘ﬂqﬁal(qﬁ”)'62 Ty =Ty

1
I, @it \ s
-1
e

<R <Py < gt < |
SO SPa< @S| i, |(05%.1)"
-1

‘We may consider that (7) delines a function j~~—>k(j) and (8) defined
a function kww->l(k). We set by = k(1), &, = ks+1,1, = U(k,), & =1,
Uy = T(L), fy =l --T~-1 and &y, = E{j,). We then obtain
1
by gl y ! .
(gnl 2 )k2—1< MlNk“e(n-ll)l ne N

T T KRy
Nl e,,z 0n+1

which is not true for large n.
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Subspaces of (s) without bases. Our theorem gives a complete charac-
terization of subspaces of (s) with bases. Very little seems to be known
about subspaces of (s) which do not have a basis. Using our theorem it
is eagy to show that certain examples of nuclear Fréchet spaces without
bases which have been constructed ([2], [6]) cannot be embedded in (s).
For instance, in the specific space constructed by P. Djakov and Mitiagin
([6], Bquation (1.6)) we have the space

X ={oeH: ol = 3 l4nanlf < oo, Vp}.

Pye=]
Here
H ={m = (@): @, = (ah, ;) e H* and ' |, < oo}.
n

H? is a two-dimensional Hilbert space and each 4,, is an operator on
H?* The example is then determined by specifying the 4,,,. )
Now, if one takes the subspace of X consisting of those @ = (x,)
in which each #, = 0, then this subspace has a basis and one can check
that, if 4,, is given by the equations (1.6) of [6], then the basis is not of
type d; so the subspace, and hence @, cannot be embedded in (s). A similar
argunient applies to the example constructed by Bessaga [2].
The space (s) does, however, contain a subspace which has no basis.
In fact, if one takes, in the notation of [6],
¥4 4D
o = 2n2pf,_p P< P,y 2ngp+;7 PP
N A B 'y P>

then the space X of Djakov and Mitiagin has no basis but it can be embed-
ded in (s). Instead of giving the details we refer to [10] in which a more
general result is proved.

In trying to determine oll subspaces of (s) a first step might be to
answer the following question:

ProBLEM 4. Is it true that a nuclear Fréchet space H with continuous
norm is isomorphic to a subspace of (s) if and only if every basie sequence
in B generates a space isomorphic to a subspace of (s)?

This problem might also be interesting if (s) is replaced by some other
nuclear Fréchet space.

np T one
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