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A characterization of Gaussian measures
on Banach spaces

by
K. URBANIK (Wroclaw)

Absteact. This paper is an outgrowth of my work [11] concerning decompos-
ability semigroups of lineaxr operators associated with probability measures on Euclidean
tpaces. Its aim is to characterize Gaussian measures on separable Banach spaces in
serms of decomposability properties.

The present: paper is concerned with probability measures defined
on Borel subsets of a separable real Banach space X. The set of all such
measures under weak convergence can be metrized as a separable metric
space ([7], p. 43). The adjoint space X* in the X-topology is also separable.
Given a linear operator 4 and a probability measure A on X, we denote
by A4 the probability measure defined by the formula 44(8) = A(47*(8))
for all Borel subsets § of X. The decomposability semigroup Z (1) con-
sists of all linear operators 4 in X for which the equality

) » A= Adxiy

holds for a certain probability measure 1,.Here *.denotes the convolu-
tion operation. Recently I proved that in the case of Eueclidean spaces
some probabilistic properties of measures can be expressed in terms of
algebraic and topological properties of their decomposability semigroups
([10], [11D). '

Now we quote the classical concept of decomposability of measures
([6], p. 78; [7], . 64). Let #¢ X. By J, we denote the probability measure
concentirated at the point ». Measures not concentrated at a single point
are called nondegenerate.

A measure A is said to be decomposable if and only if there exist two
nondegenerate measures w and » such that A = wx» In the contrary case, 1
is said to be indecomposable. A measure a is said to be a factor of 1 when-
over A == axp for a certain probability measure f. We say that A has no
indecomposable factor whenever each nondegenerate factor of 4 is decompos-
able. )

The related concept of operator-decomposability has been introduced

k in [11]. Namely, 4 is said to be operator-decomposable if and only if there
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exists a one-to-one operator 4 from H(4) such that the measure 24 in de-
composition (1) is nondegenerate. Then the measure 44 is also non-
degenerate, which shows that operator-decomposable measures are decom-
posable. Further, we say that A has no operator-indecomposable factors when-
ever each non-degenerate factor of 4 is operator-decomposable. Our aim
is to examine probability measures on X without operator-indecomposable
factors. i .

The characteristic functional A is defined on X* by means of the for-

mula @

Q@) = [e™@i(da)  (@*eX").
X

For basic properties of characteristic functionals we refer to [2] (Chapter
5.3), [3] (Chapter 6.2), [6] and [12] (Chapter 4.1). In particular, 1 de-
termines 4, :

2) @ <1 (a"eX"),

/\ ~ ~ . . g
wxy = wy and A is continuous in the X-topology of X*. Put
r, = int{|lw*: i@*) =0},

where the infimum of the empty set is assumed to be co. By the conti-
nuity of 7 and the condition 4(0) = 1 we have 7, > 0. Moreover,

® <,

for all factors u of A. Let T be the countable product of unit intervals with
the weak topology. By dt,df, ... we shall denote the integration with respect
to the countable product of the Lebesgue measures on the unit intervals.
Suppose that functionals @}, &7, ... non-vanishing identically form a dense
subset of X* in the X-topology. Put
" Kl
@) y:———m%w (n=1,2,...).
“ ¥y

Obviously, for every sequence &y, t,, ... of real numbers from the unit
0 ol 00

interval the series ' #,y5 strongly convergesin X* and || 3 ¥,ynll < 1. Given
fywal,

fm=l
a probability measure A on X for every r with 0 <r <7y, we put -

(5) m(2) = — [log|i(r X t,yh) | dtsty...
i n=1

The functional m, is finite, non-negative and

(6) my(pv) = m,(u)+m (»).
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Moreover, m, is invariant under shitt transformation A2+ 8, and m,(u)—
m,(A) whenever y—>Aandr < r,. The symmetrization 4° of 1is defined by the
formula 2= Ax1, where 1 (8) = A(— 8) for all Borel subsets S of X. By (6),
we have the formula

Y7 My (2°) = 2m,(2).
Let us denote by D an arbitrary decomposition
A=Ak dgk L ox Ay
and put for r <7,
(A, D) = max m,(4;).
1<j<k

We note that, by (3), r, < 3 (j =1,2,..., k). Further, let us denote by
M,(%) the greatest lower bound of m, (1, D) for all possible decomposi-
tions .D of } It iy very easy to verify that

(8) M, (4) < max M, (u;)
1<i<k

whenever A = g% g% ... % iy,

LevmA 1. et 0 < r < #;. Then m,(A) = 0 if and only if A is concen-
trated at a single point.

Proof. The formula m,(6,) == 0 iy evident. To prove the converse
implication, by (7) it suffices to show that the equality m,(4°) = 0 yields
1® = §,. By (2), the equality m,(4*) = 0 and the symmetry of 4* imply

oo
(9) P Dtawn) =1
n=1
for almost all elements t,, %, ... of T. By continuity we get formula (9)
for all ¢,,%, ... in 7. Hence, in particular, it follows that is(ty;‘;) =1
(m.=1,2,...; 0<<$<1). Taking into account the well-known property
of the characteristic function of number-valued random variables ([4],
Chapter 14.2; [57, p. 108), we get the formula i*(ty}) =1 for all real
numbers ¢ and positive integers n. Consequently, by (4), Pt =1
(n =1, 2, ...), which by the density of @}, #, ... in the X-topology of x*
yields /¥ (a*) = 1 for all #*X* Thus A* = 8,, which completes the proof.
LoyMa 2. If A has no indecomposable factor, then M,(2) =0
(0 < r<my). ‘
Proof. The idea of the proof is similar to that in [8] (p. 115), where
the case of number-valued random variables has been considered. It
follows from the definition of M,.(4) that there exists a sequence of de-
compositions Dy, S8y = Ak lpg® .ot hpe (n=1,2, ...), for which s, (1, D,)
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converges to M,(A). Leb p, = ., (L <8, < %,) be the factor of .D, for
which m,(g,) = m,(, D), and write », for the convolution of all other
factors of D,. Then A = p, %, (n =1,2,...) and

limm, () = M,(4).

N0
The SeqUENCes oy, Ba, - .- and 75, v,, ... are both shift compact ([7], p. 59).
Since the functional m, is invariant under shift transformation, we may
assume without loss of generality that the sequences uy, fg, ... and vy, vy, ...
Doth converge to u and », respectively,

(10) = kY

and, by virtue of the continuity of m,, m,.(u) = M,.(1). We show next
by means of an indirect proof that M, (1) < 4m, (). Let ux therefore suppose
that M,(A) > dm,(A); it then follows from (6) and (10) that m,(v) < M,(2).
Since x is also decomposable, there exist two nondegenerate measures
41 and u, such that g = gy *u,. By Lemma 1, m,(u;) > 0 and m,(u,) > 0.
Taking into account the formula m,(w,) 4 m,(us) = m,(u) = M,(1), we
have the inequality ‘

ML () < mak (1 (1) 5 My () , My (v) < M (A),

which gives a contradiction. Thus M, (1) < Im,(A) for every probability
measure 1 without indecomposable factors. ’

Let D be an arbitrary decomposition A = A;#iy*...%4, into nom-
degenerate factors. Since 1; have no indecomposable factors, we have
the inequality M, (%)< $m,.(%4) (j = 1,2, ..., n). Consequently, by (8),

M,(3) < § max m, (),
15 d<n

which, by the definition of the functional M, implies the inequality
M,(4) < $M,(3). Thus M,(3) =0, which completes the proof. '

A probability. measure A iy said to be infinitely divisible whenever
for every positive integer n there existy a probability measure 4, such
that 1 = 4;™, where the power is taken in the sense of convolution. For
the theory of infinitely divisible probability measures on Banach spaces
we refer to [8], [9] and [1]. In particular, if ' is any bounded non-negative
Borel measure on X vanishing at the origin, the Poisson measure ¢(X)
agsociated with F is defined as

L E
o(T) = ¢~ Z_L i
k! !

Jem0
kO | g :
where F° = ,. The correspondence J' «» ¢(¥) is one-to-one. Moreover?

(11) e(IMxe(G) = e(F+Q)
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and
(12) Ae(F) = e(AF)
for any linear operator 4 in X.

Let H be a not necessarily bounded Borel measure on X vanishing
at the origin. If there exists a representation H = supF,, where F, are

n

bounded and the sequence ¢(F,), e(F,), .:. of associated Poisson meagures
is shift compact, then each limit point of translates e(F,), e(Fy), ... will be
called o generalized Poisson measure and denoted by ¢ (H). It is clear that
¢ (H) ix uniquely defined up to & shift transformation, i.e., for two limit
points, say w; and u, of translates e(F'), e(I,) ,..., there exists an element
weX such that uy == %, ([8], p. 313). A. Tortrat proved in [8] p. 311
(see also -[1], p. 22) the following analogue of the Lévy-Khinchine
representation of infinitely divisible laws: each infinitely divisible mea-
sare A on X hay a unique representation A = g#6(H), where g is a
gymmetric Gaussian méasure and é (H) a generalized Poisson measure.
By a Gaussion measure on X we mean such a measure ¢ that for every
#* < X* the induced measure 4* p on the real line is Gaussian. The following
Lemma is an extension of the Khinchine theorem ([5], p. 115) to the case
of the Banach space.

LummA 3. Probability measures without indecomposable factors are
infimitely divisible.

Proof. Let A be a measure without indecomposable factors. By Lemma
2, M,(A) = 0 (0 < <'7,). Consequently, there exists a sequence of decom-
positions Dy, 588y A = Ay * Ay -. %Ay, (0 =1, 2,...), for which
(13) ‘ lim m, (X, D,) = 0.

oo “

Let d . be a distance function in the space of all probability measures on
X. By @,; we denote an element of X satistying the condition

(14) @ Agg* 6%1» 80) < g+
where
dVlJ == infd(lw* 6@’ 60)
we X

(= 1,2, 000, dogy mo== 1, 2,...). Leb ji,ja, ... be an arbitrary sequence
of indices xatistying the condition 1 < j, <k, (0 =1, 2, ...). By Theorem
2.2 in [7], p. 59, the sequence of corresponding probability measures .,
is shiftt compact, i.e., the sequence 1, * 6, is compact for suitably chosen
eloments ¥, from X. Let x4 be ity limit point. Of course, u ig a factor of A
and, by (138), m,(u) = 0. Thus by Lemma 1, u is concentrated at a single
point, which yields the relation limd,;, = 0. Consequently,
N0 .
lim max d,; =0,
nroo 17k,
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which, by (14), implies

im 1% @ (28, 8) = 0.
n—>00 1<i<ly,

In’ other words, the triangular array p, = A, 6’%} (F=1,2,..,1,;

n=1,2,...) satisfies the uniform infinitesimality condition and
B A= g g ook Honie,, ¥ 6:4:“! :
n
where @, = — 3 @, (n =1,2,...). Given a subspace ¥ of X with a finite
Je=1

codimension, we denote by P the natural mapping from X onto X/¥. Obvi-
ously, the triangular array Pu, (§ = 1,2, ..., ky;n =1, 2, ...) satisfies the
uniform infinitesimality condition. By the extended central limit theorom
valid for finite-dimensional spaces the probability measure P4 is infinitely
divisible ([4], p. 310; [7], p. 199). Hence, it follows that A itself is also infi-
nitely divisible ([1], Chapter II, Theorem 2.1), which completes the proof.

Lennwa 4. Let B be a bounded measure vanishing at the origin. If ¢(F)
Las no indecomposable factor, then it is operator-indecomposable,

Proof. Let 4 be a one-to-one operator from B(e(F)}. Then

(15) AF({0}) = 0.
Consider .the decomposition
(16) oI = Ae(F)xv.

The measure » has no indecomposable factor either and, by Lemma 3,
is infinitely divisible. By (11), (12), (16) and the uniqueness of the Tortrat
representation » = o« (H), we have the formulas ¢ = 3, and H = F— AF.
Thus AF(S) < F(8) for all Borel subsets & of XN{0}. Moreover, by (15)

AF(XN{0}) = F(XN\{0}),

which yields the equality AF = F. Consequently » = 6,, which shows
that e(¥) is operator-indecomposable.

THEOREM. A probability measure on a separable Banach space has
no operator-indecomposable factor if and only if it is nondegenerate Gaussian.

Proof. The sufficiency of the condition is obvious. Nanely, it is
a consequence of the Cramer decomposition theorem ([4], p. 271) and the
formula u = ¢, TpxeyTu*é, for every Gaussian measure g, where I is
the unit operator, ¢} +¢2 = 1 and @ a suitable element of X. To prove
the necessity we note that a measure 4 without an operator-indecompo-
sable factor has no indecomposable factor. Consequently, by Lemma 3,
A s infinitely divisible and admits the Tortrat representation 1 == g6 (H),
where ¢ is a symmetric Gaussian measure and é(H) a generalized Poisson
measure. Suppose that H does not vanish identically on X\ {0}. Then
we can find a bounded measure I < H having the same property and
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vanishing at the origin. Evidently ¢(T) is a factor of A and, by Lemma 4,
is operator-indecomposable, which gives a contradition. Thus H vanishes
identically on X\{0}. In other words, 1 = g%4,, where ¢ is a nonde-
generate Gaussian factor. The Theorem is thus proved.
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