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Banach-Lie algebras of compact operators

by
W. WOTTYNSKI (Warsaw)

Abstract. Lot B,(X) be the Banach algebra of all compact endomorphisms of
a Banach space X. It is proved that if a closed Lie subalgebra L of B,(X) is simple,
then either I contains a finite-rank operatior or all elements of L are quasinilpotent
oporators.

1. Introduction. A normed (Banach) Lie algebra (shortly, a B-L
algebra) is a normed (Banach) space and & Lie algebra, with a Lie bracket
(@, b)~>[a, b], which is continuous in the norm topology of L.

Tor a Banach space X let B(X), B,(X) and By(X) denote the associ-
ative algebras of all continuous endomorphisms of X, all compact con-
tinuous endomorphisms of X and all finite-rank continuous endomorphisms
of X, respectively. Since each agsociative Banach algebra has a natural Lie
algebra structure under the Lie bracket [a, b] = ab—ba, we can regard
B(X) and B,(X) as B-L algebras and B,(X) as a normed Lie algebra.

Let L be a B-L algebra. For ae L define Ad,e B (L) by the formula
Ad,(b) = [a, b].

DerINITION. We introduce three classes of B-L algebms, saying that
a B-L algebra L is:

(I) simple — if it has no proper closed ideals (i.e., if there exists no
proper cloged subspace of I invariant for all Ad, with a¢L) and if
dimZl > 1;

(XX) milpotent — if for each ae L the operator Ad, is quasinilpotent
(i.e., if the spectrum o(Ad,) is equal to {0});

(XIX) locally fimite — if there exists a dense subalgebra L, of L such
that each finite subset of L, is contained in a finite-dimensional subalgebra.

In this note we exhibit some connections between classes (I), (II)
and (XXI) in the case of B-L algebras of compact operators, i.e., closed
Lie subalgebrag of B,(X). In particular, our Theorem 4 implies that
a simple B-L algebra of compact operators has to be locally finite or nil-
potent. (We do not know whether the second possibility can oceur.)
The situation in the class of simple B—L algebras of compact operators is
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thus very similar to that of the case of separable L* algebras (cf. [7],
[8])

‘We postpone a more detailed discussion of these topics as well ag
a diseussion of some open questions to the last part of this note. We are
indebted to several people for helpful discussions or suggestions: eg-
pecially to C. Atkin, 8. Kwapied, B. Mitiagin, L. Stewart and P. Wojtaszezyky

_ 2. Notation and preliminaries. All spaces and algebras we discussed
in this paper are assumed to be over C — the field of complex numbers.
Let X be a B-space and let 4 B(X). By o(4) we denote the spectrum of
A. For each ecomplex number A define

Xy ={ne X: (4 -2 ulM"—0}.

X 4 is a linear (in general not; closed) subspace of X, not depending on the
choice of norm in X, and X4 # {0} implies that 1¢ o(4). (Note that Ae o(4)
does not imply that X% == {0}.)

The following three propositions can easily be derived from the gen-
eral spectral theory of bounded operators, as presented in [1], Chapter 7,
and we omit the proofs.

PROPOSITION 1. Let Ae B(X) and let o(d) = W,UW, be a decompo-
sition of ¢(A) as the disjoint union of two closed subsets. There emists o wuntque
direct sum decomposition

(1) X =X01x,

such that, for i =1,2, X, is A-invariant, and, if A, is the restriction of
A to X;, we have o(4;) = W,. :

In the following we shall refer to (1) as the decomposition of X asso-
ciated with the decomposition o(A4) = W,u W,. .

PROPOSITION 2. Lot A¢ B(X) and X = X, @ X,, where X, and X,
are A-invariant. Let A, be the restriction of A to X,.

If 2¢ o(4,), then X% & X,.

Hint for the proof. There is a constant O such that for ye X,
Y =4 +Y, With y;¢ X; we have |ly,| < Olyll. In particular, for weX?,
@ = +@;, we have [[(4d—A)"m | < C|(4—A)a|,

.PROPOSITION 3. With the same notation as in Proposition 1. let Ay be
an. isolated point of o(4) and put Wy = {A}, W, = o(A)N{d}. Then X,
= X4. In partioular, X% s {0}.

Let; ?lbe the family of all polynomials of one complex variable. For
U <= C define pe(U) — the polynomially convew cover of U, by

pe(U) = {2 C: IP(z)lgiur;/p |P(4)] for Pe).
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PROPOSITION 4. Let Ae B(X) and X be o closed A-invariant subspace
of X. Let Ay be the restriction of A to Y. We have o(Ay) = pe(a(4)).

Proof. Let Pe 2 and let P(4), P(Ay) be the corresponding poly-
nomials of 4 and Ay, respectively. Since Y is P(4)-invariant and P(A4)

restricted to ¥ is equal to P (A y), we have
1

sup [P(4)| = sup |A| =lim [P(A)|"
Aso(A) Aea(P(4)) n-+00

1
ZHIm|P(Ap)"* = sup |4
n-»00 Aea(Pid p))

= sup |P(2)],

leo(d )

and this means that o(4dy) < pe(o(4)). ’ .

COROLLARY b. With the notation of Proposition 4, let a(A) be countable.
Then o(Ayp) < o(4).

Proof. This is a consequence of Proposition 4 and the fact that, for
U countable compact, U = pe(U) (cf. [3] Theorem 1.3.3).

OOROLLARY 6. Let L be a B—L algebra of compact operators. For AeL
we have

(2) o(Ady) = a(4)—o(4)
and, in particular, o(Ad,) is countable.

Proof. Let I be a closed Lie subalgebra of B,(X). For 4Ae¢ L define
D4: B,(X)—~>B,(X) by

D, (B) =AB—BA for BeB,(X).

‘By a theorem of Rosenblum ([6]), ¢(D,) = o(4)—oc(4); hence o(D,)

ig countable. Since Ad, is the restriction of D, to its invariant subspace
L, by Corollary b we get (2).

3. Nilpotent algebras. Let 4 € B,(X). We shall call A a Vollerra oper-
ator if o(4) = {0}. )

DurrNerroN 7. A B-L subalgebra of B,(X) is a Volterra algebra if
each 4 ¢ .L is a Volterra operator.

PropogITioN 8. Let L, be a Lie subalgebra of B,(X) such that each
AeLy is a quasinilpotent operator. Then L, the uniform closure of L, in
B,(X), is a nilpotent B-L: subalgebra of By(X). In particular, each Volterra
algebra is wmilpotent. .

Proof. Let 4, L, and 4 = lim4,; then ¢(4) = {0} and, by Corol-
lary 6, o(Ad,) = {0}. e

Propogition 8 is convenient for obtaining examples of Volterra al-
gebras.
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Examere 9. Let e, ¢ X, f,« X* be a biorthogonal system, ie., fn(e,)
= ™. Let L, be Lie algebra of finite-rank operators of the form

Azx = i (5: ank.fk(m)) Cny

n=1 k=1
where a,;, = 0 for # > &, and only a finite number of ¢’s does not vanish.
One eagily checks that A™ = 0 for m large enough, and hence, by Prop-
osition 8, the uniform closure of L, is a Volterra algebra. In particular,
if X is a Hilbert space and (¢,) it an orthonormal basis, we obtain Volterra
algebras of operators having uppertriangular matrices with respeet to
(en)-

Examere 10. Let L, be the set of all integral operators
1

(3) (Af)()) = [E(2,)f(@)ds
0

acting in the space I*[0, 1], with kernels K (x, ) being continuous fune-
tions on [0,1]x[0, 1] and satisfying K (2, ?) = 0 for 4 > 1. Since each
operator of form (3) is 'a Volterra operator I, the closure of L, is a Vol-
terra algebra.

Remark 11. Let [L, L] denote the closed ideal generated by all
[4, B] with 4, Be L.

Tt is not difficult to check that in Example 9 [L, L] is a proper
ideal in I, but in Exainple 10 [L, L] = L.

0
Exaverz 12. Let H =@ H; be an orthogonal decomposition of

f=1
a Hilbert space H with H, finite-dimensional for ¢ =1,2,... Let I,
be a nilpotent Lie algebra of endomorphisms of H; and define L, as
the Lie subalgebra of B,(H) of all operators having the form A4 =@ 4,

=1
with 4; belonging to H;, and 4; = 0 for large 7. Denote by L the com-

pletion of I, with respect to the norm topology. I ig mnilpotent but not
necessarily a Volterra algebra.

Leya 18. Let A, Be B(X). If [AQY(B)|[V*—0, then for each A the
space X% is B-invariamt.
Proof. Let zye X% and write
a; = |AdY (B)|I2,
By = A —2A) a2,
Vp = MAX Q46
isn

Obviously, 0”0, 8/"—0 and one easily checks that
C) w20
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A simple inductive argument yields

k&
[T,T"B]zZ(I;)(Ad’g,““j(B))oTj for TeB(X),

j=0

and thus
k

@ L=h(T=24B] = Y (¢) (A (Bo (-7,
j=0 i
but
(T'= "B = (2 (T —2), (T-—/1)""‘1%]0(T~—l)")-|-B(T—A)”+‘
Tow=0
and, using (5), we get for 4 and B

n_ - n—k

(A__/'L)11+1_B — (2 Z

k=0 f=0

(n]—k) (AdT'l—k_j(B)) (4 _A)J"H‘) +B(A —)"T

hence
I n—k

I — 2" (Bao)l< (2 5 2 (75 ncsoinbine (%)nﬂk—m@‘)j) N

Je=0 1 adl
+ 1B 1 (—2—)
n n—lo

S S T

Je==0 F=0
since
| S ) -
Z i el 2 ’
=0
we get
(A — 2P (Bog) | < vpt+ 1Bl Bugr (™
and Dy (4), ‘

(4 — 2" (Bay)["—>0, ie.  Bage x4,

Trworay 1. Let L be o nilpotent B-L subalgebra of B,(X). Then either
there ewists a finite-dimensional L-invariant subspace of X or L is a Volterra
algebra.

Proof. T I is not & Volterra algebra, then there exigts an AeL
with o(A) 7 {0}, Let 0 ## doe o(4). Since A is compact, the space Xi‘t’
is finite-dimensional and not {0}. For Be L we have ||AL B|*"—>0; hence,
by Lemma 13, X2 is B-invariant. Thus Xj is L-invariant.
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TeEEOREM 2..Let L be a nilpotent B-L algebra of compact operators.
Then etther I has a proper closed ideal or L is a Volterra algebra.

Proof. If L is not a Volterra algebra, then by Theorem 1, I has
a non-trivial finite-dimensional representation g; thus either L is finite
dimensional (and hence it has a proper closed ideal) or the kernel of o
is a non-trivial ideal of L.

4. Locally finite a]gcbras
PRrROPOSITION 14. Let L be a separable B-L algebm L is locally finite
iff there is an increasing sequence Ly « L, c Iy < ... of finite-dimensional

subalgebras of L such that \ JL, is dense in L.

n=1
Proof. “If": Put L, = {UL,. Then L, satisfies the conditions in
n==l

Definition (IIX) of the Introduction.

“Only if”: Assume that L, is a dense subalgebra of I and each finite
subset of I, is contained in & finite-dimensional subalgebra. Let {a,, a,,
@, ...} be a dense subset of L,; and define L, as the smallest subalgebra

contmnmg {@1,...,.8,}. L, is finite-dimensional for n =1,2,..., L,c
Ly, and ) L, is a dense subalgebra of .L.
n=1

Remark 16. Let L be a Lie subalgebra of B,(X). Bach finite subset
of L iy confained in a finite-dimensional subalgebra of L.

Proof. See [4], p. 24.

CoROLLARY 16. Let L be a simple B-L algebra of operators. If I con-
tains a finite-rank operator, then L is locally finite.

Proof. Let L, be the ideal of finite-rank operators of L. Since I is
simple, L, is dense in L, and, by Remark 15, L is locally finite.

TEmoREM 3. A B-L algebra of compact operators which is not nilpotent
contains an operator of finite rank.

Proof. Assume that I is not a nilpotent algebra, i.e., that there
exigts an .4« L with o(Ad,) # {0}. Since, by Corollary 6, a(Ad 4) Is count-
able compact, it contains a non-zero isolated point u. Plopomlon 3 implies
that there exists a0 5 0, 0 ¢ L such that

(6) im [(Ad g — u)* 0" = 0
fi—>0c
By (2), p can be written (in finitely many ways, because 0 is the only

accumulation point of o(4)) in the form

(7) , wom= =2
with ;, 4; belonging to o(4).
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Let
W, ={deo(A): A %0 and Ve o(4) such that A—A" = +u}.

W, is a finite subset of o¢(4) and 0¢ W,. Putting W, = o(4)\W;
we get a decomposition of o(4) into two disjoint closed subsets. Let

(8) X =X 00X,

be the associated direct sum decomposition of X, let P;, i =1,2, be
the projections defined by this decomposition, and let 4,, i =1, 2, be
the restrictions of 4 to X,.

Let
(9) B(X) =2,02,,6 7,,¢ Zy,

be the direct sum decomposition of B(X) associated with decomposition
(8), with By, the (i, j)th coordinate of Be B(X), given by
B;; =P,BP;, 4,j=1,2.

Since decomposition (8) is A-invariant, we have A4, = 4, =0,
and hence the spaces Z;; are Ad ,-invariant for 4, j = 1,2. In particular,
Ad, restricted to Zy, is equal to Ad,; hence, by Corollary 6 and Prop-
osition 1, o(Ady) = o(4,)—0(4,) = Wy—W,. But the definition of W,
and (2) imply that u¢ o(Ad,,); therefore, by Proposition 2, equality (6)
implies that CeZ),,®Z,,0%Z,, i.e., that
(10) ) 0 = P,(P,+P,CP,+P,CP,.

Now observe that since W, is a finite subset of o(4) not containing
0 and A is compact, the space X; is finite dimensional and hence ,Pls By(X).
Thus (10) implies that ¢ is a finite-rank operator.

Remark 17. We have proved m fact the following result. on oper-
ators:

Let Ae B,(X), BeB( ). I n(AdA—M)"Bn“”—"»o for u % 0, then B
is o finite-rank operator.

Trom Theorem 3 we deduce the following fact on simple B-L algebras
of compact operators:

THROREM, 4. Let L be a.simple B-L algebra of compact operators. Hither
L s locally finite or L is a Volterra algébra.

Proof. Assume that L is not a Volterra algebra. By Theorem 2,
I is not nilpotent; hence, by Theorem 3, L contains a finite-rank operator
and from Corollary 16 we infer that L is locally finite.

Let L be a Lie subalgebra of B(X). By £ (L) we shall denote the small-
est closed associative subalgebra of B(X) containing L.

Tamua 18. Let L be a finite-dimensional Volterra algebra. Then £ (L)
is also a Volierra algebra (i.e., each Be £ (L) is a quasinilpotent operator).
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Proof. Induction onn = dimL. For n = 1 it is obvious. Assume that
it is true for any Volterra algebra with a dimension less than n acting
on-any B-space X.

Let B be an element of L belonging to the centre of L (since .I is
finite dimensional, it is nilpotent in the classical sense, and hence it has
a nontrivial centre). Suppose that there exists an A .2 (L) which is not
quasinilpotent, i.e., that for some A = 0 the space X% iy not equal to
{0}. Since BC = OB for (¢ L, we also have AR = BA, i.e.,

(11) Ad4(B) =0.

From (11) and Lemma 13 it follows that X% is B-invariant. Since X%
is finite dimensional, the Volterra operator B is algebraically nilpotent
when restricted to X%. Hence there exists an @, # 0, wge X% such that
By = 0.
Let
Y ={yeX: By = 0}.

Obviously: Y is a closed and proper subspace of X. Take ye¢ ¥ and Ce L;
then B(Cy) = 0By = 0, and hence Cye ¥ and Y is L-invariant.

Let Ly be the quotient algebra of I given by restriction of the oper-
ators of I to the space Y. Since B restricted to Y is equal to 0, dim Ly
<. But Y n.XY contains #,, and hence A restricted to ¥ is not quasinil-
potent. Hence ¥ (Ly) is not a Volterra algebra and this contradicts the
inductive assumption.

TEnOREM 5. Let L be a locally finite Volterra algebra; then (L) is
" also a Volterra algebra.

Proof. By Proposition 14, L is the closure of |J.L,, where Ly = Ly =
=1

n:
cILy=... is a chain of increasing finite-dimensional subalgebras of

o .
L. Obviously & (L) is the closure of | #(L,) and since the set of Volterra

=1
operators is closed in B(X), the theorem is a consequence of Lemma 17.
‘We recall the following

LO]&?.‘ONOSOV Lawva (cf. [2], [5], p. 186). Let o be an associative (not
-neaessqmly dlosed) subalgebra of B(X). If there is mo proper closed subspace
of X invariant for all A<, then for each Be B,(X) there emists an wye X
and Age of such that A,Bx, = x,.

In particular the Lomonosov Lemma implies

COrROLLARY 19. Let L be an associative subalgebra of B,(X) whose
elements are Volterra operators. There emists a. non-trivial dlosed L-in-
variant subspace of X.

COROLLARY 20. Any locally finite Volierra algebra has a proper closed
invariant subspace.

icm

Banach-Lie algebras of compact operators 271
Proof. By Theorem 5, £ (L) satisties the assumptions of Corollary 19.
During the preparation of this note for print, in [10] results coincid-

ing with our Lemma 18, Theorem 5 and Corollary 19 were announced.

Since the proofs of those results are not given in [10], for the sake of

completeness we have included them in our note.

TarOREM 6. Let L be o separable Volterra algebra containing a finite-
rank operator. Then L has a proper closed ideal. -

Proof. We may restrict our attention to the case where the ideal
of finite-rank operators is dense in L. If this is the case, then, by Remark
18, L is locally finite and, by Corollary 19, it has a proper invariant sub-
space. By standard arguments we get a maximal chain V = {X,},, of
I-invariant closed subspaces of X.

Asgsume first that the following condition is satisfied:

(0) For ape P with X, s {0} the representation of L given by the
restriction of the operators of I to the space X, does not vanish.

Let Apel and dimd,(X) < co. For pe® put ¥, = X,nA(X).
Obviously {¥,},e i8 a chain of finite-dimensional subspaces of X and,
gince (MNX, = {0}, also ¥, = {0}. Thus thére is a ¢, such that ¥,

{4 ped

= {O}T ie., A(X,) = {0}. Hence the representation of L given by the
restriction of the operators of L to the space X, has a non-trivial kernel,
which is a proper closed ideal of L.

Agyume now that the condition (o) is not satisfied. Let X, be the
maximal subspace X, for which the restriction representation is trivial, and
congider the representation ¢ of L induced in the space X/X, . Obviously
for e P the spaces X,,, (images of X, under the camonical projection
w: XX |X, ), are ¢ (L)-invariant. It the family {X,},s,, satisfies the con-
dition (o) with respect to the algebra o(L), then the previous part of our
proof holds. So assume that for some g, with g, > @, the representation
given by the restriction of o(L) to X, vanishes. Thiy means that the
algebra given by the restriction of ¢(L) to X, consists of operators sat-
istying the condition .4? = 0, and hence it has a mnon-frivial centre.
Thus the algebra L itself has a non-trivial closed ideal.

5. Remarks and problems. Schue in [7] and [8] bas given an iso-
morphic classitication. of separable simple complex L* algebras (an I* al-
gebra iy a Hilbert—Lie algebra with an antilinear involution * such thayt
Adg. = AdY). According to Schue’s results, there are only three isornorp}.nc
types 4, B and ¢ of such algebras corresponding to the three infim.te
series (4.,), (B,) and (C,) (cf. [9T, p. 304) of simple complex finite-dimegsm-
nal Lie algebras. 4, B and C can be realized as subalgebras of the L” al-
gebra of all Hilbert—-Schmidt operators.
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P. de la Harpe in [4], Chapter I, exhibited the fact that the algebras
A, B and O are locally finite, and that most of their properties can be
derived from similar properties of 4,, B, and C, — the ideals of the corre-
sponding finite-rank operators. It would be interesting to get an intrinsie
characterization of those ideals. Our proof of Theorem 3 suggests the
following possibility: For a simple (not Volterra) algebra L of compact
operators on a B-space X, let L, = LnBy(X) and let J, be the ideal
of I generated by all solutions ' of the equations
(12) (Ad,—p)"T =0
with u =0 and A belonging to L.

We have proved that J, < L.

QUESTION 1. Is J, equal to L%

Remark. Instead of (12) one may use equations of the form
(13) W(Ad)(T) =0, _
where W is a polynomial of one variable with complex coefficients and
0o zero root. More precisely: if 4 e B,(X), T<B(X) and (13) holds, then
T is a finite-rank operator. (This is an easy corollary of the result in Re-
mark 17.)

We finally give some open questions:

QUESTION 2. Is every simple B-L algebra of compact operators locally
Jinite?

QUESTION 3. Has every Volterra algebra a proper closed ideal?

QUESTION 3'. The same, with the additional assumption that the alge-
bra is locally finite. .

QUESTION 4. ZLet L be a Volterra subalgebra of B,(X). Does there exist
a proper closed L-invariant subspace of X 9

QUESTION 5. With the same notation as in Question 4, is (L) a Vol-
terra algebra ?

Note that a positive answer to Question 5 implies a positive answer
to Question 4, and in the same way 3 implies 2. )

" QUESTION 6. Let L, be an algebraically simple Lie subalgebra of By(X).

Ls the closure of L, in B, (X) a simple B-L algebra ?

QuesTION 7. Let L, and L, be two algebraically isomorplic simple
subalgebras of B,(X). Are L, and L, asomorphic
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