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Complementably universal Banach spaces

by
W. B. JOINSON (Ohio) and A. SZANKO WSKI (Copenhagen)

Abstract, There I8 no separable Banach space which is complementably universal
for the class of separable Banach spaces.

I. Introduction. A Banach space X is said to be complementably
universal for a class o/ of Banach gpaces provided every space in 7 is
isomorphic to a complemented subspace of X. A. Pelezynski proved
in [11] that there exists a separable Banach space which is complement-
ably univeral for the class of all Banach spaces with Schauder basis.
This result was extended by Kadec [8], who constructed a separable
space which iy complementably universal for the class of all separable
Banach spaces which possess the bounded approximation property (b.a.p.).
Actually, the spaces constructed by Kadee and Pelezynski are isomorphic
(ef. [7], [12]).

In Section IT we prove

A. Basio musure. There 48 no separable Banach space which 1s comple-
mentably universal for the class of all separable Banach spaces.

This result is & simple consequence of Enflo’s counterexamples to
the approximation problem [3].

Section IIT and Section IV contain extensions of our basic result.
In Section TTT it is shown that, in contrast to Kadec’s theorem,

B. There is no separable Banach space which is complementably uwni-
versal for the class of separable Banach spaces which possess the approwi-
matton property.

Tn Section 1V it is shown that Davies construction in [2] yields

(. Tlor each 2 = p < oo, there 48 no separable Banach space which is
complementably wniversal for the dass of all subspaces of 1,.

Of conrse, results BB and O hoth contain the basic result A. We have
ineludad a separato proot of A because if is short and the proof is accessible
to anyone who is willing 10 accept the “axiom?” that there are subspaces
of some rpecial spaces which fail & certain approximation condition men-
tioned at the bheginning of Section IT. The proof in Section ITII is also not
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very difficult, but uses many more “gxioms”, while the proof in Seetion IV
requires the reader’s detailed knowledge of Davie’s construction [2].

We use standard Banach space theory notation as may be found,
for example, in [10].

II. The basic result. Let us say that a Banach space ¥ has the bounded
compact approzimation property (b.c.a.p.) provided there is a uniformly
bounded net of compact operators on ¥ which converges strongly to the
identity. It was pointed out to us by T. Figiel that the criterion used by
Enflo [3] (and then Davie [2] and Figiel [4]) to guarantee that a space
fails the approximation property actually guarantees that it fails the
b.c.a.p. (We include in an appendix at the end of the paper Tigiel’s proof
of this assertion.) Thus by Enflo’s result [3] (see [2] or [4] for more read-
able expositions) there is for each p, Ll <p < o, 2 subspace H, of
BRelkelo ..-h, Which faily the b.c.a.p.

Suppose now that X is a separable Banach space and for each p
there is & complemented subspace ¥, of X which is isomorphic to 17,.
Letting @, be a projection of X onto ¥,, we have that there is 4 < oo
and an uncountable set A < (1, oo) so that [,/ < A for each ped.

Since each Y, fails the b.c.a.p., there are finite sots (y2)2®) of unit
vectors in ¥, and &, > 0 s0 that if T is a compact operator on Y, for
which |ly? —Ty?ll < & for L < i< n(p), then [T} > 2% Choose an uncount-

able subset B of A so that #(p) = n (peB) and ini g, = 6> 0.
pe B

Since B is uncountable and X is separable, there exist p <r in B
so that |ly? —yjl < (A+1)*e for 1 < 7 < n. Also, note that every operator
from ¥, to ¥, is compact. Indeed, it is essentially contained in Banach’s
book [1] (cf. also the appendix to [13]) that every operator from I, to I,
is compact when p < 7; the proof goes over to show that every operator
from a subspace of (IL@®LOL® ...); into (Lolely.. )y, is compact.

Let T': ¥,—¥, be the restriction to ¥, of @,.9,,. In view of the above
discussion, T'is compact, and obviously | 7] < A°. But note that for 1 < i< n,

iy — Tyill = lly; — @, Qi
< WE — @yl 10037 - @,y Wil
= 1@, (¥ — ¥y - 12,0 (yF =D
< (A+ D)yl -9l <e.

This contradicts the choice of (y})l., and completes the proof of the
bagic result.

III. Spaces with the approximation property. A basis (,) is said to
be block Hilbertian (resp., block Besselian) provided that there is a constant
K so that for each normalized block basic sequence (y,) of (#,) and
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sealars (ay), || Sentl| < K310 (xesp., | 3oy > E(S la,P)). Tt is
clear that a basis is block Hilbertian if and only if the biorthogonal functio-
nals to (@,) are block Besselian.

In [9], Lindenstrauss extended the technique of James [6] to show
that for each separable Banach space ¥ there is a space Z so that Z*+*
= Z@® Y* isometrically with the projection of Z** onto ¥* perpendicular
to Z having norm at most 2. (Here we have Z embedded in Z** in the
canonical way.) Purther, Z was constructed to have a shrinking basis (a,)
50 that the biorthogonal functionals to (z,) are block  Besselian, and hence
{®,) is block Hilbertian. We will need the fact that if X has a block Hilber-
tian basis then every operator from X into (IL®101R.@®...), is compact
for 1 << p < 2. (The proof of this assertion is identical to the proof in the
special case X =1,.)

For 1 < p <2, let B, be a subspace of (L,OLOL® ..}y, which fails
the b.c.a.p. and let Z, be a James—Lindenstrauss space which has a shrink-
ing block Hilbertian' basis and which satisties Z;* = Z,®H,. Note that
if & is an-operator on E, and § factors through Z;* for some »  p, then 8§
is compact. Using this and a lemma from [5], we will show:

PropositroN 1. There does mot ewist a separable Banach space X and
a A< co so that for each 1L <p <2 and each equivalent norm |-| on Zy,
(Zy, |+1) is A-isomorphic to a A-complemented subspace of X.

Note that since Z, has a shrinking basis, Z} has a basis and hence
the approximation property.

The result B is an immediate consequence of Proposition 1, Prop-
osition 2 below, and the obvious fact that (Y:@¥,@®...), (1< p < o0)
hag the approximation property if each ¥, does.

ProPOSITION 2. Suppose that X is complementably universal for a class s
amd there is 1. < p < oo so that for every sequence (¥,) in o7, (Y@ Y,® ey,
48 in . Then there is A < oo 80 that every Y im o7 is A-isomorphic to & A-com-
plemented subspace of X.

Proof, If not, then there are Y, in « so that [|P,|d(X,, ¥,) >n
for any projection P, from X onto a subspace X,. (Here d(Y, Z) is the
Banach-Mazur distance coefficient inf{||Z|-I|7~"|: T is an isomorphism
from ¥ onto %}.) It is clear that (¥,®Y,®...), is not isomorphic to
a complemented wvubspace of X.

Before proving Proposition 1, we restate Proposition 1 of [5] in & form
suitable for our needs.

LmMmA 1. Let (¥, |+ ]l) be a Banach space, p < oo, 6 > 0, and U a finite
subset of Y*. There is an equivalent norm |- on ¥, a 6 > 0, and a finite set F'
of | I-unit vectors in Y so that if T is an operator on ¥ which satisfies | Tz — x|
<8 for wel and |T|<B, then |T|<[1 +2671 818 and |T*u—ul <e for
cachueU.

I
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We turn now to the proof of Proposition 1. Assume, for contradic-
tion, that there is such an X and 4. Fix 0 <& < 27'and 1 < p < 2. Since
(Byp, |l [,p) fails the b.c.a.p., the proof of Proposition 2 in [5] shows that
there is a finite set U, of unit vectors in B, so that if §is a compact oper-
ator on H, and [lSu ul, < 2¢ for we Up, then |8}, > 2[1 4274123
By Lemma 1, there is an equivalent norm |-|, on Zy, & 8, > 0, and a finite
set (¢2)"2) of unit vectors in Zj so that if I' is an 01)01"91,01“ on Z; which
satisties |Ta?—afl, < 6, and |T|p< A, then JlTHp < [1--26712%]2% and
|\T*u~u|\p < ¢ for all %eU (Here we regarcl Zy' a8 being 1%011101,11(, to
Z,®B,, where H, has norm II'llp, and denote the norm on A;‘, and / algo
by I Hjg ) By the hypothesis on' X, we can assume thab //; is contmncd

in (X, |I-]), that A7 @] < |ol, < |lo for meZ,,, and that there iy a projec-
tion @, from X onto Zy with @, < 2
As in Séction IT, we have Lha,t there exists 1 <p <7 <2 so that
n(p) =n(r) =n and for 1<i<n, |of —afl <(A+4)7'4,. Letting T
be the restriction of @,Q, to Z, we have just as in Section II, that |7 < 1*
and | T} — || < 6, so that also |T], < 4* and |Tw}—axgl, < 6,. Therefore,
we have that |, < (1 +2672 22 and |T"u—ul, < & for all we U,. Finally,
let P, be the projection of %™ onto X, perpendicular to Z, and let § be
the restriction of P,I™* to B,. Since [P, <2, it follows that [8],
< 2(14+26712%4° and [|Su—ul, < 2e for all ueU,. However, § factors
through the space Zy* = Z,® X, and therefore is compact. This contra-
diction completes the proof.

IV. Subspaces of 1, 2 < p < oo. Throughout this section p is & fixed
number with 2 < p < co and & denotes the class of all subspaces of 7.
The result C is an immediate consequence of Lemma 2 and the construc-
tion of the X,’s given below.

LmMya 2. There is mo separable Bamach space which is complement-
ably universal for sz, provided
(%) for every m =1,2, ... there emist an uncowntable family (X r, <

and points €, ..., d,eX,, tel, such that whenever T: X—>X,,
t 5 sel, satisfies

m

< -
DT — el <1,
ds=l

then | T\ > &, with lim @, = co.
M=

Proof. Suppose X is complementably universal for ., The class 7
obviously satisfies the assumptions of Proposition 2 o let 1 < oo be such
that every Y in & is A-isomorphic to a A-complemented. subspace
of X.

Let m be so big that a,, > 1%

icm
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For each tel, we fix an embedding 7,: X,—~X and a projection

Py X2, 7, X, so that
IPll<i  and o)<

1Tyl < Allel] CweXy.

Fix an & > 0. Since X is separable and I, is uncountable, we can find
a pair ¢ 5 ¢ in I, such that

for every

ITiei—Toefl < e for &=1,...,m.

Define now I': X,—»X, by T =T;*P,T,.
We have T;'P,(T,éi—T,ef) = Tet—¢; and therefore

1T — el < HITH | IPlle < 1-2-¢,

on the other hand, |7 < 1-1-4.

By taking & = A™'m~" we get a contradiction.

Oonstruction of the X,’s. We exploit Davie’s construction to
such an extent, that it seems more reasonable to emphasize the changes
made rather than to rewmte the major part of [2].

The main point is that we strengthen condition (1) in [2] by requiring
the following four conditions to hold simultaneously for & =0,1 and
n=0,1

(s+1)2k—1
2 3 -
Jea2k—lpy

(n+1)2%
()| < ARRI  for all  ge@y, k=1,2, ...
F=ne2bq
(here 4 is an absolute consta.nt).
For e =0, 1 weput J(k, ¢) = {e-2¥1 41, 628142, .
Let t = (t(n))2,¢{0, 1}%. We define

)y B =1,2,...}

(here the ¢’s are defined as in (2) of [2]), and weset X = span{X;: t{0,1}%}.
For any operator T: X;—~X we define

oy (e+1)28 T

X, = span{ef: jed(k, (k)

HT) =27 3 af(Tef)

JeT(k,1(k))
(the oy %14 are defined as in (3) or (4) of [2]).
’l‘he further ar ;:umem, of [2'] yield% also in our cage
ﬂlal -1 ﬁr < Sll]){HT @h i geG,,}

for some P&, where Hfl)f,"‘\[ = ()(lcﬁ“ ), uniformly on ¢ and g.
This gives us that for every § > 0 there exists a k = &(J) such thab
for every m >k,

187"( HESIESEI VA
for every t¢{0,1}% and for every operator I': X,—X.


GUEST


96 W. B. Johnson and A. Szankowski

Suppose now that ¢, se{0, 1}™ coincide on the first k¥ places but are
different, i.e. t(n) # s(n) for some n > k. Suppose also that T X,—X,
is such that

D e —gi<1.
JeJ(k,t(k))
This gives
BEI) 1 -2~

On the other hand, since t(n) s s(n) and (¢, of*) i¥ & biorthogonal

system we have
pi(Ty =0
and therefore ||T)| = 6™ .

Now, for m > 25" we take I, = {te{0, 1}%: #; = 0 for ¢ =1, ..., k}
and ¢t = ¢f forj =1,..., 2" and all tely; ¢t are arbitrary for j = 2+
41, .., me .

Appendix. We wish to thank T. Figiel for permission to include
the following lemma, which was mentioned already in Section IL.

LmMMA. Let B be a Banach space, (e,) @ bounded sequence in o, and (en)
a bounded sequence in X*. Suppose that (t,) is a sequence of positive reals
and (4,) s o pairwise disjoint sequence of sets of positive integers such that

() sup Zt,«< 0.

n jedy
For TeL(B), set g, (T)= 3 ;6" (Te;). If either ¢,">>0 or &> 0, then g, (T) 0
jed.
for each compact operator .

Proof. Assume, e.g., that ¢f2»0. Since the set K = closure(Te,)
is compact, it follows that limsup le;‘ (#)} = 0. This and (*) yield the
conclusion. .o e

The space F constructed in [3], [2], or [4] is endowed with a se-

quence (p,) as & above and a compact set K, such that for any 4 <L(H),
limgp(A)} < sup [|Ao| and limg,(I) = 1, where I is the identity on X.
K n

n ze Ky .
Consequently, for any compact operator T on B, one hay sup [(I -T)al
ek,
> [limg, (I —T)| = 1, which implies that B fails the b.c.a.p.
n

1
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