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‘limit point (with respect to the topology induced by X“’z"‘”) of { f(,,j,l)};gl,
Then .
1 ifr>0,

(4.5) ol Wl <25 folw) =3 0 Lo

In particular, o, — o,/ = 1/2 for every oy 0y, and this concludes the
proof of the theorem. .
COROLLARY L. Hor cvery separable non-reflewive Banach space X there
s an ordinal a (o < w®) so that X* is separable but X is non-separable.
Proof. Let § be the first even ordinal so that X* is non-separable.
Then < w?+2 and # cannot be a limit ordinal. Ifence f = a -2 and
‘this a has the desired property.
' COROLLARY 2. Tor every non-reflevive Banach space X the quotient
.space XX is non-separable. !

Proof. Use Corollary 1, the fact that if ¥ < X then ™V iy ivo-
morphic to a subspace of X**/X and that every non-reflexive space has
2 geparable non-reflexive subspace.

It was observed in [1] that if J is the classical example of James
for a quasireflexive space then J*' is separable. This shows that the
-ordinals appearing in Theorem. 4 and its corollaries ave the best possible
(i.e. cannot be replaced in general by smaller ordinals),

Added in proof: J. Farahat rocently oxtendod the result of Seetion 3 by
proving that, for every integer k and every p<2, there is a space with k-stracture

and type p. Hence, for every k, there is a space with k-structure which does
not have k- 1-structure. ’
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On the best constants in the Khinchin inequality*
by ‘
8. J, SZAREK (Warszawa)

Abstract. Let (r;) denote the sequence of Rademacher functions. It is shown that

1 oo -
of]];: Oi’fj(t)!dt > 7% (jé; ]c{|2)1/2

or every square summable sequence of scalars (¢;). The constant 1 /1/5 is the best
the largest) possible.

1. Introduction. Let 7, denote the nth Rademacher function, i.e.
7, () = signsin2"nt  for 0<<I<1l (n=1,2,...).

The clagsical Khinchin inequality states that, for every pe[l, o), there
exist positive constants a, and b, such that, for every finite sequence
of sealars (¢;) , N

(0) ap(z |oj|2)1/2 < (j‘ ‘2 ij”j(t)lp dt}”ﬁ < bp (12,1 [b‘jlz)l/z.

Let us denote by 4, and B, respectively, the largest a, and the smallest 3,
satisfying (0). B. Tomaszewski has observed that the values of .4, and B,
are independent of the choice of the scalar field, i.e. they are the same for
real sequences as well as for complex sequences (cf. also Remark 3 in
Section 3).

Thercfore in the sequel we shall consider inequality (0) for real se-
quences only.

Ohbviously, 4, =1 for p>2 and B, =1 for 1< p < 2. Stetkin [6]
has shown that ‘

By = ((2m—1)1"™  for m =1,2,3,...

* This is 8 part of the author’s masters thesis written under the supervision of
Professor A. Polezyiski at the Warmsaw University.
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In the paper we show that 4, =1 /1/2 A part of our argument ie
2 modification of the method used in [1] where it is shown that A7 < 1.5.
Precisely, our main result is

THEOREM 1. We have

o)) fljcﬂv ] “%‘(2%2)1/2
\ b

j=1 : §=1
for every real ¢, Ggy ... with Zaﬁ < oo,

i=1 .
Moreover, the equality holds iff there ewist indices i and b with 1< 4
< k< oo such that || = |, and ¢, =0 for i#s %k

Let us recall that the condition Zc, < oo implies that the serieg

i=
Zor ) converges almost everywhere (cf e.g. [2]).
= Theorem 1 implies in particular that, for the real Banach spaces I*

and I*, we have (I, ;) = 1/5, where 7, (1, ;) denotes the absolutely summing
norm of the natural injection I,,: I*~1. Indeed, using (1) the same

argument as in [5], 2.4.2, shows that =, (I, ;) < V2 while a direct computa-
tion shows that if x, =(1,1,0,0,...) and x, = (1, —1,0,0,...) then

%y lly -+ I %l = V2 max ([x; -+ Xl [y —Xall1);

hence 7,(1,,) > 2.

2. Proof of the main resnlt. We shall employ the following notation:
1* — the real space of real square summable sequences ¢ = (¢,)7n;
with the inner product (-, +) and the norm |||, defined by

(c,d) = i‘cjdj; llells = (i’ c§)1/2 for ¢, del’.
= =1

i ={cel’: ¢, =0 for j > n},

D" = {gely: |g| =1 for J=1,2,..,n},

T(n) = {eeld: 6,40, =V2and 6,2 0,...2 0,20} (n=1,2,...),
T = closure |J 7'(n), where the closure is taken in 1%,

==l
D% ( c) = {geD"™: (s, ¢) > 0}
D" = {eeD": (g, ¢) = 0}
We shall be dealing with the positive funetion f defined on I*\ {0} by

fle) = el fl voﬂ"j ‘

0 J=1

for cel’ and form =1, 2,.
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By fi, we denote the restriction of FtopN{0} forn =1,2,... Clearly,
fis homogeneous, moreover, for every permutation p(-) of the indices,

if d el is such that || = |d, oyl $or all § then f(e) = £(d); this follows for
ingtance from formula (3) below.
Levma 1. Letn = 1,2, ..., let ¢ €12 with |le], = 1. Then

1° For every hel? wzth (h c) =0 and |hily = 1 and for every real £
(2) ' fin(c+th) .
> (@407 (fule) 427 3T (o, )27 Y (e, Byl

seD’i(c) :t.Dg"(l:)

Moa"emjgr, there ewists § = §(e) > 0 such that for [t| < & the inequality
becomes the equality.

2° If fi, has at e a local minimum, then D (e) contains n—1 linearly
independent vectors.

Proof. Let delZ\{0}. ’I‘hen
(3) Sin(d) = |72~ Z (le, )] = HﬂH{l'T”“( 2 (¢, d))-

ee D" e D (8)

Hence .

(4)  fiuletth) = (148727 37 |(e, ¢) +i(e, h)]

e DM
>(1+t’)‘1/22*”(2 2 (e, ¢) 2t Z‘ \(e,h)+
ceD™ 0] eeD" e
+1 ) Ie, bl
ceDF(e)

Since [lell, = 1, it follows from (3) that
2 D (s,0) =27f,(c)

=
ge D™ (a)
Moreover, if [t| < 2~ min (g, ¢) then the inequality in (4) may be replaced
ce D" (¢)
+

by the equalitiy. Therefore (4) implies (2). This completes the proof of 1°,
To prove 2° assume to the contrary that there exists a ¢ in 12 with
llells == 1 such that fi,, has at ¢ a local minimum and the dimension of the
linear manifold spanned by D%(e) is less than #~1. Then there exists
amhel,l with [[lhll, = 1 such that (h, ¢) = 0 and (h, &) = 0 for every se D%(c).

Let g(t) == f,(e--th). Then, by 1°,

ﬂ—f—at

VisE for  Jf < 6(c)

g(f) =
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where a = 3 (g,h) and 8 =f,(c) # 0. THerefore g does not have
stn(c)

a local minimum at the point ¢ = 0, thus the function fm does not have

a local minimum at ¢, a contradiction.

CoroLLARY. Let e, = (1,1,0,0,...), =(1,1,1,1,0,0,...),
3=(2111100 ),e4=(3,3,2,2110 L), e =(1,1,1,1,
1,1,0,...), € =(3,1, 1 1,1,1,0,...), == (3, 2 2, 1 1,1,0,...),
8=(2 2 1,1,1,1,0, )
Then
f(e)~———1— f(e)>-§-— for 2<i<8
[6\¥1 1/5, [6\%s) = 4 e U O

Moreover, if fis has a local minimum af & point c <l then there emists
an index © with 1< i < 8 such that e; is proporitional to the sequence whose
coordinates are some permutation of absolute values of the coordinates of ¢
in particular, f(e) = f(e;).

The corollary is proved by examining all the points in T'(6) which
are orthogonal to some five linearly independent vectors in D° There
exist at most points with the above property.

Tet us put e = ey e, = (1/V2,1/V2,0,0,0,...). Our next lemma
provides an information on the behaviour of the function f in & neigh-
bourhood of the point e.

LevmA 2. Suppose ﬂmt for some m —2 3, 4y... and for every W’
el2_N{0} we have f,_;(h Y= 1/V2. Then for every held with ||, =1

d (e, h) =
(i) if 0 <t<4[3, then fle-+th)>1/V2,
i) of 1/T<t <1, then fe+th > 3/4.

Proof Since D% (e) = {¢ = (g,) eD": ¢ = &}, We have
Z g = 2" %,
eeD™ (u)

Thus ( 3 (&,h)) =0 whenever (e,h) =0

eeD+(o)
Similarly, D?(e) = {&<D": . = — &} Therefore, by (3),
D e b)) = 2 (e, W) = 27 (k)
aeDz”(e) D1

where h' = (2hy, g, by, ...) el _,\{0}, Decause if hel} and (e,h) =
then &y = —h, and for eeDj(e) (g, h) = 2hy ey +hgey+h e+ ... = (&', 1)
where &' == (&, &, &, ...)eD" ™\, Now using (2) for ¢ =e and the assump-
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tion that f(b) > 1)V3 for I <_,\{0} we geb

(5) Fletth) >

S
fle)+27" [f(h) by IANE
 Yite Z T iir

Comparing the right side of. (5) with 1/1/_ 2 and 3/4 we obtain (i) and (ii),

- respectively.

Remark. Let Zn be the set of all points in I} whose absolute values
of coordinates are some permutation of coordinates of e. Then Lemma 2
remaing true after replacing e by some e'eZ,.

Before stating the next lemma we shall introduce some notation.
For m =1,2,... and for fixed ¢ e T(2m) we put

& =2 el oumCms Y = 20 Coms el
#=2lel; 0m10mzy V= 20 3Cmsllel;”?,
o) = »;1-(1/1+m+'u+1/1+m——1)+1/1~m+(z—y)+l/1—m~(z—y)]z
! @, = Inf gy,(e).

ee'(2m)

HQm K>—

m=4

Lovwva 3. We have

The tedious numerical proof of Lemma 3 is given at the end of this
paper.
Proof of Theorem 1. Let us put K, =% for 1<n<6, Ky
m
=K,y =4[] 9Q; for m>=4.
J=4
Observe first that the sequence (XK,) is non-increasing because the

funetion V% is concave and therefore gn(c) < 1 for every eeT'(2m) and
for every m = 4,5, ... Ilence, by Lemma 3,

1

(*) Kn,>,1t>72_—- for every n =1,2,3,...

Next observe that in order to prove inequality (1) it is enough to
gshow that for n =1,2,...

(i), f(e) =1/V2 for eel2\{0}.

TFor this purpose we shall formulate for n = 1,2,

(iv), it ee T (n) and |lc—ef, > 1, then f(c) > K,, and prove (iii), and
(iv), by induction.
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To achieve this we observe that for # < 6 (iii), follows immediately
from Corollary.

To prove (iv), for n < 6 let us fix such an n and assume that, for
some ceT'(n), f(e) < 3/4. Then, by Corollary, (iii),., and Remark, there
exists some- e’ eZ, such that

tana(e’, €) < 1/7
where a(x, y) denotes the angle between the vectors x and y.
Now, taking into account the formula
ale, e) < a(e’,e) for every e'cZ,
which is a direct consequence of the assumption e<Z'(n), we obtain
tana(e, ¢) < 1/7 iff [le—e¢l, <1/7 as that ceT(n).

Thus (iv), is proved. .
Next observe that the implication

(iii), and (iv)yyq = (ii),
follows immediately from (x), Lemma 2 and the formula

inf f(e) = inf f(c).

eeT(n) "13&\{0}

Thus to complete the inductive proof of (iii), and (iv), it is enough

to establish the implica,tions ‘
L (iv)ap—n a0 (ifi)g—g = ()55

IL (iv)yn—y and (fil)y, o= (iV)yy_y (M =4, 5,...).

Proof of I. Let us suppose to the contrary that, for some m > 4,
(i¥)ym—y and (ifi)y,, holds but there exists a € = (¢, 0, ..., Oumy 0, 0,...)
«T'(2m) with [le—ell, > 1 such that f(e) < Ky Let us define ejell,,_,\{0}
for j§ =1,2,3,4 by

C1 = {01y Cay +rvy Cyppy, Camy T Camgy Ouppey 1 Cany 04 0, .00),

€ = (C1s Cay ey Comesy Coppey — Gy Oym—1 1 Oy 0, 04 ...),
C3 = (01: Cay -

€y = (01,05 ...

*3 Cam—ty Oom—3s Com—g oy —Oyms 0, 0, ...),
? Com—g Oom—3y Comes == Bypm1 = Cay 0, 0, ..0)

Then, in view of (3),

4
F(e) =1 D) f(e) eyl llell™.
Jrel,
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Now, remembering that g,,(¢) > @,, and using the identity

1 )l = gm ) el
Fe=l

which can be verifying by a direct checking, we get
@y min Fle) < fle) < Ky, = O Hoyg.
1<

Thus )
1:2‘21 f(cj) < sz-z‘
4

Let, for instance, f(e,) < K,,,_,. Denote by e* the vector in T(2m—2)
which is obtained from e, by rearrangement of the coordinates of e, in
the decreasing order and multiplying by an appropriate constant i (note
that the coordinates of ¢, are non-negative). Clearly, f(e*) = f(c,) < Hyp_,y.-
Now, by (iii)gy,_,, we may apply Lemma 2(ii) which combined with (iv)
gives |e*—efly < 1/7. Hence

2m—2

1 1

Cr>0;>'——;-'—'——,

vz 7

1 N P > o
-?- Cg = Cy = .../62m_2.

Observe that neither ¢} nor ¢f is equal to A(Cyp—y + o). Otherwise
we would have contradictory inequality
101 ' 2
75:' - '7— < j'(sz—l +G2m) < 2108 <T
because one of the numbers ¢}, ¢, ..
¢f = ¢, and ¢} = ¢, and therefore

.y Cog—y WOUld be equal to ¢;. Hence

1
llez—elly = [le* —ell, < =

Cowmbining this inequality with the assumption e —ef, =1 we gt

1 o .
. o 2
1 py < Jle—ell;~ lley— ell; == 26y,_5yp—q — 201 Cm
, 2
5 gy Oy S Dby g < i

DeCause ¢y,.., == ¢f for some i3> 3, a contradiction.

Similarly we show that cach of the assumptions Sfley) < Loy
(§ = 1,3, 4) leads to a contradiction; this completes the proof of implica-
tion I. ‘
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The proof of implication IT is exactly the same as the proof of I
because T(2m—1) = T(2m); the only difference iy that the application
of Lemma 2 is based wpon (ifi)y,_, instead of (iil)y,.,. This completes

the proof of (1).
To prove the second part of Theorem 1 note that from the validity

of (iv), for all » one obtains by a standard limit procedure

(iv) if ¢eT and |lc—elly 3> 1, then f(c) > K.

Using again a limit procedure and applying inequality (1) we con-
clude that (5) is valid for every hel? with (h, e) = 0 and [hjly == L. Thus for
every h with the above properties the assertions (i) and (ii) of Lemma 2
hold. Combining (iv) with (i) we infer that if ceT and f(e) == /1/5 then
¢ =e. This clearly implies that if f(¢) = 1/V2 for some ecl*\{0} then e
is of the form described in the second part of Theorem 1.

3. Remarks.

Remark 1. Theorem 1 admits the following generalization.:

THEOREM la. There exists a po>1 such that

4, for

— 21/2«1/}1 < P < Do,

i.e. for every real sequence (c;)

fLEWJ

Proof. We shall show that the assertion of Theorem la holds for p
satisfying the conditions

(j) 2 < K,

(i) p <0

Similarly as in the proof of Theorem 1 it iy enough to consider ceT'(n)
forn =1,2,... Let us set for 1 <p < =

Ul | ey o)|Pat)™
() = —

T

Observe first that for every p 2= 1 satisfying (j) we have

(jji) if eeT(n) for some n and [e—el, = 1/7, then f,(e) =2
This follows from (iv), the implications (i) -:Vll(:'. (ii) of Lemmu 2 and from
the fact that, for every fixed cel’\{0}, f,(c) is & non-decreasing function
of p.

Next observe that for 1 < p < 2 the following analogue of Lemma 2
holds:

pdt)l/p > g2~ ip ( >1 (M)llz

s (ecIE\{0}).

ul/z»«IL/ﬂ

icm
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Tt f, (') 3 2Y2-47 for all h'el2_,\{0}, then for every hel? with (h,e)
=0 and |hl, =1 we have

9pi2=1 | gn/2—1 17\ 2o

Jole-++th) = for every real %.

@+
The proof of this fact is similar to the proof of (5) in Lemma 2.
Hence

fole--th) > g1

Thus, by (jjj), if p satisties (jj) then the assumption f,(h’) > 212~ for
every h'el2_,\{0} implies that f,(c) = 2"~ for every ¢eT'(n) and there-
fore also for every cel2\{0}. Now the desired inequality follows by indue-
tion. Obviously, 4, <27 = f,(e

Remark 2. For p < 2 but suffl(nently close to 2, 4, < 2'*~7, This
follows from a result of Stedkin [6] who has shown Lha,t

F(p;—l) Up
A,<V2 = for every 1< p< 2.
™

for [ < p¥E—A,

p+1\ _ Vm '
Hence 4, < 2" whenever F(%«) <" which holds in some

interval 2—8 < p < 2.

Remark 3. Let ¢, s, ..., 9, be arbitrary real valued functions
in I' = L'([0, 1]). We shall repeat an argument of Orlicz [4]. Using the’
Fubini theorem, (1), and the Schwartz inequality we get

LGt = {f1> 7;(t) g;(s ‘dtds

[1 570,

1 n 7
1 ( \ AV 1 1

2 P g‘.(s)~) ds = —= S a;lg;(s)|ds
ﬁJm' WJﬁ

5 "
D i)
7=1

where the veals @y, @y, ..., a, are chosen so that

n n n

Naylgly = (X o)™ with  Dlaj=1

= i=

/ Thus we get
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THEOREM 1b. If B is a real Banach space which is isometrically iso-
morphic to a subspace of L', then

(1D) Of HZ r, (t)xj”E it> 715 (é? ”x]”gm)w

for arbitrary x;,%y,...,%, in B (n =1,2,38,...).

Observe that every Buclidean space and, by a result of Lindenstrauss
[3], Corollary 2, every two-dimensional Banach space is isometric to a sab-
space of L'. Therefore for this spaces we have inequality (1b). In par-
ticular, we have (1) for complex sequences (¢;), because the complex plane
can be regarded as the two-dimensional Euclidean vector space. An inspec-
tion of Orlicz’s argument yields that the second part of Theorem 1 is also
true for complex valued sequences.

4. Proof of Lemma 3. Observe first that for m > 4 we have

(6) 0<o<y<e<o,

(7) max(ls+o|, j@—vl, |[—2+2—y|, |—a—2+yl) <1
(8) @ (e—y) <o +0t < 2m?,

9) 20° (2 —y) +0* < o 2t 4 0? < 3mR.

Inequalites (6)—(9) either follow immediately from the definition of
#,Y,2, v or are obtained by the standard argument involving Lagrange
multipliers. Next we show that for every ceZ(2m)

3 8

10 >l———m e

(10) Gn(€) 21—~ m o8 ™

To this end we expand g,, into the power series with respect to 0, Y,
2,v. For [t| <1 we have

(11) Vitt =1—|~~1~Z—f_2-..|- # D %"»}«2( 1y%=g, 1%
2 8 16 128 LT

for some a, with 0 < a; < 5/128 (k> 5). Replacing in (11) ¢ by o,

B—0, —H+2—y, —@—2-+y, re%pectwely (it is admissible by (7)) and

adding all four expansions together and dividing by 4 we obtiain

oo

tn(c) = D' Bf"

fe=0
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where .
B =1, BM™ =0,
e
, 3 o .
B e Uy, > ( ) W (gm0} for mo=1,2,...,

=

3

1

B, = 5 Bt 2 (;1) wg“"”*‘l(w”—-(z-y)ﬁ) for n=1,2,..
Jem

Olearly, B < 0 and, by (6), B{,, > 0forn = 1, 2, ... Hence to prove (10)

it is enough to show

3
(12) — B —ié—m““
m‘#
- (m)
(13) Bm < — 168

‘Olearly, (12) follows from (9). To prove (13) observe first that, for n > 2,

n
~ B < 527 3 () oD 4 (o0
i=0

< B.-2-8.9n 2 (’;’) (@) [(?ym=! 4 ((e— y)z)n~:l]

i=0
=5:27"2"[(02 + 0"+ (0 + (2 —9))].
Hence, by (8) and (9),
— B < 527" [(4m™)" + (2m™*)"].
Thus, for, m > 4,

16 4 85
— (m) -8 R — .
24 Bin'<5-2 ( Ay m"(m“~—2)) DT

e

This completes the proof of (10).
Finally, we shall show

" M (Emt 2 _2A
(14) 2\TE™ T ™) <03
. M4

which obviously implies

© . —

3 85 4 1 2v2

, j -2 ~4 | .

(15) 1!_!( 6" 168" ) 5 Vs 3,
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‘We have
(2]
3 . 8w 11 )
2 2o 2 (B ) <0.0832
162"’ 16(6 Ty <008
m=d4
(o]
8 > ., 8 [ 11 ,
_— e 00 S e e e ] 2 0.0088
168 Zm 168 \ 90 16 7RL ’
m=4 .
29

- < 0.9429.
3

Olearly, the last three estimations imply (14).
The assertion of Lemma 3 is an obvious consequence of (10) and (15).
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Although Hilbert spaces are the oldest known infinite-dimensional topological vector spaces
unexpected important new applications and methods arise steadily. The present monograph is
the first comprehensive description and treatment of the theory of Hilbert spaces, a theory which
gives a new outlook upon modern mathematics. The book requires hardly any previous study on
the part of the reader (even the elementary facts of topology and the theory of the integral have
been listed in the Appendix) and leads to the most beautiful and most profound results of modern
analysis and geometry.

The monograph is sute to be of interest not only to mathematicians but also to physicists (the
chapter on the decomposition into direct integrals, strict justification of P. A. Dirac’s anticipation,
representations of Lie groups, the method of Fourier, the ergodic theory) and engineers (the chapters
on the theory of vibrations, on expansions in eigenfunctions, on boundary problems, on variational
and approximation methods).
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Appearing for the first time in book form are the main results concerning homeomorphic
aspects of infinite-dimensional topology, the theory related to general topology, the topology of
manifolds, functional analysis, and global analysis. Emphasis is placed on the problem of topolog-
jcal classification of linear metric spaces and the techniques of constructing homeomorphism of
concrete metric spaces onto a Hilbert space. The main results concerning topological manifolds
modelled on infinite-dimensional linear metric spaces are presented,

The book is primarily addressed to topologists and to functional apalysts and may serve as
a starting point for research by the graduate student. The book presupposes a knowledge of ele-
mentary facts of general topology and functional analysis.

Contents: 1. Preliminaries. II. Topological spaces with convex structures, III. Convex sets
and deleting homeomorphisms in linear topological spaces. 1V. Skeletons and skeletoids in metric
spaces; V. Z-sets in the Hilbert cube and in the countable infinite product of lines; VI. Spaces
homeomorphic to the countable infinite product of lines. VII. Topological classification of non-
separable Fréchet spaces; VIIL. Topological classification of non-complete separable linear metric
spaces. IX. Infinite-dimensional topological manifolds. Bibliography. Indexes.

All volumes of MONOGRAFIE MATEMATYCZNE may be ordered at your bookseller
or at ARS POLONA, Krakowskie Przedmieécie 7, 00-068 Warszawa, Poland
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