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On an integral of Marcinkiewicz
by
A. P. CGALDEROGN (Chicago L)

Abstract. The integral of Marcinkiewicz which plays an important role in the .
theory of gingular integraly is generalized and the norm inequalities are extended
to the case of weighted L? and exponential norms.

Let P be a closed subset of R™ and let é(y) denote the distance from
y to P, and [#—y| the distance from x to y. Marcinkiewicz introduced.
the integrals (see, for example, [6], Chapter IV, and [2]).
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which he used to obtain some remarkable results in Fourier series. Omn: -
the other hand, a useful modification of these integrals was considered.
by Carleson [1] and Zygmund [4]; namely, in Zygmund’s version

x S(y)*
J = [ A S ——— d ,
( f) (.’/0) R:{ Dm ”Ji i 6(y)]'n+a f(:/) ?/

[log (y)™]
[~ .
s LO— 0T ,
Clearly, (J*f) (@) = (Jf) () and (I*f)(x) = (If)(») for we P. In this form
these integrals play also an important role in the theory of singular and
hypersingular integrals. The purpose of this note is to generalize them
and obtain weighted LP-norm inequalities and exponential integrability
results.
Let ¢(o, )= 0 be a function defined in ¢ > 0, ¢ > 0, such that
(i) for each t, t= 0, (o-+1)™"p(0,t) i8 & non-increasing function of g
which tends to zero as g-»oc;

(I'f) () = fly)dy.
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(ii) there is a comstant ¢ such that

[ e e+t ™ple, Ao < 0
[}

for all t, 1> 0.
Let yx(y) =0 be an arbitrary measurable function and, assuming
that q)([m—-y[, x(y)) is measurable, consider the integral

1
(2 Ef) (@) = [ ——— o(lo—yl, d
(2) (ES)(@) R{H%mﬂ(w Pllo—yl, 2} )y
Setting
\ ¢
#(e, 1) =T 2(y) = &(y),

we find that Kf = J*f.

On the other hand, if f has support in a sphere B of radius » and
@(g, 1) = [logt™*1™! for 1< §, < 1 and o < 2r (clearly, there is a function
@ satisfying these conditions and (i) and (ii)) x(y) = d(y), we will.have

(Ef)(@) = (I*f)(w) for aeB.

Let (Myg)(x) be the Hardy—thtlewood maximal function agsociated
with the funection g, that is,

(Mg)(w) =

lg(y)ldy,

N
w
>0 D0 i<e

where o denotes the volume of the unit sphere. Then we have
TueorEM 1. Let f, g = 0. Then

J ED@g(@)ds < one [ (@) (Mg) (@) o,

where ¢ is the constant in (ii).
Proof. Replacing Kf by its expression in (2) we have

1
@ [ o = lo =yl +2@)T
S @ = 1) [ (e
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Let
G, 0= [ g

lz—yl<e

Amn integral of Marcinkiewice 281
Then
Gy, o) < 0™ (Mg)(y),
and
[t o=yl s = [ 2050y,
i DO — 1T EATESE
b I
=— | G — o (My) T RALIA/S
q_fo e+t) D fog (o+0"
w (M) y)f m(e, 0)dg < noo (M) 0)-

Given the monotone character of the functions @G(y, g) and (o+1)"¢(e, )
and the fact that they tend to zero as g—0 and p— oo, respectively, the
integrations by parts above are legitimate and substituting in (3) we obtain
the desired result.

TunormM 2. Let w () > 0 be a function in A, (see [3]), that is, such that

i —qlpd < ______q___
@ [IBJ @] [ 37 f” ”] o 1<p={73
or

f < o essinfw(w), p =1,

13 zeB

where B denotes an arbitrary sphere in R™ and |B| its measure. Then for
r>p we have

(8) [IED @) dn < (er) [ 1f(@)lrw(@)de,
ltﬂ Rﬂ

where o, 48 @ constant depending on P, ¢, and ¢.

Proof. We start by observing that, as is well known and readily
verifiable, if wed,, p>1, then we.d,, p <7< co. Furthermore, as ig
again well known n‘ml readily verifiable, we.4,, p > 1, if and only if
w e Ay, q = plp—

Consider the inequality

[ UES) (@) (@) do < 6 [1f@)rw(@)de, rz1.
yin ) 30

By setting f = gw™* we see that this inequality is equivalent to

[ ot B gl do < ¢ f (gl do,

nn
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and according to Theorem 1
o' K= gl, < icw sup [ lgl o™ Mt dw, s =r/(r—1),
11hllg=1 zin
where the norms here are ordinary IP-norms.

Thus in order to prove our theorem it will suffice to show that the
operator w~" Mw'" is bounded in L‘ with norm less than or equal to
ey ,

Suppose first that p =r = 1. Then if he L® and B is any sphere
in R™ we have

H;T Bf Jfo-wwhldw @[esfjgfww)]-luhuw% Bf wdw < oy bl

that is, w™'Mw is bounded in Z* and has norm less than or equal to ¢,.

Now suppose that »>1, 1< p<r. Arguing as above, it follows
that w " Mw'" iz bounded in L° with norm less than or equal to ¢ if
and only if

[ parer@i<a [ifero@ -,
Rn s

that is, M is bounded with norm less than or equal to ¢, in the space
I%, i.e., the space of functions integrable to the sth power with respect
to the measure dv = w ™" da.

Now since we 4, as is well known (see [3], for example) there exists
#>1 sueh that

1 1/
E N SN
B

where B is any sphere in R™ and ¢, and u depend only on ¢,, p and #.

’
Now let r;, 8, =—>— be such that ,uﬁ =21
7y . r P

we have s, < s and, if p > 1,

1 1 QU
| st dw] [___ 2 —8m(=ry/81) dw]
[IB! Bf 1Bl Bf
L (a2 [wran]™
= [lBlew d”][]B!J“’ i)

1 sy r
< dfon [—B* fw“""dm] [—L fwds] o
|Bl Bl

o 1 5 splrq 1 . sjr
<o [ﬁ fw ‘”Pdm] [TET f wdm] < e,

Since u>1,
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so that w™*" belongs to A, with constant (64¢,,)°"", where ¢,, is the constant
in (4) which is independent of 7. As is readily verified, the same conclusion
holds for p = 1.-Now, as is well known, this implies that the operator
M is of weak type (s, s;) with respect to the measure », or, more specific-
ally, that

(M > W, < 430,007 8% [ |ff2dy, 2> 0,

where the left-hand side is the »-measure of the set {Mf> i}, and since
M is also of strong type (oo, oo) with norm 1, from Marcinkiewicz’s inter-

“polation theorem (see [5], Chapter XII) it follows that M is bounded

in L¢ and has norm not larger than

s\ Ir g
2 : 0, 6,,)7" 38118,
(8—“81) ( 4 w)
Now, since #> 1 and s, < §, the preceding expression is majorized by

8y /s
Cs ’
§—8y

where ¢; depends only on ¢,, p and n. On the other hand, a simple caleu-
ation gives

S1 < p(r—1)+1
§— 8 n—1

and since > 1, r> 1 and s > 1, we obtain

81 [
——
s—8 uw—1

s i/s
( : ) < - "
§—8y w—1

Thus M is bounded in L? with norm. less than or equal to a constant de-
pending on ¢, p and #, times #, and the same holds for wMr Mw' as
an operator in L®, This completes the proof of our theorem.

Tumormy 3. Let w> 0 be o function in 4, (see Theorem 2) and let f
be bounded. Then

[ 1S (@) [P 61 (@) da < o [ (IS () 700 () o,
nn .

for 0 <A< 1/eeflees where ¢y is the constant in (B), and ¢, is o (finite)
constant depending on ¢y, P, A and n.

T,

and
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Proof. Expanding the exponential in power series and using Theorem
2 we have

| o k
[rped=wan = 32 [
;1 kg,

R”

- ;['Ic +I D+ D4l
<02W%’ @+ 0 [ 1w do

R»®

< [ S+l [ 157w o,
< Rl

R™

and using the ratio test and the fact that

1 % -+k
fim > @R

ko0 k (p“}‘k‘l)p ’
we find that the series converges for l¢,|fl,¢< 1, which proves our
agsertion.
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Maximal smoothing operators
and
some Orlicz classes

by
1L P, CALDERON* and J. LEWIS* (Chicago, IIL)

Abstract. The paper gives a characterization of the Orlicz clagses of functions
that are “noar’ LM(R™), 0 < a < n, for which the functions belonging to them have
the property of possessing total differential of order a at almost all the points of R™.
‘When « is not an integer, the finiteness of My (f) replaces the existence of the a-dif-
ferential (sec [57).

0. Introduction, notation and definitions. In an earlier joint paper [5],
one of the authors studied the differential properties of functions belonging
to classes LEZ(R™), 0 < a < n, p> nfa. The purpose of this paper is to
extend those results to Orlicx classes of functions that are “near” L¥*(R"),
0 < a < n. More precisely, we characterize those Orlicz classes that are
“pear” LYe(R™, for which the functions belonging to-them possess total
differential of order a at almost all the points of R™. If a is not an integer,
we replace the existence of the a-differential by the finiteness of M )
see [B] or definition below.

Tarlier results in this direction are due to A. P. Calderén [4] when
o = 1. Positive results go back to W. Stepanov [11]; see also [6], [7]
and [9]. :

Throughout this paper we keep the notation and constructions
used in [B] and our method is partially borrowed from [4] and [5].

Almost all the lemmas in this paper use rvesults in [10] and [12],
and we shall refor to them systematically.

0.1. Lot (1) be a non-decreasing function of the variable ¢ > 0, con-
tinuous and such that p(0) = 0. We say that ¢ (f) is near 1° it the following
condifions are met:

(1) w(t) =p(t), t> 0 and ¢(t) > 0.

(i) @(¥) s slowly varying, thot 4s, for each positive d, there exists & num-

ber N > O such that for t > N, p(t)t is increasing, while p (1)t~ is decreasing.

* University of Minois at Chicago Cirele.
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