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STUDIA MATHEMATICA, T. LVIL, (1976)

On power series in the operators s**

; by
M. SKENDZIG and B: STANKOVIC (Novi Sad, Yugoslavia)

Abstract. Necessary and sufficient conditions for convergence, in the field of

o0
Mikusitiski operators, of the series § = } y,,5°" and the uniqueness of this representa-
n=0 . )
tion are given. Here a is real positive, y, are complex and s is the differentiation oper-
ator.
This extends a result of T. K. Boehme when a = 1. It is also shown that J. Wlo-
ka’s sufficient condition for convergence is also a necessary one.

1. Introduction. In the field of Mikusiiiski operators M the conver-
gence class is defined. But nobody has investigated the conditions for
convergence or divergence of series in operators in general case.

The special class of power series in the operator s*

2“' ?" san }.ﬂ’

n=0

where 7, and A are complex numbers, o real and positive, s the differen-
tiation operator, has an important role in the operational calculus and
its applications. :

In the case a = 1 we know one sufficient condition for the conver-
gence of the series (1.1) and one for its divergence [4]. We know also
generalization of these results to the case a> 0 [6]. J. Wloka [8] found
a sufficient condition for the convergence of the series (1.1), in case a =1,
too. In the mentioned paper he asked the question: ‘“Is this condition
also a necessary condition?’’. Recently, T. K. Boehme [1] gave a neces-
sary and sufficient condition for the convergence of the series (1.1) in
the case a = 1. Our aim is to enlarge the result of Boehme to the case
a > 0. We prove two propositions, both containing sufficient and necessary
conditions for the convergence of the series (1.1). We give also the answer
to the question of J. Wloka and a proposition about the uniqueness of the
development of an element of M in a series of the form (1.1) for a fixed
a> 0. :
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2. Notations and the known results which we use. The field M is the
quotient field for the ring C of continuous functions with the addition
and composition as inner operations. The operator which corresponds
o the funetion f(t)e ¢ will be denoted by f or {f(1)}. We shall also use
the notation |f| for {|f(¢){}, for integration operator and s for differentia-
tion operator. In this paper the convergence is in the sense of the firgt
definition of convergence classes [3].

The convergence of the series (1.1) in M can be related to the not
quasi-analytic class of functions. For this reason we shall give the defini-
tion and some properties of this class which we shall use.

Let {(M,)! n=0,1,2..) be a sequence of positive real numbers.
By C;{M,} we mean the class of all infinitely differentiable functions
S(#) such that there are constants B> 0 and B; depending on f(¢) and

(2.2) Max [f*)(t)| < 8, B}M,,, for each n =0, 1,2,..,
tel

I =[a,b] < [0, ).

We shall allow M, to be infinite so long as infinitely many M, are finite.
We always suppose:

(2.3) M, =1,

0< M, <o for each n =0,1,2,...,
M, < oo '

for infinitely many n.
DErFINITION 2.1. A sequence (M) is said to be logarithmically convew
if

M <M, .M, foreachn =1, 2, e

DEFINITION 2.2. C{M,} is said to be quasi-analytic if f(t)e Cr{M,},
tye I and )
) =0
implies f(f) =0 on I.
We are particularly interested in those ¢ '{M,} which are not quasi-
analytic.

Prorosiron A ([1], p. 312). Suppose Cr{M,} is not quasi-analyiic.
Then there ewisis a logarithmically convewm sequence (M) such that Or{i,}
e Cr{M,}, Cr{ M} is not quasi-analytic, and for every B > 0

for each » =0,1, 2, ...

j B,
n=0 M"

ProrosrTION B ([1], p. 314).
If I' = I = [a, b],
in I,

(2.4)

Suppose Or{M,} is mot quasi-analytic.
there is a nontrivial function Stye Or{M,} with support

icm°®
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ProrosiTioN C ([2], Carleman). Let

o = (M)"™  for each n =1,2,...
and

pn=Min g, for each n =1,2, ...
k=0 :

00
1
Then Cr{M,} is not quasi-analytic if and only if Z-T < oo.
n=1 "
ProposiTioN D ([5], p. 376). Suppose M, =1, M3L<M@_1M,L+,
Jor m =1,2,...; then Cr{M,} is nol quasi-analylic if and only if

°E” 1 Un
(2.5) > ( = ) <
=1 "
or
oo
. T My
2. —
(2.6) i,
n=1

ProroSITION B ([7], p 21). Suppose that for each i eN there exists
1 2= 4y Such that y; # 0. Then

., .
P, = Zyilis""fe()’ for each n =0,1,2,...
i=o

if and only if i
f0) =0  for each i =0,1,2, ...

ProrosITIoN F ([7], p. 21). If the series (1.1) is convergent in M for
one 1'= 1, # 0, it is convergent for every complew number A.

3. The convergence of the series (1.1). Proposition F allows us to
analyse the series

(3.1) Zyns‘m
n=0
instead of the series (1.1) without loss of generality.
First we shall construct a sequence of complex numbers (an(a));
in order to prove propositions on the convergence of the series (3.1).
For 0 <a<1

(3.2) @y (@) = Max |y,l,

[pal=n
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for a1
(a) lypl  if there exists pe N such that n = [ap],
@, (a) =
N 0 if such p does not exist

{[y] denotes the biggest integer < ¥).
PrOPOSITION 1. The series (3.1) s comvergent in M if and only if

1
O’I{————} 18 not quasi-analytic class.
(@)

Proof. The condition is necessary. Let the series (3.1) be convergent.
This means that a function f(t)e ¢ exists and f(2) = 0. By Proposition B,
f(2) has all derivatives and f¥(0) = 0,4 = 0,1, ... Let 2, be the support
of the function f(t). We can suppose that NI @ If it is not so, one
may use a translation which does not change the property of differen-
tiability. The same properties has the function ¢(t), g = if, and

pa—[pd]
I'(pa—[pal+1)

From the convergence of the series (3.1) follows the existence of
a constant K such that:

(3.3) slerlyy = lm-[zﬂa]+lspaf = {

}s”"f.

(3.4) SUD  |yps™fl<E, p=0,1,2,...
te[0,7]
Using (3.3) and (3.4), we have
Kbpa-«[pa]-x-l KI
(3.5) sup s < < - =0,1,2,...;
5 ol Ta—Tpal+2) =~ i P2

K' is a constant.

For such » for which there exists an integer p so that n = [pa] we
have -

X X!
(3.8) sup g™ (8)] < =—— for a>1,
tel [¥p! a,(a)
and
K K
(8.7) sup g™ ()] < for O0<a<1.

Max |y,| = a,,(a)
{pal=n

From (3.6) and (3.7) it follows that g(t)e (Jz{zl(—)} and that
n O

1 . . R
Of{m—)-} 18 not quasi-analytic class.

The condition is sufficient. Let the class OI{ } be not quasi-

@y (@)
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1
analytic class. By Proposition B there exists f(¢) 5= 0 from OI{a ‘(a)}
n
with a nonempty support in I’ = [a’, '] = I for which is valid the in-
equality .
1
(3.8) Max | (1)] < B} ——,
tel’ a,(a) ‘
Let us construct the function F(t) = f(t/2B;). The support of this
funetion is in the interval I' = [2B;a’, 2B;b'].
From the inequality

n=0,1,2,...

(3.9) sup LF®) (1) = sup | £~ (L JEY -
' tel” tel’ 2B, \2B; T 27 a,(a)
‘ 1
for n =0,1,2... follows F(t)e 01,,{——}, and from (3.9)
ay(a)
(3.10)

SUD [y, " BT = sup |y, Ired=rets plned)
te[0,71 1e[0,T]

G‘anﬂf <20(

T 2lgg(a)

n
Jor
This inequality shows that the series (3.1) converges in M.

COROLLARY 1. If
(3.11) 10y < Iy 2",

1
9a

n=0,1,2,...,
where h is an arbitrary complex number, and if the series (3.1) converges
in M, the series i’ C,,8*" converges in M, too.

Proof. Let n(=00,,(a)) and (d,(a)) be sequences constructed by using
the sequences (C,) and (y,k"), respectively, as it is done in (3.2). From
the convergence of the series (3.1) follows that the class OI{E;%J} is
not quasi-analytic and from (3.11) it follows that the class Or {—(J—nl(—a)}

o
is also mot quasi-analytic. Proposition 1 says that the series ' C,s™*
is convergent. n=0

CoROLLARY 2. If
(3.12) 1G] = lya k™, n=0,1,2,..,
where h is am arbitrary complex number and if the series (3.1) is divergent

o
in M, the series D) 0,8 is divergent in M, too.

n=0
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"PrOPOSITION 2. The series (3.1) is for a> 0 convergent in M if and -

only if there ewists a sequence (b,) of positive real numbers such that:

1' nyn] <1 bn! ’n’> “07

2. (b,) ™ = (b W“ for [an]>1, n =0,1,2,...,
o0 1

3. Y (5™ < 0 ([any] #0).

n=n1 X

Proof. The proof will be devided into two parts, for 0 < a < 1 and
for a > 1.

The condition is sufficient. Without loss of generality we can take
that the supposition 1 is valid for n =0, 1, ... Let us suppose first that
0 < a<1. We shall use the following sequences

by = Max b,, p=0,1,2,..., n=0,1,2,...;
[ap]=n

sy = ()" n=1,2,3,.. =Min,un+k,fn=1 2,38,...
From the condition (2) it follows that (u,) is & non-decreasing sequence
and uy = p,, n=1,2,

Now we have

1 v 1 -
(8.13) == = = M < oo,
é: P e
&y 1 )
because 2 (b < Z(b )ET < A (A is a constant which exists by

supposn:lon 35 ky is the blggest integer for which [k;e] =k and p, is the
smallest p such that [pya] = 1. 1
From (3.13) and Proposition C it follows that the class OI{—b—,;}

is not quasi-analytic. Let (an(a)) be' the sequence defined in (3.2). By
supposition 1 we have
1 1
Cri—¢ < Op3——
»I{bz} ° I{anm)}

} is not quasi-analytic, t0o. Proposition 1 says

~and the class C’I{ !
g (a)
that the series (3.1) is convergent in M for 0 < a < 1.

The case @ > 1. We shall construct the following sequences :
B 2‘7)1, for % =[ap], p =0,1,2,...,
"o for as£[apl,p =0,1,2,...,
n=0,1,2,...;
&, = (B, G =MinG,,; n=1,2,...
k=0
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If we separate from the sequence (@,) those elements which are not limited,

we obtain a non-decreasing sequence and

@ = (bp)_ll[ap] for n={[apl, p=1,2,8,..,
* (bp-l—-l)—”[a(pﬂ)] for [apl<n<[a(p+1]), » =0,1,2,...
Now
(3.14) Z F<
=1
because

Jey
([a]+1) 5‘ b < 4,

ZG*

(4 is a constant which exists by supposition 3; %, satisfies the condition

: 1
[k, a]>=k). Proposition C says that the class Oy {B_} is not gquasi-analytic.
From supposition 1 it follows that "

Oz} = Ol

and 01{ } is also not quasi-analytic. By Proposition 1 the series

1
o, (0) .
(3.1) is convergent in M for a> 1.

The condition is necessary. Let the series (3.1) be convergent in M.

Then the class C'I{

1
o )} is not quasi-analytic. Now, there exists a log-
m\ &

arithmically convex sequence (

1
= 01{%(«1)

of generality we can take M, = 1. From M, =1 and the fact that (M)
is a logarithmically convex sequence it follows that

(3.15)

M,) (Proposition A) such that C,{i,}

} and O;{J,} is not a quasi-analytic class. Without loss

n>0.

W) for

(M) < (2,

From the faet that ¢;{M,} is not quasi-analytic class and from Proposi-

tion D we have
— < oo
)

n=1

(3.16)

and the relation (2.4) implies that for everyAB > 0 there exists one constant
k such that

B"M,a,(0) <k,
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that is,
1 .
(3.17) a,(a) < i for n=mn,. .

n

Let 0 < a<< 1. We can construct the sequence b, = 1/M, for [pa] = n,
p =0,1,2,...; then from (3.15) it follows that

(3.18) () = (B, )@ for  [pa]> 0
and from (3.16) '
-]
(3.19) D (b, < oo
pr=p .

P, is the smallest p such that [p,a] = 1; because

Swms () D"

= [ak].

" Since a,(a) = Max |y,], we have |y,| < 1/M, (see (3.17)) for [pa] =n
[pa]=n
and n > n,, that is,
. (3.20) lyol < b, for p>=p;, where [p,a] =mn,.

The constructed sequence (b,), on account of (3.18), (3.19) and (3.20)
satisfies suppositions 1, 2, and 3 of Proposition 2 for 0 < a < 1.

We shall suppose now that a>1. Let us construct the sequence
(b ) in such a manner that b, =1/M, for [pa] ==, p = 0,1, 2,

On account of (3.15), the sequence (b,) satisfies the cond_ltlon

(3.21)
and by (3.16)

(b l/[ﬂp] (b 1I['1(17+1)]

(3.22)

D8

(bp)lllﬂ.v] < oo,

L]
L

because
(b l/[tw] = (l/M )lln
3 2
Bince [y,| = a,(a) for n =[pa], p =0,1,2,..

1 1
ol <—=—, —— =5,

ky = [ak].

-, we have from (3.17)

(3.23) for

iz, T, [pa] = n,
On account of (3.21), (3.22) and (3.23), the sequenee (bp) satisfies
the suppositions of Proposition 2 for « > 1.

icm
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Remark. When the sequence (b,) from Proposition 2 is selected.
in a special manner we have sufficient condition ‘of Ryll-Nardzewski
(b, =n"P,¢>1) [4]; of B. Stankovié [6] (b, = n~" §= q); of
J. Wloka [8] ((b,,) is & logarithmically convex sequence which defines not.
quasi-analytic class).

A new sufficient condition could be obtained by using the sequence.
(B, = {nIn°(n+e)}~*™), ¢ > 1, which allows us to use a bigger class of con-
vergent series (3.1) because

pooelenl o Int(n+e)} M, 6> a,e> 1.

Sufficient conditions for divergence of the series (3.1) given by Ryll-
Nardzewski [4] and_B. Stankovié [6] show that in this case [y,| are of
such a form that no sequence (b,) from Proposition 2 can have prop-
erty 3, because the minorant sequences used by the mentioned authors.
do not satisfy property 3.

The answer to the question of J. Wloka is given by the following prop-
osition.

PROPORITION 3. The sufficient and necessary condition that the series-
(8.1) be convergent in M for a =1 is

1
T
where h > 0 is arbitrary, M, = 1, and M, is logarithmically convex sequence
so that 3 (1/M,)" < oo.
n=1

(8.24) [¥nl =

Proof. The condition is necessary. From the convergence of the.
series (3.1) it follows that the class Cr{1/ly,|}is not quasi-analytic (Prop--
osition 1). Proposition A asserts that there exists a logarithmically convex:
sequence (M,,) such that C;{M,}is not a quasi-analytic class. By Proposition

D we have: 2 (1/M,,) J* < oo. From condition (2.4) and Proposition A.
fn=1 )
follows: A"M,|y,| <k, h> 0 but arbitrary; this inequality shows that.

(3.24) is valid.

The condition is sufficient. From M, =1, Mi< M, , and.

3 (1/M,,)" follows that 0;{}M,} is not a quasi-analytic class (Proposition.

=1

D). Relation (3.24) gives k/|y,|"* > M, and the class COy{k/|y,|"} is not.
quagi-analytic too. Thus the series (3.1) is convergent in M (Proposition 1
and F).

Consequently, the condition .of J. Wloka [8] is sufficient and necess-
ary for the convergence of the series (3.1) if one omits the condition
for the sequence (M, ,)"" = O((M,)"") for which J. Wloka himself:
says that it is introduced only to make easier the proof.

n+l
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4. The uniqueness of the representation of one operator by the series
of the form (1.1). The uniqueness .follows by

PROPOSITION 4. An element of the field M can be represented by only one
series of ‘the form (1.1) for a fiwed a > 0.

To prove Proposition 4 we shall use the following lemma.

Lemuma. If f is a convergence factor of the series (3.1), then f is also
a convergence factor of the series

B(a) = D yns™

n=0

(4.1)

Jor every |A] < 1. If 8(1) = 0, then S(A) =0 for every 0 < A< 1
Proof of the lemma. Let My = Max |y,s"f|; M, iz bounded
ost<T

for every T < oo, because f is the convergence factor of (3.1). We have

m+p
Maxl y msnefl <, 2‘ A" < MplA™H=0, as  m->oo,
0<I<T m n=ms+1
and the series §(4) is convergent for every |1 < 1.
Now let p be an integer greater than a; then
— n(p— )
4.2 A ghe VA (np-+1) .
SEPRLEED) {Fwnwﬂf () du;

after the substitution ¢ = aw, w = A, 0 <1< 1 in (4.2) we have

(2w — )P
4.3 e " (1)
(4.3) n;)’ f ”%7 { T(np—nat1) —_—f (u)du}
= 271»8“111 =0,

n>0
where F(t) = f(ta'e).
Proof of Proposition 4. We shall prove that 8(1) = 0 implies
¥n =0, ne N. From our lemma. we have that S(i)f = {g(%, 1)}, where
9(2, 1) is a regular function in 1 in the dise |4] < 1 ’1‘or every t > 0. But this

function equals zero for 0 < A< 1, ¢ > 0. This is possible only if 4, = 0,
ne N,
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