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Bases and basic sequemces in I'-spaces

by
N. J. EALTON (Swansea, Wales, U.K.) and J. H. 8 HAPIRO (East Lansing)*

Abstract. This paper is concerned with the theory of Schauder basos in non-
locally convex F-spaces, We first give somo regults on the existence problem for hasic
gequences, extending work of the firgt author (Basic sequences in F-spaces and their
applications, Proe. Edinburgh Math. Soc. to appear). In particular it is shown that
the existence of & basic sequence in every infinite-dimengional cloged linear subspace

of an F-space is equivalent to an exfension property for linear functionals. Then we
introduce two new classes of F.spaces, which we call pseudo-Fréchet and pseudo-
refloxive spaces. For example, an F-space is pseudo-reflexive if every bounded set
is relatively compact in the weak topology of its closed linear span. We give criteria
for spaces with bages to be peeudo-Fréchet and pseudo-reflexive and hence are able
to give non-locally convex examples. Using these examples we show the existence of |
non-locally convex F-spaces on which there exist strietly weaker vector topologies
which define the same closed subspaces as tho original topology.

1. Introduction. In this paper we continue the study begun by the
first anthor in [L] of basic sequences in F-spaces, with-the emphasis
on non-locally convex spaces. In §2 we restate in a more accurate form
the main result from [1] on constructing basic sequences, and derive
some variations on this result. It is not known if every F-space containg
a basic sequence. §3 containg some contributions to this existence problem.
The last section of the paper treats two new classes of F-spaces. We call
an F-space pseudo-Tréchet it the weak topology of each linear subspace
coincides on bounded sets with the weak topology of the whole space.
We call an F-space pseudo-reflemive if the weak topology is Hausdortf,
and every bounded subset is relatively compact in the wealk topology
of its closed linear span. It turns out that every pseudo-reflexive F-ypace
is pseudo-Tréchet, and a Fréchet space (locally convex J-space) is pseudo-
reflexive if and only if it is reflexive. We give criteria for spaces to be
pseudo-Fréchet or pseudo-reflexive which involve shrinking and bound-
edly complete basic sequences; and we use these results to construct

* Rogearch of the second awthor was partially supporfed by National Seience
Foundation grant GP-33695.
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examples of non-locally convex pseudo-Fréchet and pseudo-reflexive
spaces. Finally, we show that the bounded weak topology of a locally
bounded, pseudo-reflexive F-space is compatible with (i.e., has the same
closed subspaces as) the original topology. This provides examples of
non-locally convex F-spaces which have topologies strictly weaker than,
yet compatible with, the original ones; and gives non-locally convex
applications of some of the results in §5 of [].

We wish to thank Professor A. Pelezyniski for suggesting to us the
examples used in § 4.

2. Basic results. First we recall some definitions. Let (&, 7) be an
F-space; then a sequence {m,} is semi-basic ([1]) if for each. n, we have
mu;iﬂ(m,H_l, Bpigy -+-)- As Observed in [1] we can then define continuous
linear functionals {f,} on the space B, = lin(z,: ne#) such that fi(2)
= 8. If we further have that for me Hy, f,(z) =0 for all ne A implies
that # = 0, then (m,) is a Markushevich basis of H,, and we shall then

say that (,) is an M-basic sequence in B. Finally, i for ¢ By, o = X folm) @,
then (z,) is a basic sequence in H. n=l

Tf o is another HMausdorff vector topology on B we shall say that ¢
is o-polar it = has a base of g-closed neighbourhoods of 0, and v is ¢-com-
patible if every r-closed linear subspace of F iz also g-closed. It is shown
in [1] that if v is g-compatible then 7 is g-polar. A net (y,: acd) in B
is v-regular if there is a neighbourhood V of 0 such that y,¢V for all acd.

In Theorem 2.1 below we restate the main existence theorem for
basic sequences from [1]. Part (i) is a more accurate formulation - of
Corollary 3.4-of [1], for it asserts the existence of an M-basic sequence
rather than simply a semi-basic sequence. It is clear that the proof of
Corollary 3.4 yields this extra information, as the sequence obtained is
a basic sequence for a topology on F which is weaker than v.

TaroreM 2.1. Let (B, v) be an F-space and let ¢ be a Hausdorff vector
topology on B with ¢ < v. Suppose (x,: acd) is a z-regular net which con-
verges to 0 in g and suppose 2, B wilh #; # 0. s

(i) Suppose v is g-polar. Then there is an increasing sequence (a(n):
n 3> 2) such that if 2, = Bgyy, N> 2, then (2, me ) i8 & basic sequence
in (B, 7). i

(iij In general, if v is not g-polar, there is an imoreasing sequence (a(n):
n 3> 2) such that if 2, = Togay, > 2 then (2,1 me N) is an 'M-basic sequence
in (B, 7).

Tn this section we modify this result by giving another condition
under which basie sequences may be constructed. A sequence (w,) is
of type P* if there is a continuous linear functional ¢ on lin(w,: neA")
such that ¢(#,) =1 for all n.

e © '
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_ Lmmwma 2.2. Let (z,) be a sequence of type P* and suppose that u¢
l.m(w,,:. ne A). If (w,) is basic (resp. M-basic; resp. semi-basic), then (u -+ v)
is basic (resp. M-basic; resp. semi-basic). "
‘ Proof. Suppose (x,) _.if'f semi-basic, and that there are continuous
linear functionals (f,) on lin(w,) such that f;(;) = d,. Let ¢ be a con-
tinuous linezyf“funﬁtional on lin(z,) such that ¢ (2,) =1 for all n. Let X
be the ﬁpgmce.lin(m,,; u), and extend fa 2nd ¢ to continuous linear functionals
Ju and @ defined on X such that f,(u) = p(u) = 0. Also let y be the linear
‘f'unctlom.l defined on X such that () =1 and «/x(ﬁﬁ(a:n)) = 0. Then
is & continuous function as ¢~'(0) is closed.

.ltTow Silw+o) = 8y, so thm:__ (%+m,) iy semi-basic. Suppose, in
addition, (2,) is M-basic and @elin(u+2,). Then w(u +@,) = o(u-+a,)
for all n, and hence_y;(m) = @(x). However, # = au -y where yefi—ﬂ(mn)
and 80 a = ¢(y). If f,(#) = 0 for all ne 4, then f,(y) = 0 for all # and
hence Y= 0. Therefore a = 0 and # = 0, i.e., (1 w,) iy M-bagic.

Finally, if (»,) is basic then

o~ D' filw) (wto) =[a— }f‘mm] u+ [y~ ﬁ’ﬁ(y)m.:}
(=)

faml del

Then.
O%
D) =¢@) =a
ieal
since yelin(w,) and (s,) is a basic sequence. Also PR - y. Hence

D i) (u+m) =

fm=a]
and (u-+w,) is a basie sequence,

‘ TrmormM 2.3. Let (B, ) be an F-space and suppose o < v is a Hausdorff
veclor topology on H. Suppose (v,: aed) is a o-Cauchy net in K. Suppose
either that (w,) converges in o to some w¢ lin(w,: aed) or that (m,) does not
converge in o. Then ’

(i) there @5 an increasing sequence a(n) such that (@agny) 28 am M-basic
sequence;

(i) if v 48 o-polar, there is am increasing sequence such that (o) 8
a basic sequence. o

Proof. First suppose (w,) converges to some u¢ﬁ_ﬁ(wa: aed), Then
by Theorem 2.1 there is an increasing sequence (a(n): 3> 2) such that
it 2, = @y —u for n =1 then (2,) is M-basic (or basic if v is g-polar).
There iy a continuous linear functional ¢ on E(wa; u) such thatb @(u).= —1

4 - Studia Mathematlea LVI.L


GUEST


50 N. J. Kalton and J. H. Shapiro

butb @(w,) = 0 for acd. Then ¢(z,) =L1fornz=1 and so (2,) is of type P*,

By Lemma 2.2, 4+2, = @y is M-basic (or basic if = 1s g-polar).
Next suppose (#,: aed) does not converge. Let (B,¢) be the com-

pletion of (#, ¢) and ¥ = P be the linear span of H and u = llm 2,. For (i)

we extend = to a topology z on Y so that ¥ = H® lin(y), a,nd apply the
preceding proot. For (ii) suppose (V,,) is a base of balanced ¢- -cloged. z-neigh-
bourhoods of 0 satisfying VnJrl—l-Vﬂ 1< V,. Let W, be the closure of ¥V,
in (Y, ¢). It each W, is absorbent in ¥, then (W,) defines a ¢ “polar topol-
ogy 7 on Y which extends = (cf. Theorem 5.7 of [1]) and again we may
apply the earlier proof. Otherwise | J AW, # ¥, and then since Wiy

A>0

AW = W, UAW, ., = B, in particular Wy, < B. Thus Wa = Vi
Ta>0 :

for m > n. If we define U, = W, {iu: |4 <27}, then (U,) defines
a topology 7 on Y which is g-polar and 7 =7 on I (since for k> n,
U, NE = V). Again we apply the earlier proof.

3. The existence problem. An F-gpace B is called minimal if there
is no strictly weaker Hausdorff vector topology on H. It is shown in [1]
that , the space of all sequences, is a minimal space; however it is not
known whether there are other examples. This problem is central to the
problem of finding basic sequences in any F-space. In [5], Peck considers
the space M[0,1] of measurable functions on [0,1] with the F-norm

1
lo(3)|
=) T e ®
and shows that M[0,1] is not a minimal space. His method of proof
yields the following result:

PROPOSITION 3.1. Let (E, v) be a minimal F-space and suppose (@,)
is an M-basic sequence in B. Then (z,) is a basic sequence equivalent to the
usual basis of w. :

[Two basic sequences (&,) and (y,,) are equivalent it Y o,w,
if and only if ¥ a,y, converges.]

Proof. Let L, = lin(ay,: k> ) and define a vector topology A with
a bage of neighbourhoods of 0 of the form L, + U, where,U is a r-neigh-
bourhood of 0. Then

N (L, + V) =
n,U

converges

O L+ T) = MLl = {0}

since (#,) is M-basic. Therefore 1 is Hausdorff and as 4
A = 7. For any sequence (#,) of scalars we have

< 7 we conclude

ZtkmkeL +U

n+l

icm®
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for any v-neighbourhood U. Hence } ¢, converges for any scalar se-

quence, and it follows that (@,) is a basic sequence equivalent to the
usual basis of .

An M-bagic sequence will be called strongly regular if for mefl.?}_(w%),
lim f,(#) = 0, where (f,) is the biorthogonal sequence of linear functionals.

. THEOREM 3.2. Let B be an F-space; then the following are equivalent:
(i) B is non-minimal,
(ii) B contains o regular M-basic sequence,
(iii) B contains a strongly regular M-basic sequence,
(iv) B contains o regular basic sequence.
Proof. (iv) = (il). Immediate.
(i) = (i). By Proposition 3.1, since the usual basis of w is not regular.
(i) = (iii). By the proof of Theorem 2.1 (ii) (= Corollary 3.4 of [1])

. B containg & sequence (@,) which is regular and. basic in a wealker metriz-

able topology w. If weﬁﬁ(wn), then # is also in the g-clogsed linear span
of (#,) and therefore

() @ —an(w n *

Tizml
Since (x,) is w-regular, lim f,(z) = 0 and (&,) is strongly regular.
N>

(iii) = (iv). Let B, = lin(=,), where () is a strongly regular M-basie
sequence. Let (f,) be the biorthogonal sequence of linear functionals
on H,. Since the topology induced by the functionals (f,) is strictly weaker
than the original topology on H,, H, is non-minimal and contains a basic
sequence (y,) by Theorem 4.2 of [1]. For we H,, sup [fa(®)| < oo, and so0
by the Baire Category Theorem, the norm

lloel| = sup 1fa(®)]

is continuous on H,. The sequence [y, v, is a regular basic sequence
in B.

CoroLLARY 3.3. If H is an F-space, then B contwins a basic sequence
if and only if B contains a closed infinite-dimensional subspace Y with
o total family of comtinuous linear fumctionals.

Proot. One direction is trivial. Suppose ¥ is & closed infinite-dimen-
sional subspace and possesses a total family of continuous linear functionals.
If Y is minimal, then the weak topology on ¥ is the original topology
and 80 ¥ = . If ¥ i3 non-minimal, then ¥ contains a basic sequence.

Remark. Corollary 8.3 shows that the existence question for basic
sequences is equivalent to Problem IV.2.4, p. 114, of Rolewicz [6].
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In our last two results of this section we attempt to classify F-spaces
in which every closed subspace contains a bagic sequence. An F-space H
(of infinite dimension) will be said to have the Restricted Hahn—-Banach
Baztension Property (RHBEP) if whenever L < F is an infinite-dimensional
closed subspace and 0 # ze L, then there is an infinite-dimensional
closed subspace M of L with o¢ M. ‘

PROPOSITION 3.4. Let B be an infinite-dimensional F-space; the follow-
ing are equivalent:

(i) If T is am infinite-dimensional closed subspace of B and G is
a finite-dimensional subspace of L, then there is an infinite-dimensional
subspace M of L with M NG = {0}.

(ii) Let L be am infinite-dimensional closed subspace of B and G a
finite-dimensional subspace of L. If ¢ is a linear functional on @, there
8 am infinite-dimensional closed subspace K of I containing G, and « con-
tinuous linear functional v onw K ewtending ¢.

(iii) ® has RHBEP.

Proof. (iii) = (i). We prove (i) by induction on dim@. Certainly (i)
is true for dim@ = 1. Now suppose it is true for dim@ = &. Suppose
dimG = %k+1, and let G, be any subspace of @ of dimension k. Choose
a closed infinite-dimensional subspace M, of L such that Gon.M, = {0}.
Let Ly = M,+@G, and suppose #<@G\G,. Then there is an infinite-dimen-
sional closed subspace N of L, with @ ¢ N¥. Let M = N NM,; then dim N/M
< dimL,/M, = k so that dim M = oo, and clearly M NG = {0}.

(i) = (ii). Choose M as in (i) and let K = M 4-G; we extend ¢ by
w(®) =@(x), 2@, and w(@) =0, e M. Then p~'(0) = ¢ (0)+6G is
closed, and so p is continuous.

. (i) = (i). Suppose e L;let ¢ = lin{»} and define ¢(iz) = A. Bxtend-
ing ¢ as in (ii) we take M = ¢~*(0).

THEOREM 3.5. An F-space B has RHBEP if and only if every closed
infinite-dimensional subspace coniains a basic sequence.

Proof. Suppose ¥ has RHBEP and let #, be a closed infinite-dimen-
sional subspace of F; we may suppose H, separable. We may determine
a collection % of cloged infinite-dimensional subspaces of H, maximal
with respect to the property that any finite subcollection has infinite-
dimensional intersection. Let G = (&, If dim@ = oo, then Ge.Z by
maximality ; however, by RHBEP, @ containg & proper closed infinite-
dimensional subspace &, and Gy by the maximality of 2. Hence
dim@ < oo, Then B\G = |J (B\L; Le£), and as H,\G is a Lindeldt
space, there is a countable subset (L,: ne #) of & such that | (H,\L,)
= B\G, i.e., @ = MNL,. Letting M,, = L;n...NnL, we have dim M, = oo

. N n

and (M, = G,. We may select a subsequence M, such that My,

: ©
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7 Moy for n =1, Suppose z,e Mpypy\ My, q for all n, and let K,
= Tin (2, @pe1s ---)- Then K, is a strictly decreasing sequence of closed
infinite-dimensional subspaces and NK, = H < G-

By RHBEP, pick an infinite-dimensional subspace J of K, so that
JNH = {0}. For each n dimJ/JNEK, < dimK,[K, < oo s0 that JNI,
is infinite-dimensional and (M) (JNK,) = {0}. We may find a subsequence

n
© I NK gy 80 that JOK ey 7% J Ny, n2> 1 and hence we may gelect

€ T N F gy \T NI gy ppy- Then (@) is an M-basic sequence in H,. If B,
is minimal, then (a,) is already a basic sequence (3.1); otherwise Z, con-
tains a basic sequence (3.2).

Conversely, it I < F is an infinite-dimensional closed subspace and
we L, we may find a basic sequence (w,) in L. Then w¢lin(@,, @y, .-+)
for some ne 4.

4. Pseudo-Fréchet and psendo-reflexive F-spaces. Let w (K, H') denote
the weak topology induced on a linear topological space I by its (topol-
ogical) dual B'. We call an F-space B psoudo-Fréchet if for each linear
subspace 8 of B and each bounded subset B of 8, the topology w(8, 8')
coincides on B with w (%, B'). In general, w(S, 8') iz at least as strong
as the restriction to 8 of w(H, B'), and if F is locally convex then the
Hahn-Banach theorem guarantees that the two topologies on § coincide.
Thus every Fréchet space is pseudo-Fréchet. On the other hand, it follows
immediately from [1], Corollary 5.3, that every mnom-locally convex F-
space hag a subspace § for which w (S, §’) is properly stronger than
the restriction to § of w (W, B'). 8o it is not obvious that any non-locally
convex pseudo-Fréchet spaces exist. Moreover, the simplest non-locally
convex F-spaces — the sequence spaces I for 0 < p <1 — are not psendo-
Fréchet, as we will soon see; and neither are the Hardy spaces H” of
analytie funections for 0 < p < 1.

In order to provide non-trivial (Le., non-locally convex) examples
of pseudo-Fréchet spaces we study the notion of a shrinking basis for
an F-space. We call a basis for an F-space shrinking if each of its bounded
block bases tends weakly to zero (cf. [9], Theorem 4.2, for the Banach
space case). We say a bagic sequence is shrinking if it is & shrinking basis
for ity closed. linear span. The usual Banach space arguments ([9], Theorem
4.2, or [4], Ohapter ILL, §3), appropriately generalized, show that a basis
(e,) for an F-space I is shrinking if and. only if its coordinate functionals
(e,) span. a dense linear subspace of B’ if and only if (,) is & basis for B';
where B’ is given the strong topology (uniform convergence on bounded
sets). We will not need these alternate characterizations in this paper,
80 we omit their proofs. ) .

We call a basis (e,) for an F-space B hyper-shrinking if every bounded
block basis for (¢,) tends to zero in the weal topology of its dlosed limear
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spam; or equivalently, if every block basis for (e,) is shrinking. Clearly,
every hyper-shrinking basis is shrinking, and the converse holds for
pseudo-Fréchet spaces (it seems unlikely that the converse should hold,
for general F-spaces, but we have not been able to find a counter-example).
In this section we show that every F-space with a hyper-shrinking basis
is pseudo-Fréchet, and we use this result to construct examples of pseudo-
Fréchet spaces that are not locally convex. '

‘We call an F-space pseudo-reflewive if it has enough continuous linear
functionals to separate points, and every bounded subset is relatively
Gompact in the weak topology of its closed linear span. It is easy to see
that every pseudo-reflexive F-space is'pseudo-Fréchet. It follows from
standard results ([3], §23, Sec. 5, p. 303) that a Fréchet space is pseudo-
reflexive if and only if it is reflexive. We ghow that an F-space with
a basis is pseudo-reflexive if and only if the basis is boundedly complete
and hyper-shrinking (a basis (e,) is boundedly complete if the series 3 a,e,
converges whenever (s,) is a scalar gequence for which the collection,

N
of partial sums { Y a,6,: ¥ =1,2,...} is bounded). This generalizes

n=1
aresult of James for Banach spaces [4], Chapter V, §2, Theorem 2, and

allows us to construct examples of non-locally convex pseudo—reflexive
F-spaices.

Before getting to the proofs we note some simple properties of equi-
valent basic sequences. If (@,) and (y,) are equivalent basic sequences
in F-gpaces there is a linear homeomorphism 7': lin(#,)—lin(y,) such that
T, =4,. The following lemma is then immediate.

Levma 4.1, Suppose (w,) and (y,) are equivalent basic sequences m
F-spaces: )

(i) If (w,) tends to zero in the weak topology of ils closed linear span,
then so does (y,).
(ii) If (@,) is of type P*, then so is (y,).

We begin our study of pseudo-Fréchet spaces with the promised
non-examples. i

PROPOSITION 4.2. 17 is not a pseudo-Fréchet space for 0 < p < 1.

Proof. Fix 0 <p <1, let (¢,)? be the standard unit vector basis
for 17, and let

g = D1Fme

n=1

or f = (f(n))P 1P, Since the pairing

Grgy = Dfmgin)  (fel, geT)

n=1

e ©
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identifies I as the dual of 17, the basis (e,) does not tend weakly to zero
in I7. Now it is easy to find a block basis (f3) for (e,) sneh that_ Ifly =2
for all &, but [fll.—0. In particular, (f) tends to zere weakly in I*. But,
clearly, (f;) is & basic sequence equivalent fo (&), 80 (f;) does .not tend
to zero in the weak topology of its closed linear spans. Thus w (7, 1)
does not coincide with w (8, §') on the bounded subset (fy) of 8, hence ¥
is not pseudo-Fréchet; and the proof is complete. . .
Note that every closed subspace of a pseudo-Fréchet space is again
pseudo-Fréchet. In [7], See. 4, Prop. 1, it was observefl that the I:'la?dy
spaces HY of analytic functions in the unit disc contain a subspace iso-
morphic to ¥ (0 <p<1). In particular, H? is not psendo-Fréchet for
o<p<l. . )
Tn order to move toward more positive results we require two simple
lemmas, both of which are known for Banach spaces. ‘
Tmvma 4.3. Suppose B is an F-space with basis (e,), and ‘Zet v denote
the topology induced on T by the coordinate functionals of the basis. T'hen (e,)
is shrinking if and only if y coincides with w(H, B on every bounded subset
of E.
! Proof. Every block basis for (e,) is y-convergent to zero, 80 certainly
(e,) is shrinking whenever y coincides with w(H, H') on bounded .f;ets.
Conversely, suppose (e,) is shrinking; it is enough to show that if a,
is bounded and @,->0(y), then @,—0, w(H, .

If ‘
o0
By, = 2 tn,keln
k=1
and |9(w,)| = ¢ for some e IV, then by a gliding hump argument (see [6],
p. 52) we find inereasing sequences 7, P, 80 that
. Dy

lom—, 2

1
tmﬂ,lc e H < *,',;
TPyt L

(where [|-[| is an F-norm determining the topology on H). The sequence
j, AN Y .
{ Eltm %6} 18 & block basic sequence and is bounded since the partial-sum
il ‘
ofperators
i ) 00
8,o = 2%% where Etm = {p,

gl deml,
are equicontinuous. Hence

Pl

ey =0, W(E7El)

Hm D) lmyn

N=r00 Jomaipn -1

It follows that lim y(a,,) =0, contrary to the a;ssumpﬁion.

OO
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Lmwnra 4.4 (cf. [8], Theorem 12.2, p. 369, for Banach spaces). Suppose I
s an F-space with a basis (e,). Then (e,) is hyper-shrinking if and only
if no bounded blook basis for (e,) is of type P*.

Prootf. If (e,) is hyper-shrinking, then every bounded block basis
tends to zero in the weak topology of its closed linear span, hence canunot
be of type P*. Conversely, suppose (e,) is mot hyper-shrinking, so there
exists a bounded block basis (f) which does not tend to zero in the weal
topology of § =lin(f;). By passing to a subsequence if necessary, wo
may assume that there exists pe 8 with iilf]’l/.'( Si)l > 0. Thus the vectors

Julv(fy) form a bounded block basis for (e,) of type P*, and the proof
is complete.

We now give our main criteria for an F-gpace to be pseudo-Fréchet.

THEOREM 4.5. Bvery F-space with a hyper-shrinking basis is pseudo-
Fréchet.

Proof. Suppose B is an F-space with hyper-shrinking basis (e,),
8 is a subspace of B, and B is a bounded subset of §. We want to show
that w(H, B') coincides on B with w (8, §'). Suppose otherwise, i.e., suppose
w(8, §’) is properly stronger on B than w(H, B'), By Lemma 4.3 the
coordinate topology y agrees on B with w (B, I'), and i3 therefore properly
weaker than w(8, 8). Since y is metrizable, it follows that there is"a
y-convergent -sequence in B that is not w(8, 8’)-convergent. After trans-
lating this sequence by its y-limit (which by definition lies in B, hence
in §) we arrive at a bounded sequence in & which is y-convergent to zero
but not w(8, §')-convergent. By Passing to a subsequence if necessary
we may further assume that our sequence is w(8, 8')-regular, hence
regular for the original topology of . By Theorem 2.1, this sequence
contains an M-basic subsequence (b,): thus (b,) is a bounded M-basic
sequence in § that is y-convergent to zero, but w(8, S’)-regulax.

By a gliding hump argumient ([6], - 52) there is a subsequence (Bny,)
and @ block. basis (z,) for (e,) such that Zank—-wk[] < oo, where || is
an F-norm inducing the topology of E. According to [1], Lemma 4.3
and its proof, (b, ) is therefore a basic Sequence equivalent to (w,). Thus
Lemma 4.1 and the remarks preceding it show that (w,) is bounded but
not convergent to zero in the weak topology of its closed linear span,
which contradicts the fact that (e,) is hyper-shrinking. Thus w(S, §)
coincides on B with w(#, B'), and the proof is complete.

We can at last give examples of non-locally convex pseudo-Fréchet
spaces. For 0 <p < g and f = ( f(fn))§° a complex sequence, let

0

”f“p,q = { 2{ |F ()P }dlp}l/lz

n=0 2Mgk<antl

G
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when ¢ << co, and let

“f”;r),oo = SI;I) { 2 |j:(k)1_p}llﬂ.

algf<antl
Define 1%(p) to be the collection of sequences f such that [f],, < oo,
and let ¢,(p) denote those members of 1°(p) for which
lim IR = 0.
n 271,:%1%;4 f
For p 2 1 the functional [* ||, , is & norm which makes ?(p) into & Banach
gpace. For.0 << p < 1, |||, 18 & quasi-norm in the sense of [3], p. 159,
and the sebs
{Fell(p): o< (8>0)

form a local base for a complete, Hausdortf, locally bounded topology
on 1%(p). So in any case 1*(p) is a locally bounded F-space in the topology
induced by |ll,, Now ¢,(p) is easily seen to be a closed subspace of
1°(p), 8o it is also a locally bounded F-space.

Proros1TIoN 4.6. 1 (p) and ¢o(p) are not locally comvex if 0 < p < 1.

Proof. We need only find a bounded set whose convex hull is un-
bounded. Define f, by

27k gE 2R < 28,

0 otherwise,

Si(m) =

for & =0, 1, 2, ... Then each f; is a convex combination of the standard
unit vectors (e,), where
0, (M) == 8y,

for n =1, 2, ... Moreover, for 0 < p < g < co:
Ifillp,q = 2%P~0 (k= 0,1,2,...)

and llegll,,q = 1 for all n. Thus (e,) is bounded in Zv"(p) and ¢,(p), but when
0<p <1, its convex hull is not. This completes the proof.

Note that the standard unit vectors (e,) defined in the above proof
form & basis for 1%(p) and ¢,(p) when ¢ < oo. :

TrnorwM 4.7. (6,) 48 @ hyper-shrinking basis for 1%(p) (L <q < 00)
and c,(p).

Proof. Suppose (f,) is & block basiy for (e,), say

S = Z O Gy, g
NN

whore 150y <y < ..., and (a,) I8 & scalar sequence. Choose integers
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0Py <Py < ... and a subsequence (%) such that
[y i1
2 <y < gy, <2 i,

Then the vectors g; =fi, (J =1,2, ...) form a block ba,sis‘ for (e,), the
jth member of which i¢ “supported” on the integers oM < < 2MH,
ie., :

95 = 2 b0y (j=1,2,...)

oPlam<ePi+l

for an appropriate scalar sequence (b,). Now if ¢ < oo and (%), iy a scalar
sequence, then letting g; == p;., —p;—1 we have

| Ssalh -3

d
= 2 Itj bnip }(l
7 o<h=g 2pj+7u<%<zpj+k+1

- e DR

L
0<k<gy 2p,’l'+k<‘n<2”f+k+1
= D 14119sllp,q-
i

In particular, if (f,) it regular and bounded, then (g;) is equivalent to
" the standard unit vector basis of 1% Now since 1 < ¢ < oo, this latter
basis tends weakly to zero in 14 hence by Lemma 4.1, (¢;) tends to zero
in the weak topology of its closed linear span. Thus every bounded block
basis for (e,) tends to zero in the weak topology of its closed linear span,
hence (¢,) is a hyper-shrinking basis for 1%(p).

For ¢,(p) a calculation similar to the one above shows that every
bounded regular block basis for (e,) has a subsequence equivalent to
the standard unit vector basis of ¢;, which is a shrinking basis. By the
argument just given, (e,) is a hyper-shrinking basis for ¢,(p), and the
proof is complete.

q .
E batn ”M
2Pign<a®Itl

COROLLARY 4.8. 12(p) is a non-locally convex pseudo-Fréchet space for
0<p<l<qg< oo The same is true of og(p) for 0 < p < 1.

Proof. The result follows immediately from Theorem 4.5, Proposition
4.6, and Theorem 4.7. ‘

‘We next turn to pseudo-reflexive F-spaces. To set the stage for our
main result recall that a Banach space with a basis is reflexive if and
only if the basis is boundedly complete and shrinking ([4], Chapter V,
§2, Theorem 2).

TEEOREM 4.9. An F-space with a basis is pseudo-veflemive if and only
if the basis is boundedly complete amd hyper-shrinking.

e ©
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Proof. Let I be an F-space with basis (e,), and let y denote the
topology induced by the coordinate functionals for this basis. Tt is not
difficult to see that (e,) is boundedly complete if and only if every bounded.
subset of B is relatively y-compact (see [7], Lemma 1, p. 1081, for a proof).

Now suppose J iy psendo-reflexive. We will show thait (e,) is boundedly
complete. Let B be a bounded subset of , and let S be the closed linear
gpan of B. Then the w(S, §')-closare ¢ of B is w(8, §')-compact, hence
y-compact since o iy IMausdortt and < w(8, §’) on §. It follows easily
that O is algo the y-closure of B, so B is relatively y-compact, hence (e,)
is boundedly complete. Note for future reference that y = w (S, §') on 0,
hence on B. , '

To see that (e,) is hyper-shrinking suppose that (f,) is a bounded
block basis for (e,) and let 8 = lin(f,). By the above remark, y = w(8, 8")
on (fy). Clearly, (f,) is y-convergent to zero, hence w(8, 8')-convergent
to zero, s0 (¢,) is hyper-shrinking.

Conversely, suppose (e;) is hyper-shrinking and boundedly complete.
If % is not pseudo-reflexive, then there is a bounded subset B that is not
relatively w (8, §')-compact, where § = linB. Since (e,) is boundedly
complete, the y-closure ¢ of B is y-compact. We claim that 0 & 8. Indeed,
O is bounded in B, since the original topology of & is y-polar (this follows
easily from the fact that (e,) is a basic). Now if ¢ were contained in 8
we would have v = w (S, 8’) on O because (e,) is hyper-shrinking (4.3
and. 4.5), 80 0 would be w(S, §')-compact, hence B would be relatively
w(8, 8')-compact: a contradiction. Thus there exists a vector beONS,
and since y is metrizable, there is & sequence (b,) in B that is y-convergent
to b.

Now the sequence (b—b,) is bounded, y-convergent to zero, and
regular, so it follows as in the proof of Theorem 4.5 that there is a sub-
sequence equivalent to a block basis (s,) for (e,). We may a8 well assume
this subsequence is (b—b,) itself. We claim that (b—b,) is of type P*.
To gee this, define a linear functional ¢ on ' = lin(#, b) by letting ¢ = 0
on 8, and ¢(b) = 1. Now I is closed'in B ([3], §16, sec. 5, p. 152), hence
T 2 {in(b —b,). Moreover, ¢ is continuous on Z, since kerp = 8 is closed
in 5 and finally, (b —b,) = L for all n. Thus (b-b,) is & basic sequence
of type P* which it bounded in ¥, hence (w,) is & bounded block basis
of type P*. By Lemma 4.4, (¢,) is not hyper-shrinking: a contradietion.
Thus ¥ is pscudo-reflexive, and the proof is complete.

OOROLIARY 4.10. 18(p) is pseudo-reflemive for 0 <p < g < oo, 64(P)
8 not pseudo-reflemive (0 < p < o0).

Proof. We observed in Theorem 4.7 that the standard unit vector
basis (6,) is hyper-shrinking for all the spaces mentioned above. It is
eagy to see thati ifi is also boundedly complete for (), but not for ey(p).
By Theoremn 4.9 the proof is complete.

-
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Since 1?(p) and ¢y(p) are not locally convex when 0 <p <1, we
have:

COROLLARY 4.11. There exist pseudo-reflexive locally bounded F-spaces
that are not locally convex. There emist non-locally convex locally bounded
pseudo-TFréchet spaces that are not pseudo-reflexive.

A number of results in [1], Sec. 5, deal with vector topologies on an
F-space compatible with (i.e., having the same closed subspaces as) the
original topology. The Hahn-Banach theorem guarantees that the weak
topology of a locally convex space iy compatible with the original one,
_but it follows from [1], Corollary 5.3, that this fails in every non-locally

convex F-space. So it is not obvious that a non-locally conyex I-space

can have a weaker compatible vector topology.

Our next result shows that every locally bounded, pseudo-reflexive
F-space does have such a topology: the bounded weak topology. The
bounded weak topology on an F-space F ig the strongest topology on H
that agrees with the weak topology on bounded sets.

TuroREM 4.12. The bounded weak topology of a locally bounded, pseudo-
reflewive F-space is a vector topology compasible with the original one.

Proof. Let f denote the bounded weak topology on the locally
bounded, pseudo-reflexive F-space H. Since every bounded subset of H
is weakly relatively compact, it follows from [2], Proposition 3.3, or [10],
Proposition 6.2, p. 48, that § is a vector topology. To see that £ is com-
patible with the original topology of F, suppose § is a closed subspace
of H: we will show that § is f-closed, that is, SN B is relatively weakly
closed in B for every bounded subset B of H. Indeed, BN § is w(8, §)-
relatively compact, so its (8, 8')-closure O is w(8, §')-compact, hence
w (B, B')-compact. Recall that every pseudo-reflexive space has, by
definition, a Hausdorff weak topology; so O is w(E, B')-closed. Since
BN8 = BnN(0, wesee that BnS is w (B, B')-closed in B, which completes
the proof.

‘We remark that the bounded weak topology on a Hausdorff locally
bounded space coincides with the original topology only when the space
is finite dimensional. For if the two topologies coincide, then the space
has a eompact neighbourhood of zero, and must therefore be finite di-
mensjonal ([3], § 15, Sec. 7, p. 155). In particular, the bounded weak topology
on the space I*(p) for 0 < p <1 < g< oo is strictly weaker than, yet
compatible with, the original topology.

We close with an application of Theorem 4.12 to basis theory: In
[1], Theorem 5.5, it is shown that if a sequence in an F-gpace is a basis
for a weaker vector topology compatible with the original one, then it
is also a basis for the original topology. This, along with Theorem 4.12,
yields the following “bounded weak basis theorem’:
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CorOLLARY 4.18. In o locally bounded, pseudo-reflexive F-space every
bounded weak basis is a Dasis.
© Thiy result contrasty sharply with the main result of [7] which states
that if a locally bounded, non-locally convex IF-space has a weak basis,
then it has @& weak basis that is not a basis.
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