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with a similar expression for the discrete operators. Since R, has kernel
227" and #|2|~" is a spherical harmonic of degree one, we may apply
Lemma 5.2 in order to estimate

D[y By — B @) B 0] — By, s [ B, — By ) By 0]«

The remaining terms may be estimated easily using Theorem 4.1 of [8]
and Lemma 4.3,
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Discontinuous translation invariant linear functionals on L' ()

by
PETER LUDVIK (Edinburgh)

Abstract. The main result of this article is the proof of the existence of discon-
tinuous tramslation invariant linear functionals on the group algebra L!'(&), for all
compactly generated locally compact abelian groups.

0. One of the well-known results in an abelian harmonic analysis
on locally compact groups is that any confinuous translation invariant
linear functional on IL'(&), the space of all Haar integrable functions
on @, is just a complex multiple of the Haar integral I,

I(f) =ffdz, fe (@), A is a Haar measure on 6.

We may ask whether this result remains valid if we omit the word ‘con-
tinuous’ in the hypothesis.

The purpose of this note is to prove the following.

THEOREM. Let G be any compactly generated locally compact abeliam
group. Then IMG) admits discontinuous tramslotion invariant linear fumc-
tionals.

The proof will be deferred till the end of Section 3.

The motivation has been provided to a great extent in [6], [7], where
related problems have been solved for various funetion spaces associated
with locally compact groups.

1. Let G be a locally compact abelian group (LCAG); we will denote
by M(@) the algebra of all bounded Borel measures on @, with convol-
ution as multiplication, i.e., we define

(1) ' pxv(H) =f,u(E——~g)dU(g) VE,

where p, ve M(G), B is a.Borel set in G and H—g = {h: h+ge B}, with
the total variation norm on M(G). . .

It is well known that M (&) can be identified with the strong dual
of 04(@), the space of all continuous complex valued functions vanishing
at infinity. '

Also, I*(@) can be canorically embedded in M (&) and will be a norm
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closed ideal in M(@). @ acts on L'(@) by translations, the action being
defined as

(2) 7o(f) = gxf

where ¢, is the unit mass at g, or equivalently, ¢, corresponds to the
funetional

@) 2,(h) =h(g), heOy(@).

Following [6] we. will denote by 4 = A(LM@)) the subspace of L'(@)
generated by the finite linear combmatlons of the differences f—s,xf,
where fe L'(@), ge@, ie.,

(3) A =heZ@): b= 3 (fi—eo2f); gie @, fieINE).
i=1

Meisters ([6], Theorem I, pp. 201-202) has shown that if 4 is not
closed in I'(@) then there are discontinuous translation mvarmnt linear
functionals. .

We will denote by T the circle group, realised as the multiplicative
group of complex numbers of modulus 1, i.e., T = {&%: tc R}. G will
stand for Hom(@, T'), the group of all continuous homomorphisms of G
into T, with the group operation written multiplicatively, so thmt 1 will
stand for the homomorphlsm g1y YgeG. Also we will write y~* ag 7
for yeG as y~ gy = y(g) Vge@, where — denotes complex con;ugation.

Also ~ will be the Fourier [Gelfand] transform, which is the map

: ING) [M(@)] -0,

defined by
(4a) Ffy  for = [r@)f(@dig), yed,
(4b) [w =y B0 = [ 7(9)dul9), 7<6]

It is immediate (by the translation invariance of a Haar measure A)
that

(5) A< Kerl = {feL‘(G ) (1) = [flg)aatg) = o}

Levmma 1.1. A(LI(G)) = Ker I, for all locally compact abelian groups.
. Proof. It is plain that both 4 and KerIy are closed ideals in I(@).

Denote by Z(J) = M{Z(f)| feJ}, where Z(f) = {yG: f(y) =0}, J is a
subset of Lf(G). Obviously, Z (Kerly) = {1} and also Z(4 2 {1}, Now
suppose yeG, Then Ife Ll( such that f(y) = 1. Consider h =f—g*f,
80 that ke 4 YgeG and b, (y) = ¥) (L—7»(g) =1 —»(g) and so if yeZ(4)
we have to have 1—y(g) —-0 VgeG which implies y =1. So Z(4)

icm
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= Z(KerIy) = {1} and since every one point set is a set of spectral
synthesis ([8], Theorem 7.5.2 (a), p. 170), we obtain 4 = KerZy. m

Thus in order to show that 4 is not closed it will be necessary and
sufficient to show that KerIN4 = @.

To show this for all compactly generated groups we split the proof
into several stages. First we prove in Section 2 gsome ‘reduction’ lemmas
which will enable one to study only ‘elementary’ groups instead of the
general case. This investigation is carried out in Section 3, where also
the main theorem is proved.

2. Before going any further, let us recall some more elementary
facts. If ¢: G—>H is a continuous group homomorphism between two

- LOAGS, then there is an induced Banach algebra homomorphism ¢*, say,

o M(G)->M(H)
given by
(6) #*(w) [f]1 = ulfogl, [feOi(@).

The fact that @* is indeed a Banach algebra homomorphism and
lg* 4]l < llull are to be found in [2], Proposition 10, p. 478. By standard
limit argument one can extend (6) to hold for VfeC(6). Now it is evident
that <p*( 1((})) < M(H). What is not so evident, but true nevertheless
(2], Theorem 12, p. 480), is that ¢*(I'(@)) < L*(H) i ¢ is open, ie.,
@(U) is open in H whenever U = @ is open in @. :

Now we can state and prove the following lemma.

Ly 2.1. Let G and H be two LOAGs and suppose that 4(L'(G))
is mot closed. Then A(L‘(GXH)) is not closed.

Proof. Let ¢: G x H-~@ be the usual projection homomorphism
(g, h) +>g. Then ¢ is continuous, open and so ¢* maps L*(G x H) into
I}@). Note also that if we denote by ¥ the function on & X H by (g, k)
> f1(9)fa(h), where f, € I} (@), foe ' (H), then Fe L*(G x H) and moreover

(M. R (S ACVATI
where y @, y e H, the dual groups of G and H, respectively. Also if y<@,
then yog is in (¢ X H) = G x H corresponding to (y,1). So,

(8) @*(F) [y] = Flyoe]l = Fl(y, )] -

= F(y,1) =fHfO).
Thus if fe I1(@) and f, is any function in L' (H) such that f,,(i) = 1 then
(9) g*(fx ) (1) =F(),

and 80 ¢*(fxf,) =F (by the uniqueness of Fourier transform). This
shows that @* maps I'(Gx H) onto L'(@).
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Now if A(L'(G x H)) were closed, ie., 4(L*( (6> H)) = {17' 7@, 1)
= 0} then if fe Ker I\ A (@)} and fye L'(H), foll) =1
Fxfoe 4 (L@ x /)

and so there would exist {(g;, ;) e@ X H: ¢ = 1,

4 =1,..., m} such that

Fxfo = D) (Fi— s g+ Fi).
i

7m} and {Fiﬁ LI(GXH)Z

From this ensues
(10) F=*(Fxfo) = D (0*(F) — g5 v p(Fy)),
1

since ¢* is an algebraic homomorphism of M (G x H) into M (@) and, by
Theorem 12 of [2], p. 408, of I*(G x H) into I*(@), since ¢ is open. But
(10) says that fe 4({L(G)) Whmh is & contradiction and o fx fye Kerly,
N4(ZNE x H)). m

Levma 2.2. Let ¢ and H be two LCAGs, H a closed subgroup of &
(such that G|H is paracompact). Then if A(L'(G/H)) is not closed, 4/L}(&))
8 not closed.

Proof. Let z: G—G/H be the canonical homomorphism of @ onto
G/H. = iy continuous and open and so as before w*(IN@) = IMG/H);
it is in fact onto; see, for example, [1], corollary to Theorem 9, Ch. VII,
§2. So if A(LY( G/H) is not closed, choose fe KerIalH\A(Ll(G H)) a,nd
choose any FeL'(G) such that »*(F) =f. This immediately gives that
FeKerly; and if Fe A(I)I(G)) then, by an argument as in the proof
of Lemma 2.1, n*(¥)¢ 4 (I*(G/H)) which contradicts the choice of f. m

3. In the sequel we shall need two rather well-known results from
harmonic analysis:

(X) The Fourier tramsform ~
(Riemman—Lebesgue lemma,).

(II) Let @ be o LCAG with character group @. Let y be any non-negative

Junction in Cy(G ) Then there ewists a function fe L'(@) such that

F) = vy

This can be found together with further references in [4], §32, 47,
pp. 385-286.

Let us now suppose that fe 4 ()
Sie ZM@), such that,

(11) F =D (fi—e, ).

maps ING) into (@ ) for all LCAG

Vye@.

))- So there exist {g;}, {f.}, g:¢&,

icm®
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Taking Fourier transforms (11) becomes

(12) fo) = 3 L—ylalfstm,
and so i Z

Fnl < max L —(g)1- 317
Write

(g, v) =max[l—y(g)l, g =(gzy- ) Im)y Gic& A\
o

Then ¢(g, y) % 0 when f (y) # 0 and we can write

(13) ¢(g, ) )] 2 fily

and by (I) the right-hand side is in Co(é‘) and therefore

(14) p(9, N )I>0  as
So if we can find a function yp,e0f (G) such that

Yy such that f(y) 0

y—>o00 in .

Vm, Vg, ge@x...xX G, (g, 7) v (p)+0 as

Y00,
m times . .
we could conclude that there exists fe KerIg\4 (L1 (@), by (II).
LommA 3.1, Let G be any LCAG with dual group (;‘, G = @Fx...x@G
(m times). Let X be a finite subset of G of cardinality > N™ and such that

for any vy, yeeX, p1 5 ya, we have either yyp;* or yyyrteX. Then for any
g<G™ there is an edlement yeX such that

‘ 2
(18) 9lg, 7) = max[L—y(g)| < =

Proof. Let geG™. Define a map &: G—T™ by

> ((g))imy < 1™
Tt is plain that @ is a continuous group homomorphism betyve.en G and T™.
Consider @|X. If & is not injective on X, there will be two distinet y;, ype X
such that
D(y1) = D(ya)
and §o (smce @ is a homomorphism)
‘ D(piyit) = D(pilys) = B(1).

By the hypothesis on X we obtain that y,y; " «X (relabelling if necessary)
and so )

1 2n
p(g,ny) =0< e
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So assume that @(y,) # B(y,) Vyy # y, in X. Realise T as {¢*™: te R).
Consider a mneighbourhood of 1, V say, to be V = {é™: [t] < 1/2N).
Then T can be covered by N {ranslates of V, namely .

{v. 62n’£kN"1}§C\T~:01‘.

So T™ will be covered by N™ translates of V' X...XV = V™.

m times
Since @ is now assumed to be injective on X we have card $(X)

= card (X) > N™ and so by the ‘box principle’ there exists ¢, y, in
X, vy # e, and tin T™ such that P (y,) e V" +E and D(y,) e V" L. Suppose
(a8 we may) that y,p;'eX. Then ‘

1 m
Pyays ) e VM (V" = {2’“‘ |i|<N}

and so

} y 1]
7’17’;1(%) {Z #; |”<—17}

which gives
( 1) < 27 .
oG, 11y ) s v

By the fundamental theorem on the structure of LOAGs (compactly
generated), any such group is topologically isomorphic to R®xZ°x K,
a, b finite integers > 0 and K is compact, and for compact groups we
can use the following ’

PrOPOSITION 3.2. Let X be am infinite abelian (discrete) group. Then X
contains as o subgmup, A, one of the following:

(i) Z,

(i) Z(p*),

(iii) an infinite product of eyclic groups.

For a proof see [3], Ch. 2, lemma 4.3, pp. 26-27.

Thus if @ is any compact group (infinite) then its dual G contains
one of the groups from Proposition 3.2 as a (trivially) closed subgroup
and this i3 equivalent to saying that & contains a closed subgroup H,
say, such that G/H" is topologically isomorphic to one of the groups of
3.2 and hence G/H is topologically isomorphie to either T, Ap (the p-adic

integers) or a complete direct product P (Z]a,Z) of cyelic groups.

So by Lemmas 2.1 and 2.2 to show tha.t 4 (L1 )) is not closed. for
a compactly generated LCAG it will be sufficient to show that 4 (LI(G))

is not closed for G = T, Z, Ap, P Z|a,Z (since R|Z = T).

=1
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Ly 3.3, A(L'(@)) is not dlosed 5f G s one of the following:

i) &= I7
(i) & = Ap,
(iii) G = §Z/wnz,
n=1
(iv) @ = Z.

Proof. Case (i). Let y be a function on Z defined by
(log Iﬂl)*ly In| > 2,
0, | <2.

Take any fe LMT) such that f(n

hoo==f— —f( )2y is also such that h('n,)
So he KerIy, and we will show that

(16) o (E, m)"Lh(n)+0

p(n) =

) Thls is possible by (II). Then
(n), and moreover, h(l) = 0.

for any 2™, any m, which will imply by (11)-(14) that h¢ A(TH(T)).
This we do by utilising 4.3 of [6], which says in our notation

Vm Vie T Am, < 2+, Mgy > 1y, Vo

guch that
17 @ (b, my) < 2mng
Then
' pim
o(t, n) w(ng) = -2——;1(’;—ng—>00 as  My—>00

and. since
o(t, m) " hing) > o(E, m) T p(ng),

(16) is valid, which proves that 4(L*(T))
Oase (ii). Write '

is not closed.

W ©
G =2Z(p) =1l )X,
==l
where
X, ={&"" 1 =1,2,...,p"—1}

Then cardinality of X, = p"—1 and X, satisfy the hypothesis of Lemma

3.1. Thus
(18) Vm Vged? A{y, o7, X, such that

1

1)W))”1, where H (@) is’ the. entire part of .

Cp(gi yﬂ) =< 2n (E((pn—
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Define y on & be to y(y) = (log(p™—2))" for ye X, and 0if p"—2 < 2.

As before there exists he L'(4p) such that

h(1) =0 and  h(p)>wly) Vyed,
and
1

3 B((p"—1)")
i “iy, W8 7)) -
(Pa)o(g, va) ™ > gmlog(pr_2) O Mmoo
and so hed(L'(4p)), ie., 4 is not closed.
Case (iii). We will consider two cases
a) @, = ¢ Va, ie.,

v k]

¢ = P(2jgz), =D,, &= P'(242),.

=1 1=l
Consider any fe L'(D,) such that f(d) =0 and ) >0 Yy s 1. This is
possible by (II) and the fact that G is countable. Observe that every
element of D, has order < ¢ and 80 any m-tuple of (g4, ..., ¢,,) will generate
a finite (closed) subgroup of D, (at most m? distinet elements can be

m

obtained as [[g%, a;eZ). Hence yeD, such that y(g) =1 Vi but
i==]
y 1. So if '

i

f= Zhi——s{,i*hi'
then . .

F) = Y1 —@)h(y) =0 for some y %1
and this contradicts f(y) > 0 Vy o 1. )
b) @, =>n+2, ie.,
G = PZ/ﬂ”Z, é = P*(Z/(an) = P*-Xm

n=1 f=1 M=
and define v onfi‘ to be »(y) = (logn)™, yeX,\{1} for n > 2 and 0 else-
where. Then if A(1) =0 and h(y) > y(y) Vy we will get
(19) Vm >0 YgeG™ Jy,eX,\{1} such that

?(g) 7a) T h(yy) o0 Ay m—oo

because, by Lemma 8.1, Vin > 0 Vge@™ Iy, X, \{1} such that

?(gy ) < 7| (card (X, \{1}) > n)

27
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and so (19) follows from the definition of ¢, A and the fact that

1/m'
Ym > 0 M 00 28 Mm>oo.
logn

Thus h¢ 4(L(G)). )

In the general case, i.e., {a,} is an arbitrary sequence of integers
@, > 2, we can plainly choose a subsequence {a, }5 ., such that @y, = CONSH
Yk if {a,} 1§ bounded, or such that ty, > k+2 if {a,} is unbounded.

The reduction is then obtained by Lemma 2.2 and the observation

that @ contains as a (closed) subgroup P*(z/a,2).
k=1

Oase (iv). @ = Z is shown to satisty 4({1'(Z)) is not closed in [6] but
for the sake of completeness we will give a different proof here. It is ob-
vious that since dual group of discrete group is compact, we cannot hope
to apply the above method. However, in the case of @ = Z a direct proof
is easily obtained.

Observe, first of all, that if a group G is finitely generated, i.e.,
3{gs. --., 9o} = @ such that every element of @ is expressible as a finite
product of powers of g;, then

f=Dh—eyxhy i f= j;‘h;-—egj*h;.‘

In the case G = Z, Z i singly generated and so it will be sufficient to

construct fel'(Z) such that f(l) =0 (Lo, if f = {@ )} 0y D] < o0, ‘

f(1) = Xa,) and f is not expressible as g—s;*g for ge'(Z).
If f(n) = g(n) —g(n—1), ne Z, f,ge1"(Z), then

k
D) = g (k).

Consider now

F(n)=+-7—711~£ i# m<o,
F(0) =0,

1
Fin)= ——5 i n>0

I F =G —e+G we have

G(k) = pry for k<0 and Gk)=

n=k

RHS
slg
I
=

and so G cannot be in I(Z). m -
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So by putting together [6], Theorem 1, p. 201 and Lemmag 2:1, 2.2
and 3.1, 3.2, we obtain

TamorEM. Let G be any compactly generated LOAG. Then INQ) admits
discontinuous tfranslation invariant linear functionals.

Remarks. (i) In order to extend this result to oll locally compact
abelian groups it would suffice to prove that 4 (LZ*(6)) is not closed for

all discrete groups; alternatively one might try to prove an ‘extension’
lemma: ‘

Let Gy be a compact open subgroup of w locally compact abelian group G.
Suppose that A(L'(Gy)) is not closed. Then also A(LN@) is not closed.

We would conjecture that the above is true, but so far have been
unable to prove it.

(ii) Tb is interesting to mote that in the dage of compact groups K
we have the following corollary:

There is a linear mapping T: T* (K)—L'(K) such that T (e, *f) = g, Tf
Vye K, fe IME) and T is not continuous.

Proof. Let a be any discontinuous translation invariant linear
functional, and let f, be the constant function fol9) =1 Vg. Then T:
LNE)->L'(K), given by f > a(f)-f, plainly commutes with translations
since g,%fy = f, Vg and is not continuous.

This is in contrast with the known fact that any linear map from
I'(R) into L'(R) which commutes with translations is continuous, viz. [5].
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Power factorization in Banach algebras with-a bounded
approximate identity

by
GRAHAM R. ALLAN (Leeds, T.K.) -
and ALLAN M. SINCLAIR (Edinburgh, U.K.)

Abstract. Let A be a Banach algebra with a bounded left approximate identity,
let X be a left Banach-4-module, let « be in the closure of 4-X, and let (a) be a se-
quence tending to infinity with a, > 1 for all n. Then there is an aAin 4 and a sequence
(¥n) In X such that o =-a"y, and |ly,|| < of|||| for all n, This is used to show thls;,:;
a radical Banach algebra A with bounded approximate identity cannot have [|o%||U%
tending to zero uniformly in the unit ball of 4. :

1. Introduction. In this paper we show that an element @ in & Ba,nfwh
algebra A with bounded left approximate identity may be factorized
as & = a"y, for some @, ¥, Y5, ... in A with some contro% of the growth
of the sequence of norms |ly,ll, |lysl, ... Like all factorization results.con-
cerning bounded approximate identities (see [2], [6]) the method is an
adaption of that of P. J. Cohen [3]. P. C. Curtis and H. Stetkaer [5] 1.1a1ve
shown that for each # in A and each positive integer » there are a, y in A
such that # = ¢"y. J. K. Miziotek, T. Miildner, and A. I.B:ek [?] ham.ve
proved that a radical Banach algebra with a bounded approximate identity
cannot satisty a condition that forces the growth of the products |lzyz, ...
... " uniformly to zero for certain sequences (,). We streng'bh.en
this result by showing that if 4 is a radical Banach algebra for which
there is a positive sequence (a,) converging to zero such that, for each o
in 4, liminf |z"(|/"/a,, is finite, then A does not have a bounded left approx-
imate identity. We obtain this from the factorization » = a"y,,. )

If A is 2 Banach algebra recall that A has a bounded left o_»p_p'rommate
identity [for a Banach-A4-module X] bounded by d 1f for each finite subset
{%yy ..., w,} of A [0of X] and ¢> 0, there is an ¢ in 4 sx}c!l.tha,!: [lell <_d
and |lw; — exyfl < & for § =1, 2, ..., n. This form of the defm%tmn is equiv-
alent to the usual form that there is a met {e(4): Ae I} in A bpunded
by d such that # = lime(A) for all # in A. The former deﬁm‘tmn is more
convenient for our applications as it simplifies the notation slighfly.
For a discussion of bounded approximate identities and kmown results
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