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Embedding D* in Dugundji spaces, with an application
to linear topological classification of spaces of continuous functions

by
RICHARD HAYDON (Oxford, U. K.)

Abstract. Pelezyiiski’s class of Dugundji spaces was shown in a previous paper
(On a problem of Pelozyviski: Milutin spaces, Dugundji spaces, and AF (0-dim), Studia.
Math. 52 (1974)) to coincide with the class of compact absolute extensors for compact.
zero-dimensional spaces. It was also shown that such spaces allow a particular kind
of inverse limit representation. Using this representation, it is now shown that a.
Dugundji space of weight 7, that satisfies a certain further condition (+), contains

o0
a homeomorphic eopy of {0, 1}*. (A space § satisfies (*)if we cannot write § = |_J Sy,
. n=1
where the S, are closed subspaces with w (S,) < w (S).) This answers a problem posed
by Pelezyniski and allows us to conclude that for each such space § the Banach space
%(8) is linearly homeomorphic to #({0,1}". Some small improvements are also
offered to some related.results of Efimov on subspaces of dyadic spaces.

1. Notations. All the topological spaces considered, S, T, X, ...,
will be compact (and Hausdorff). D will denote the two-point space {0, 1}
and I the unit interval [0, 1]. If 4 is any set, D will denote the product
space [] D, of a family of copies of D, indexed by 4. The space I4 will

aed
be defined similarly. In particular, when y is an ordinal, D? will mean
IT1D,, and D° is, of course, just {@}. The topological weight w(S) of 8

a<
is 1:o]ae smallest cardinal v such that there is a base # for the open sets
of S with card # = v. When w(S) is infinite, it is also the smallest cardinal »
such that § can be homeomorphically embedded in I".

In the above, and in all that follows, we follow the convention that
a cardinal is identified with the corresponding initial ordinal. If y is a
limit ordinal, the cofinality cf(y) of y is the smallest cardinal » such that
there is a family (y (&))<, of ordinals v (&) < y with sup{y(&): & < »} = .
We say that an infinite cardinal = is regular is cf(z) = 7. Otherwise, = is
singular. For every 7, the successor cardinal =% is regular, and for every
limit ordinal y, cf(y) is regular.

When § is a topological space, and % 8, the neighbourhood character
%(®, 8) of # in § is the smallest cardinal of a base of neighbourhoods of @
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in 8. If § is compact Hausdorff, then y(z, §) is also the smallest cardinal »
for which there is a set % of neighbourhoods of » with card¥ = x» and
Mg = {x).

The Banach space of all continuous real-valued functlons on § will,
of course, be denoted by #(8). When ¢: §—T is-a continuous mapping,
an operator ¢': (T)—%(8) is defined by ¢°(g) = gop. If ¢: SC- T i
4 coutinuous injection, a regular ewtension operator for ¢ is a positive
linear operator w: #(8)—%(T) satisfying % (lg) = 1y and ¢° ('u( f)) =f
for all fe 4(8). The space § is said to be a Dugundji space if, whenever ¢:
8 &+ T'is a continuous injection, there is a regular extension operator for Q.

As a last piece of terminology, we recall that & continuous mapping ¢:
81T was said in [4] to have a metrizable kernel if there exist o compact;
metrizable space K and a continuous injection k: SC» T x K such that
¢ =II,0k, IT, being the projection T x K—~T.

2. Preliminary results concerming dyadic spaces. The results guoted
in this paragraph are due, except for one modification, to Efimov ([2]
and [3]). We recall that a compact space § is said to be dyadic if, for
some 7, there is a continuous surjection D*— 8. It follows from the 1esults
of [4] that every Dugundji space is dyadiec.

2.1. PROPOSITION (Corollary 8 of [2]). If % is a set of non-empty
open subsets of D and card¥ is an uncountable regular cardinal, then there
is a subset ¥~ of U with card¥” = card¥ and (¥ #@.

2.2. TumoreM (Theorem 14 of [2] and Theorem 1 of [3]). Let S be
@ dyadic space, a be an infinite cardinal and M be a subset of 8 with x(z, 8) < o
Jor all we M. Then w (M) < a.

2.3. THEOREM (Stronger version of Theorem 16 of [2]). If § s a
dyadic space and w(S) is an uncountable regular aawd'mal then there is
@ non-empty open subset U of 8 such that y(w, 8) = w( for every xe U.

Proof. Efimov proved this result under the additional assumption
that every weakly inaccessible cardinal is strongly inaccessible (which
will be the case in particular if we assume the Generalized Continuum
Hypothesis). But with a small modification in the argument we can do
without that assumption.

The original argument in the case where w(8) is a successor cardinal
-does not require any additional hypothesis. So let us suppose that w (8) ==,
2 regular limit cardinal (ie., weakly inaccessible). Put M = {we S: y(, §)
< 7}. It is required to prove M = §. We suppose to the contr ary that
M = 8 and show first that every dense subset of M has cardinal at least v.
If not, there is ¥ = M with card N < v and ¥ = S. Since v is regular,

sup{x (%, 8): ze N} <=

and - -
w(8) =w(M) =w(N)<~
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by 2.2. This is a contradiction. The remainder of the proof (the con-
struction of a ‘strong sequence’ of order type 7) proceeds exactly as in [2].

2.4. Remark. The same modification to Efimov’s method of proof
allows us to remove assumptions of GOH type from Lemma 3 and Theorem
7 of [31. .

3. Restricted inverse systems. The techniques employed in what
follows will make much use of a cerfain type of inverse system. Similar
systems have been studied by Cohen from the point of view of homotopy
theory, and from [1] I borrow the term restricted inverse system (of compact
spaces) for a system (X,, p,4)., satisfying:

(i) = is an ordinal;
(i) whenever a << g <7, p,; is a continuous surjection X ﬂ—a—X
(iii) whenever a <<y < 7, P, 0P, = Da,y}
(iv) whenever y is a limit ordinal and y < 7, the continuous surjection

-Xyéli_r_n (ch pa,ﬁ)y

determined by the consistent family (Pap)acy 18 injective (and thus a

homeomorphism).

It will usually be convenient to write X, for the inverse limit of
a system of the above type, and to write p, for the canonical surjection
X.—+X,.

An elementary observation is the following:

3.1. PROPOSITION. Let (X,, P, z). be a restricted inverse system and

- let T be a closed subset of X,. Then (p,[F], p, sl2s[ T, is @ frestmoted m-

verse system with inverse limit homeomorphic to F.

The restricted inverse systems in which we shall be particularly
interested will satisfy one or more of:

(a) for every a < 7, P, .. has a metrizable kernel;

(b) for every a < 7, P, .4y i an open mapping;

(6) X, is trivial (i.e., card X, = 1).

We shall need to make some observations about the weights of the
spaces X, in such systems. ‘

3.2. PROPOSITION. If (X,, Py p)s is a aestncted inverse system samsfymg
(a)y then, for each a< 7, w(X,) < max{w, w(X,), carda}.

Proof. For each 8 < a, there is a eompaet metrizable space K; and
a continuous mapping 0: Xy, — Ky such that (pgp.q X 05): Xpyq = Xp ¥
X K; is an injection. We note that the continuous mapping X,—+X, X
X ]]K,,, ml—->( 6,0(); (620D5,4 (w))ka) is injective, and that the weight of

0>< JT1 K, is at most w(X,)+o-carda.

f<a

3 — Studia Mathematica L VL3
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3.3. PrOPOSITION. Let (X,;,pa,ﬂ)f be a vestricted inverse system. If
y < v is an uncountable regular cardinal and

card{f: B <y and pgs.1 18 N0t injective} =y,

then w(X,) =y

Proof. Suppose, if possible, that w(X,) <y, and choose a set &,
< ¥(X,) with card¥, = w(X,) and such that %, separates the points
of X,. For each fe%,, there is, by a Stone-Weierstrass argument, an
ordinal «(f) <y such that f factors through 2y ,. We find that a =
sup{a(f): fe¥%,} <y and that p,, is injective. Thus pg 4., can fail to be
injective only if g < « and, since carda <y, we have a contradiction.

3.4. PROPOSITION. Let (X, Pop). be a resiricted inverse system and
let y < v be a limit ordinal. Then w(X,) << sup{w(X,)": a<yl}.

Proof. If not, there is a cardinal x such that x < w(X,) and » > w(X,)
when a < y.

If we put A = cf(y), it must be that 1 > ». For if not, we could find
(#(8))e<x With p(§) <y and

sup{y(&): §<u} =y.

In this case there would he a continuous injection of X, into ] [ Xoer
which has weight at most

aeSup {w(Xyg): <} =% <w(X,).

Let us suppose first that » can be chosen to be a regular cardinal.
There is an increasing family {ﬁ (5))5<1 of ordinals with g(&) <y and
sup{f(&): § <A} =y, and such that Py, sg.. fails to be injective for
each & < A. (If not, then for some § <y, ps, would be injective, giving
us w(X,) = w(Xy).) If we put o = sup{f(&): &< x}, we see that a <y,
because x < cf(y), while by 3.3 applied to the system (Xs, Pue),sm) s
w(X,) is at least x, a contradiction.

In the remaining case, » = sup{w(X,): a <y} and » is a singular
cardinal. For each cardinal u < #, there is a(u) <y with w(X,) > u.
This time if we put a = sup{a(u): 4 < x}, we see again that « < y, while
w(X,) > » This. contradiction ends the proof.

3.5. COROLLARY. Let (X, D, z). be a resiricted inverse system satisfying
“(a) and (¢), and suppose further that none of the mappings p, o s injective.
Then w(X,) = carda for all o < a7

Proof. In the light of 3.2, it is enough to prove that w(X,) > card a-
Since, by 3.3, w(X,) > w(X,) whenever y < a and y is a regular uncount-
able cardinal, we see that this is indeed the case when a is uncountable.
It remadins only to note that w(X,) is not finite. (If it were, then D,
would be injective for some n < w).

icm°®
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4. Construction of the regular inverse system. It was shown in [4]
that a space § is Dugundji if and only if § is homeomorphic to the limit X,
of a restricted inverse system (X, p,,). that satisfies (a), (b) and (e).
In this section, we sketch the eonstruction of this system, starting from
a space 8 that is assumed to be Dugundji, and isolating as lemmas certain
arguments that we shall need again later on.

Write 7 for the weight of § (which, to avoid trivialities, we can assume
to be uncountable). Choose a set A with card A = 7, and an embedding
of § in J4. Then, by hypothesis, there is a regular extension operator u:
F(8)—% (IY).

Let us fix some notation: when B = € < A, write 7p,o for the pro-
jection I°—~IZ (for future reference, let us agree to use the same notation
@ge for the projection D°—DPF); denote by S(B) the subspace 7ig 4 [8]
of IZ and by Py o the restriction of =y o to §(0). For simplicity, write ng
and Py for mp 4 and Py 4, respectively.

Let us say that B < A is an (F) set (for ‘factorlzatlon’) if foPB
factors through =y, for every fe%”(S )) Let us say that B is a (WF)
set if the restriction of u(foPz) to the subspace S(B) xI4 N of I factors
through sz for every fe#(§(B)). The essential lemmas on (¥) and (WF)
sets are the following:

41. LemMa. If B is (WF), then Pg: S—S(B) is an open mapping.

Proof. We consider the diagram

8 - gBx1B

sS(B) -

If we define w(f) = u(f)|{S(B) xI*F), we see that w is a regular
extension operator #(8)->%{S(B)xI* F). Moreover, w(foPg) = fomng
for all fe% (S(B)), and 7 is an open mapping, 50 that Pzis open by Lemma
2 of [4].

4.2. LBMMA. If C and D are (WF) sets, then B = Cu.D is also (WF).

Proof. §(B) can be identified with a subspace of S(C)x 8(D), so
every fe% (S (B)) can be a.ppmxnna;ted uniformly by sums of functions
(g®h) with g% (S(0)) and he® (S ) We consider the regular extension
operator

8)—% (S(O) X

defined by o(f) = u(f)|(S(0) x I*\%). Bince v(goPs) = gomy for all

IA \O)
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g<%(8(0)), it follows from the module property of Corollary 2 of [4] that
t
o((g®h)0Pg) = ((goPg)- (hoPp)) = (gomc) v (hoPy).

Now on the intersection (§(C) xI* )N (8(D) x IIA\B) we know that
v(hoPy) coincides with (homp). But §(B) xI4MF is contained in this
intersection, so on this subspace it is clearly true that u( g&®h) oPB)
coincides with (9@ h)omg. The required result now follows by the uniform
approximation of an arbitrary fe% (8 (B)) by sums of functions g@h.

4.3. LemuA. If H is an infinite subset of A, then there is an (F) set B
with H < B and card B = card H.

Proof. We put B(0) = H and define B(n) inductively as follows.
It B(n) has been defined already and cardB(n) = card H = %, say, we
note that w(S (n) )m at most x, so that there is a subset €, of %(S (B(fn)))
with card €, = #, which separates the points of §(B(n)). For each fc%,,
there exists, by the Stone—~Weierstrass theorem, a countable subset H(f)
of 4 such that u(fo Py factors through wgy . If we put B(n-+1) = B(n)v
VU{B(f): fe®,}, we find that u(goPgy) factors through mpyq for all
gs%(S(B(n))). Finally, we set B = (J B(n). For each fe¥%(S(B)

n=0
can approximate f wuniformly with functions & = goPB(n g With ge
4 (S( n))) For each such &, u(hoPp) = u(goPgy) factors through mp,
and so u(foPyp) does the same.

4.4, Levma. The union of an increasing family of (WE) seis is again
(W

Proof. We apply the same uniform approximation argument as
was used at the end of the proof of 4.3.

We see now that to obtain the system (X, p,,), it is enough to
obtain an increasing family of (WF) sets (A (a)).<. satisfying

(o) A(O) =0, ,

(B) A(y) = U{4A(a): a< y} when y iz a limit ordinal,

(y) 4 (a +1)\A(a) is ecountable for all a, and suoh that the mappings
P 4. separate the points of §.

We put X, =8(4(a) and P,; =P,y 44, and check the re-
quired properties as follows:

condition (iv) of the definition of a restricted inverse system is satis-
fied because of (B);

condition (a) is satisfied because of (y);

condition (¢) is satisfied because of («x);

condition (b) is satisfied because P, is an opeh mapping, by 4.1,
80 that P ar1 = P yw),a@ey 15 also open.

), we

icm
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If the mappings P, scparate the points of S, then the surjection
§—+X, determined by the family (P,,) i a homeomorphism.

The family (A(a)) is constructed by transfinite induction. We choose,
once and for all, a family (fy)sc. in W(S) that separates the points of §.
We define 4.(0) = @. To perform the inductive step of obtaining A (a--1)
from A (a), we take & to be the smallest ordinal such that f, does not
factor through Pue. (We note that w(S( )) < w-carda <z by 3.2,
g0 that such a & will always exist.) We then let B be a countable (1) set;
guch that f; does factor through Pp. We put 4 (a--1) == 4 (a)V.B, which
is a (WIF) set by 4.3. When we reach a limit oulma,l y, we define

Aly) = Ufd(@): a <)

which is a (WI) set by 4.4.

In the proof of the main theorem it will be necessary to consider
what happens when an (F) set B iy adjoined simultaneously to all the
sets A («) we have just constructed.

We formulate this as a proposition.

4.3, Proros1wIoN. Retaining the notation of the preceding discussion,
let Bbe a (W) set with card.B == » << 7. For each o < v, define B(a) = A (a)u
UB, Y, = S( )7 Ga = Puwys Qup = Pr),mp and 7, '“ZA(a) Bla)*

Then (Y, Qap)s 18 6 restricted tnverse system, with inverse limit &,
which mmﬂ es (a) and (b). The maps v, are open. Moreover, w(Y¥,) = carde
for all a3z max{w, x}.

Proof. All the assertions are immediate consequences of what we
know already, except perhaps the last. For this, we note that, by con-
struction, the system (X, p,p). satisties the hypotheses of 3.5, so thatb
w(Y,) = w(X,) = carda for all a, while by 3.2, w(¥,) < n)ax{m, (¥y),
carda}. We now only have to note that w(¥,) < cardB =

5. The embedding theorem.

5.1. Propostrion. Let p: X->Z be & continuous, open surjection with
@ metrizable kernel. Let us suppose that in the following diagram T is zero-
dimensional, j is o continuous injection, that ¢ and 0 are continuous map-
pings, and that po 0 == pof, «

o |

Rt
o
//
I A »
7/
7/

/
Tt

Then there is a continuous mapping y: T—X such that woj =@ and
poy =q.
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Proot. The method is that used in the course of the proof 6 Theorem 2
of [4]. We consider the mapping ¥ from 7 into the non-empty closed
subsets of X defined by

P(t) = {p(n)} it =j(r)ej [RB],
F(t) =p~p(t) it t¢j[R].
If V is an open subset of X, then
{tel: POV #£0} = jp~ [VIU(p™ p [VIN[R])
= (¢ p[VIN(i[BNe~'[V]]) ,
which is an open subset of 7. Thus, in the terminology of [57], ¥ is lower
semicontinuous. -

By hypothesis, there is a metrizable space K and a continuous in-
jection %: X—Z x K such that p = IT,ok. The mapping I" defined by
I(t) = I, k[P (1)] is lower semicontinuous from T into the closed non-
empty subsets of K. By Theorem 2 of [5], there is a continous mapping

y: TK with y(t)e I'(t) for all teT. To finish the proof, we note that y,
with the required properties, is well defined by

k(1) = (p(1), y(2)).

5.2. LmmwmA, Let (X,, Do) b @ restricted inverse system satisfying (a)
and (b). Suppose that y < v is a limit ordinal and that o< 7.

Suppose further that, for some & @ is a continuous injection DX,
which has the property that, for each z< D, p; (@(2)) contains more tham
one point. '

Then there is an ordinal f with ¢ < f < v and a continuous njection p:
D e, X, such that p,zop = POTme sy

Proof. For each ze D¥, because p;} (»(2)) contains more than one
Point, there is an ordinal (z) with a < 8(2) < y such that Pk (2(2)
containg distinet points, y(2, 0) and y(e, 1), say. By repeated applications
of 5.1 (with 7 = D* and R = {#}) we can find, for each 2, continuous
mappings

Yot D5—>Xﬁ(z)w
such that p, s0y,; = ¢ and
"pz,i(z) =y(», 1) (¢ =0,1).

For each #, there is an open and closed neighbourhood U(z) of 2
in Df such that y,(#') # y,,(2') for #'c U(#). Let us cover D with finitely
many such sets U(z,) (1 < k< n) and obtain an open and. closed partition
(Vi) of D with V, = U(z,) (1<k<n)

Define g = sup{f(z): 1< k< n}, and obtain, again by 5.1, con-
tinuous mappings 6, ,: D*-X, such that Preg,60 Os = Pp0 (8 =0, 1;
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1 <k < n). Finally, note that we can regard D*+! as D* x D and so write
a typical element as (z,4) with ze D* and ie{0,1}. We define

6: D' X,

by o(za 7’) = glc,i(z) if 35V1c' .

It is easy to check that 6 is injective. . '

The above lemma provides, us with the essential technique required
to build up, by transtinite induction, a continuous injecti(lri D'c.,.§8. How-
ever, the (obviously mecessary) hypothesis that each p7i (p(2)) should
contain more than one point means that we have to make a‘few final
preparations.

5.3, LeMMa, Let p: S—»>X be o continuous mapping, let v<X and
suppose that p~*(x) is o singleton, {s}, say.

Then x(s, 8) < y(@, X).

Proof. Let  be a set of neighbourhoods of  in X with card{ﬁ = y(2, X)
and (% = {z}. Then each p~'[G] is a neighbourhood of s in § and

(7' [6]: Ge T} = {s).
This lemma tells us that the hypothesis placed on the continuous
injection ¢ in 5.2 will be satistied in particular if
1(®, Xy) > X(ﬁu,y(“ﬂ: Xa)

whenever p,,(2)e p[D*]. .
5.4. PROPOSITION. Let (X, P, g). be a restricted inverse system s.aus-

fying (a) and (b). Let = be a regular uncountable cardinal, a, v, & be ordinals

with a< y <7 and &< % Suppose Z is a closed subset of X, such that

z(®, X,) =x when w@ep;,[Z]
and X
(e, Xp)<wn when ®epgs[Z]
with a < f < p. Then if ¢: D7 48 ¢ continuous injection, there 48 a con-
tinuous injection 0: D*c.X, with
:pu,yo 0 = f])oﬂ‘u'“.

Proof. We define, by transfinite induetion, an increa.sing_ farnily
(a(n))eg,,m of ovdinals a(n) <y, together with continuous injections 0,:
D'+X oy in such a way thab .

0,00, r = Dup,ue)© Or

when £ 5 < ¢ < % We start, of course, by putting‘a(f) = g and 0; = ¢.
In view of 5.3 and the remark above, obtajlllng a(n-1) and 0,4,
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from a(7) and 0, is exactly 5.2. If { < x is a limit ordinal, we put
a() = sup{a(n): 7 < {}.

We can note that, by an argument similar to one used early in the
proof of 3.4, we must have cf(y) >, so that «({) <y. A continuous
injection 0,: Dt Xy is defined by the family (6,),., when we identify

- D with lim (D"),<; and X with 11111(2(,,(,,) <t ’

. In the same way, when the induction is complete, 6: D*—X,; is de-
termined, where § = sup{a(n): n < »}. Certainly § <y, but since p;4[Z]
contains points & with y(x, Xp) > w(D*) = %, we see that B =y (so that,
incidentally, we must have the equality cf(y) = x).

Finally, a last lemma, no doubt well known, on the behaviour of
the neighbourhood character under an open mapping.

5.5. LEMMA. Let r: Y—X be an open mapping. Then, for every ye ¥,
2y, X) = x(r (), X).

Proof. Let o be a base of neighbourhoods of 4 in ¥ with card s
= y(y, X), I @e M {r[H]: He 2}, then the closed set #~* (2) meets each H
and so containg y. Thus ¢ = {r[H]: Hes#} is a set of neighbourhoods
of 7(y) in X with card¥ = x(y, ¥) and M ¥ = {#(y)}.

Let us say, following the notation of p. 71 of [6], that the space &

satisfies condition () if we cannot represent § as a union (S, of closed
subspaces 8, satistying w(8,) < w(8). ne=0

5.6. THEOREM. Let 8 be a Dugundji space that satisfies (»
contains a subspace homeomorphic to DT, where v = w(s).

Proof. We may certainly assume that = is uncountable, since a com-
pact metrizable space that satisfies (#) (and is thus not countable) cer-
tainly contains a copy of D”. We consider, then, three cages, taking the
easiest first.

). Then 8

(I) = is an uncountable regular cardinal.

There is, by 2.3, a non-empty open subset U of § with y(, §) =+
for all e U. Choose a function fye%(S) such that fy(z,) = 1 for some
@pe U and f,|(S\U) = 0. Construct the inverse system (X, Dop)e a8 in
Section 4, ensuring that fy factors through p,: §-+X,. In this case, we
see that ;" (py(w,)) S U. Detine

p: D' c, X,
by ¢(@) = py(%,) and apply 5.4 to get 6: D°c. X, = §.
(IT) = is singular and ecf(z) = » > w.

Let (ﬂ(f))k,, be an increasing family of regular eardinals with g(& <
and sup{f(£): § <} = = Construct the inverse system (X,, p, ;). ak in

icm
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Section 4, and note that for each £ we have w(Xyy) = B(&) by 3.5. Hence,
by 3.2, there is a non-empty open subset V, of Xy, with (2, Xgge) = B(£)
for all e V. Applying 2.1 to
% ={piylVsl: &<},
we see that there is a subset J of » with cardJ = » and.
NA{pislVel: §ed} #0.
Tet us label J as an increasing family (&(n)),<. and put a(n) = g(&(n)),
U, = V. We may suppose a(0) 2= x.

N ow let. 1y be a point in the non-empty intersection ﬂ{pa(e [Ug:
£ < u} For each & < #, let g; be a function in €(8) with g.(»,) = 1 and
ggl(S\p;(MUE]) = 0. Then there is, by 4.3, an (F) set B = 4 with cardB
=% and with the property that each g, factors through Pz. We form
(Yo Pup)e and define 7, as in 4.5.

Let ux define 0y: D'~ ¥ 400y 00(0) = Qoy(#,). T assert that x(y, ¥og)
= a(&) whenever e us(tun(®o)). For any wsuch v, gxa(y)s
G @ae (X)) € NP (U1 n < #}. 80 rye(y)e Uy and x(ryy(y), Xog)

= a(&). The assertion now follows from 5.5 when we recall that 7.y is
an open mapping.

It iy certainly, true that w(Y,) =carda when a> %, 80, since we
are assuming a(0) = x, we see that we can apply 5.4 repeatedly to obtain
a family (0,)s., of confinuous injections

0e: Dy Ty
satisfying e, un© 0y = Ocomeyum (£<n<x).
us the required mapping 6: D"<.8.

(XII) 7 is cofinal with .

As before, let (X, P4, be the inverse system of Section 4. Let
(8(n)) e a sequence of regular cardinals that increases to v. Write M,
= {we S: y(x, 8) < f(n)} and S,, = §,. Then w(8,)< B(n), by 2.2, and

by our assumption (x) I = S\( U 8,) # 0. The set F is a non-empty Gy

This, of course, gives.

subset of S and so containg a :mm empby closed G subset, Z, say.

We shall now construct by induction a decreasing sequence (Z,) of
non-empty closed G, subsets of § and a sequence (a(n)) of ordinals that
increases to 7. These will have the property that, for n > 1,

Z( 7-Xu(n) = f(n)
for every @e py,[Z,], while
1@, Xo) < f(n)
when « < a(n) and e p,[Z,]. We start by putting Z, = Z.
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If we have defined Z, already, and Z, < Z, we note that w(Z,) =,
80 that, by 3.4, applied to the system (pa[Z%],pa 81950Z,]): (which is
a restricted inverse system by 3.1), there is some o < v with w(p,[Z,])
= B(n-+1). Let a(n-+1) be the smallest such a. Noting that Z, is dyadic,
as a closed @, subspace of a dyadic space (Theorem 6 of [2]), and that
Z' = Pypyy[Z,] is thus also dyadic, we know that there is a non-empty
open subset U of Z' with X(x,Z’) = p(n+1) for each we U. Let Z" be
a compact G contained in U and put Z,,, = pu‘(nm [Z2""1nZ,.

Finally, we put W = ﬂZn, which is still a closed.@,;, and choose

fe#(8) such that W = f“1 . Let B be a countable (F) set such that f
factors through Pz and form the system (Y,, q,4). as in 4.5.

We note that y(y, Yuyu) > f(n) whenever yeqq,,[W] = ¢ “(n)qo[W],
and that x(y, ¥,) < B(n) whenever yeq,[W] and a < a(n). These facts
agsure us that we can proceed as in case (II) to obtain a family (6,) of
continuous injections 6,: DY .\ with 6,0 %gu smi1) = Yuny,an-+1)° Ons1s
which is exactly what we require.

5.7. COROLLARY. Let S satisfy the conditions of 5.6. Then %(S)
Tinearly homeomorphic to € (DF).

Proof. This is now exactly Theorem 8.4 of [6].

5.8. Remark. It will be seen that the basic technique used in our
embedding theorem is much the same as that used by Pelezyniski in 8.10
of [6] to show that an infinite compact group & of weight v contains
a homeomorphic copy of D°. There, a result of Pontryagin was used to
represent G as the limit of a restricted inverse system (G, ¢f),, where
each 3™ is a continuous group epimorphism (hence an open mapping),
with a metrizable kernel in the usual (algebraic) sense. We can note, in
passing, that this representation, together with Theorems 1 and 2 of [4],
assures us that every compact group is a Dugundji space (ef. Problem 21
of [67]).

6. On subspaces of dyadic spaces. It does not seem to be known
whether a dyadic space S of weight v which satisfies (%) need contain
a copy of D". However, Efimov’s bagic theorem of [3] states that if either

(1) 7 is a successor cardinal, or

(2) o< ef(r) < 7y
then § contains a closed subspace X that can be mapped continuously
-onto D*. The vital tool in proving this is the notion of the »-character
»(%, 8), a cardinal function that shares many of the properties of the
neighbourhood character y(z, 8). Corollary 3 of [3] tells . us that if I
is a @5 subset of a dyadic space § and »(x, 8) > » > o for every z¢ 7,
then F contains a compact subset X that can be mapped continuously

icm
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onto D* Lemma 3 of [3] (which we have already remarked does not
require special agsumptions of GCIL type) states that if § is dyadic and

w(S) is an uncountable regular cardinal, then there is a non-empty open
U < 8 with »(, §) = w(8) for all e U. Thuy we can extend the validity
of Bfimov’s basic theorem to the case where

w, % of (7) =

Tn fact, we can, without using any new ideas, extend the result one step
further still.
1. TumorsMm. If 8 48 @ dyadic space of weight v which satisfies (x),
then 8 contains @ closed subspace X that can be mapped continuously onto D"
Proof. The only case that remains to be considered is where ¢f () = .
We can again, of course, assume v > «. Let a(n) be a sequence of cardinals
with a(n) <7 and sup{a(n): n < o} = 7.-For each n put

= {we 8: v(w, 8) < a(n)}

a(n) and § = U8,

Mw=0

= S\{G S,,) is a non-empty @ and »(x, 8) =7
wa ()

and 8, = M,. Then by Theorem 1 of [3] w(8,) <

because of (x). Thus I

n
for each we . Our desivred result now follows from the already quoted
Corollary 8 of [3]

6.2. COROLLARY. If 8 48 o dyadic space of weight v which satisfies (),
then there is a positive, linear, isometric embedding € (D)% (8).

Proof. Let y be a continuous mapping of a closed subspace X of §
onto D, Let ¢ be an embedding of D™ in I" and let u be a regular extension
operator for ¢. Since I” is an absolute retract, there is & continuous map-
ping 0: 8—I° such that 0]X ==goyp. Let us deline v: & (D°)—~%¢(8) by
9 = 0®ou. Then v is a positive, linear, isometric embedding.

Pelezytiski showed on p. 71 of [6] that if w(8) =7 and 8 does not
satisfy (%), then thove iy not even a linear homeomorphiec embedding of
@ (D7) into #(8). We can, however, formulate the following proposition
withoat ().

6.8. Provostrion. If 8 4 a dyadic space of weight =, then Jor every
% < 7 there is @ dlosed subset X of 8 that can be mapped continuously onto D~
If, further, we asswme & to be a Dugundji space, then 8 contains & homeo-
morphic copy of D*. )

Troof. There is an open subset U of 8 with yx(x, 8) = viw, 8) 2= %
for every we U, Corollary 3 of [3] gives us the required conclusion when.
we assume only that & is dyadic. When & is Dugundji, we can imitate
the proot of 5.6, case (I) to embed DH* in 8.

*


GUEST


242 R. Haydon

Note added in proof. J. Hagler (Trans. Amer. Math. Soc. 214 (1975), pp. 415 —428)
Liag shown that if the weight of a dyadic space § is an uneountable regular cardinal =
then § containg a subspace homeomorphic to D" .
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On absolute retracts, P(S), and complemented subspaces of ¢ (D™1)

by
SEYMOUR DITOR (London, Ontario)
and .
RICHARD HAYDON (Oxtord, U.K)

Absteact. It is shown tha, if § i8 a compact Hausdortt space, then tho space
P (8) of probability measures on § is an absolute retiract (in the category of compact
gpacos and continuous mappings) it and only if § is a Dugundji space (in Pelezyiski’s
terminology) and the weight of § is at most w;. The crucial point of the proof consists
of showing that P ({0, 1}4) is an absolute vetract if and only if the cardinality of 4 is
at most w,. As a corollary, it follows that if 8 is a compact Hausdorff space of weight
oy, then § is a Dugundji xpacoe if and only if the Banach space % (8) is linearly isometric
$o tho range of a contractive projection on % ({0, 13°Y).

1. When S it a compact (Hausdorff) space, the Banach space of
all continuous real valued functions on § will be denoted by #(8). The
dual space of ¢(8) will as usual be identified wish M (8), the space of all-
Radon measures on §. We shall be particularly interested in

P(8) = {ue M(8): |ull = <p, 1> =1},
the set of all probability mepsures on §, which is itself a compact space
under the weak topology oM (8), #(8)). We write é or d, for the cano-
nical embedding 8 <P (8).

If p: §c.T' is o continuous injection, and g: T8 is & continuous
mapping satistying pop =4, where i is the identity mapping on 8,
we say that o is a retraction for ¢, and that 8 is a retract of 7. A compact
space 8 is an absolute retract (AR) if every continuous injection S&-T
allows @ retraction. The question dealt with in this paper, namely that
of characterizing those & for which P(8) is an AR, arose out of some
problems posed by Pelezyhski in [8], concerning extension operators
and averaging oporators on spuces of conbinuous funetions.

A linear operator w: @ (8)->@ (L) is called. regular if w is continuous
with fjuf =1 and w(L,) == Lp, where 1, denotes, of course, the function
that is identically L on the space S. Bquivalently, u is regular if and only
it the transpose u takes P (1) into P (8), M g: ST isa continuous mapping,
a vegular operwtor ¢°: €(T)-»%(8) is defined by ¢"(g) = gop (g% (T)).
Restricting the tianspose (¢°) to the set P(S) gives us a continuous map :
P(S)~>P(T). In the particular case where ¢ is a continuous injection,
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