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STUDIA MATHEMATICA, T. LVI. (1976)

Local convergence of convolution integral

by
JORGEN LOFSTROM (Gbteborg, Sweden)

Abstract. Writing f(z) = A%f(iz) we consider the convolution integré,l fixp on .
open subsets 2 of R?. Under given conditions on f we characterize the class of all
functions ¢ for which A5fi*¢ is bounded in L,(R2) as a function of A.

0. Imtroduction. Let f be a given kernel and put f,(z) = A% (ix).
Moreover, let 2 be an open subsét of the d-dimensional Euchdeau space RZ.

.Then we shall consider the space Ay (£2) of all pe L, such that

Ifixg; Qll, = 0(27%),  A—co.

Here |[¥; 2|, denotes the L,-norm on the set Q. We let 47,,,(2) be the
set of all pe.d5(T) for all open bounded sets U sueh that the closure of U
is contained in 2.

The case £ = R® has been treated by many authors. See, for in-
stance, Butzer [1], Butzer-Nessel [3], [4], Lofstrom [11], Nessel [12],
Shapiro [16]. It turns out that A;(Rd) is a Besov space for most values
of the parameter s. Thus A5 (R% is characterized by Lipschitz or Zygmund
conditions on the derivatives of ¢. These conditions are global conditions,
i.e. conditions on the regularity of ¢ on the entire space R%.

The aim of this paper is to study the case where 2 is an open
and bounded subset of R% We shall characterize 45,,,(2) by means of
local regularity conditions on @ (local Besov spaces). Comparing to the
global theory mentioned above, we shall need an extra condition on f.
In the case p = 1 this condition reads

1) [ if(@)lde=00@"), t-oo.

|af>8

We prove that this condition must be satisfied if A7,(92) is defined
by local regularity conditions. If (1) or its analogue in the case p =1
is not satisfied, we show that global conditions on the derivatives of ¢
of low order combined by local conditions on the derivatives of ¢ of hlgher
order imply that A3,(£2).
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We have the ambition to develop a general theory. Thus we shall
assume that (&) = H(&)g (&), where H(£) is a general positive homo-
geneous function, which is infinitely differentiable for & s 0. Applications
are given when f (&) = 1—F (H (£)), where F is a given function defined
on the positive real axis. We consider some concrete cases, for instance,

F(u) = exp(—u)
F(u) = (1—u)}

(generalized Gauss—Weierstrass kernel),

(Riesz kernel).

A few results, similar to ours in the one-dimensional case, can be
found in Butzer—Nessel [3]. We also mention here the paper by Sunouchi
[17], where similar questions on the torus have been suggested. See also
" de Vore [5] and references given there.

The plan of the paper is the following: In Section 1 we introduce
the local analogues of the Besov spaces and related spaces. In Section 2
we prove an alternative definition of these spaces, using simple elements
from the theory of pseudo-differential equations as developed in Kohn—
Nirenberg [10] and Hormander [8]. In Section 3 we prove direct theorems,,
i.e., we find subspaces of 47,,(£2). In Section 4 we prove converse results,
i.e., we give necessary conditions for pedj,(£2). In Section 5 we study
condition (1) and its analogues in the case p > 1. Finally, we consider
some general examples in Section 6.

1. Local Besov spaces and related spaces. In this section we introduce
the basic spaces used in this paper. These spaces consist of functions or
distributions defined on an open subset 2 of the d-dimensional Euclidean
space R% However, we first give the definitions of the “global”® spaces
corresponding to the case Q = R

The space of infinitely differentiable functions on R? with rapidly
décreasing derivatives will be denoted by . The dual space & is the
space of tempered distributions.

In the definition of the global Besov space By, we shall need. a standard
function oes. The Fourier transform ¢°
< |€] < 2 and vanishes outside this annulus. Moreover, we assume that
%‘a"(z—fs) =1 for & 0. Then we put o;(x) = 2%¢(2/x) for j> 0.

Then o; (&) = o (277 &). Moreover, we put o, (§) =1—3 o (2774).

F>0
Let |igll, stand for the L,norm on R’ Then B;, consists of all pes”
such that o;*ge L, for all j >0 and such that
@) gl = sup 2% {a; x|,
i=0

is finite. Here s is an arbitrary real number. Note that (1) is defined for
all real values of s but we shall only consider the case s > 0. Then L, « Bj.

is positive on the anpulus 27 -

cm
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Our definition of By is due to Peetre. There are other more explicite
definitions, which, however, are less efficient in the proof we shall give.
For more detailed discussions of the different definitions of Bj we refer
the reader to Peetre [13], [14], [15]. See also Grevholm [7], Taiblesson [18].
Now we shall define the “local” Besov space B5 (). Thus let &
be an open subset of R% The space BS (&) consists of all restrictions to £
of distributions in the global space Bj. More precisely, @< B (L) if an
only if there is a ¥e BS, such that ¥ =¢ on 2. We write !

(2) lp; Q5 = inf{|P|5: ¥ =¢ on @, PeBS}.

The space B, (2) consists of all ¢ such that pe Bj(U) for all open sets U
guch that U cc £, i.e. such that the closure of U is a.compact subset
of . We shall give an alternative definition of By () in Theorem 1 below.

The norm on L,(2) will be denoted by [¢; Qf),. Thus

/
(3) lps Ll = ([ lo@Pda)”, 1<p< oo,
o .

with the usual convention when p = co. ‘With this notation we have
the following result.

TuEoREM 1. Suppose that e L, and that s>
if and only if

(4)

0. Then pe Boioo(R)
sup 2 lloyx¢; Ul
i=0

s finite for all open ‘subsets U such that U c= Q.

. The proof of this theorem will be given in the next section. Here
we proceed with the definition of some spaces which are closely related
to B} and Bj (). .

We sha&l consider a function H = H,, which is infinitely different-
iable and positive outside the origin. We also assume that Hj(§) is
posmvely homogeneous of order M, ie. H(1§) = tMH (&) for t> 0. If
pe&, we define H(D)p by the formula (H(D)g)" (&) = H(&e  (§). We
now let Ef be the space of all ge L, such that there exists & .sequenca
e such that ¢,—~¢ in L, and sup |2 (D)@l < oo. Then we put

(5) mfmp |H (D

ol = )Pl + 9l -

The local space DZ (L) consists of all restrictions to £ of the distri-
butions in D¥. In analogy with (2) we write
(6) lo; QUF = inf{ Iyl

The space D, (2) consists of all g, such that g« DE(U) for all open sets U,
such that U =< 2. We then have the following result.

:p=¢ on 2, ye DZ}. -


GUEST


208 J. Léfstrom

THROREM 2. Suppose that g< L, and that M > 0. Suppose that Q is
& bounded open subset of R If for every U cc R there is a sequence Pnels,
such that @,~p in L, and

(7) SUP”H(-D)(Pﬂ; U”ﬂ< o9,

then it follows that ge Dﬁloc(!))

* This theorem will also be proved in the next section. Let us conclude
this section with a remark on the space D If 1 < p < oo, then DZ ig
the domain of the closure of the operator H (D) in L,. Let D,’,’ denote
this domain. Thus DH is the space of all g € L, such thatb there is a yequence
P+ in Ly, g such that H(D)g, converges in L, t0 a function which
we shall denote H(D)p. Then we have

DE=DE if 1<p< oo.
If p =1 or p = oo, the space D} is the relative completion in L,
of DE. (See Butzer—Berens [2].)

2. Proofs of the theorems of the previous section. Although Theorem 1
could be proved by means of Theorem 2, we shall prefer to prove Theorem 1

first, mainly because the proof of Theorem 1 may throw some light on
the proof of Theorem 2.

Proof of Theorem 1. Let U be a fixed non-empty open subset
of 2, such that U c« Q. Let V be an open subset of U7 such that V c< U.
Pirst we shall prove that if

sup2”®|lo;xg; Ul, < oo
i=0

and if pe L, then pe By (V).
Let b be afixed function in &, such that b =1 on ¥ and b has compact
support W in U. Put ¥ = bp. Then

llos ¥lip < 1Pl = §11p2j8|161*glllp'
=0

Thus the desired result will follow if we can show that

1) lloy* PN, < O( max |logxg; Ul +27%|jpll,) .

J=2<i<i+2

Since |loy* Pll, < Cllpll,, we have only to prove (1) for j > 2.
In order to prove (1) we note that

ok ¥(z) = fd](y

RrE

)b(@~y)p(z—y)dy.

icm
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By Taylor’s formula we have that (with N >s)
(@—y) = D (al)” @)-y"+0(@,9),
fal<V
where |o(®, ¥)| < Cly|~. Writing o{?(y) = (27y)*0;(y) we get that
oW = N (a)7'27(D"b)- o{? xp + Ro,
laj<N
where
Ry(a) = [ ol@, y)o;(y)pl@—y)dy.
R
Since [ |y|Voll, < 027V < 027 for j> 0, we get that [[Rel, < 027*|pll,

and therefore we conclude that

(2) lloy* Pl < C(max |of?xp; Wi, +2"lpl,) -
la|<N

Now (1) follows from the following lemma:

LumMA 1. Suppose that ke Ly and that

supt™ |k

>0 lz}f>t

(3) ()] do < oo.

Write Jy(®) = A%k () and assume that W =< U. Let & be the distance
from the boundary of U to W. Then
(e x; Wiy < A(lp; Ullp+ (2™ 19l »

where A depends on k only.
Proof of Lemma 1. We have that

[ we@—yay+ [ T@po—y)dy.

wl<s >e

kyxg(x) =

Tt & «W, we clearly haves —ye U in the first integral. Thus the L, (W)-
norm of the first integral is bounded by |kl ll¢; Ulp. The Ly (W)-norm
of{the second integral is bounded by

[ (k@) dzliply,-

o] >eh

f 152(9)1 4y llollp =

ly|>&

This term is therefore bounded by a constant (depending on % only) times
{eA)"" |lpll,. This completes the proof of Lemma 1.

In order to get from estimate (2) to the desired e&tlmame (1) we use
the lemma with k(y) = d(y) = y“o(y). Then ke and (3) holds for


GUEST


210 J. Lofstrém
every . Since og")wj = 0 unless j —2 < i <<j+2, we then get that

lofxg; Wip< >

FRSESES B4

lof? % 0,205 W,

SO max fogxg; Uly+27p]l,).
Fei< e

This estimate implies (1). Note that the constant ¢ appearing in the
estimates above depends on ¢. .
Next we shall prove that if V o< U and if qe By (U), then

(4) © o sup2” o xg; Vi, < oco.

=0 !
TFor that purpose we choose a We By, such that ¥ = p on U and %1,
< 2lp; Ully. Let o< & be equal to 1 on the set W (the support of b) and
assume that ¢ has compact support in U. Then el < C|¥P]5 and [l
< llpll,- Replacing if necessary ¥ by ¢¥ we can therefore assume that

1Pl < Cliws UL,
Now we have that

¥l < llepll -

log*@; Vi < b (05 %9)l, < O (lloy P, + |16 (0% (@ —))][,)

13
and

b(@) (o%(9 =) (@) = D(2) [ 03(y) (p (2 —1) — P(w—y)) dy.

In this integral we have #—y¢ U, since ¢ = ¥ on U. Let W be as above
and let 4 be the distance between the boundary of U and W. Then we
must have |y| > é in the integral above. Thus it follows that

y|>8

Ploxte—®l< 0 [ 1oy lp— 21, < 082,
It follows that '

2% lloyx@; Vi, < OIS+ lipll) < € (llos U5+ liplly) -

This proves (4) and completes the proof of Theorem 1.
In the proof of Theorem 2 we shall use simple elements from the

theory of pseudo-differential operators as developed in Kohn—N: irenberg
[10], and Hérmander [8].

Proof of Theorem 2. We shall uge the, notations of the proof of
Theorem 1. The main point in the proof is to show

(5) - HD)Pl, < O | (D)g; U, + plts),
it ¥ = by. In fact, this will imply that if ¢, in Z,, then o; VIE < PR

icm
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< sup [H(D) (bg,)ll, and thus (5) implies
. n
llp3 VIl < C(sup 1H (D) g Ully -+ )
n

ich. in turn implies Theorem 2. -

WhlG]Iln order to pfove (B) we shall first modify the operator H (D). Let ¢
be an infinitely differentiable function, such that {(&) = 1 for (&] >_l
and ¢(§) = 0 for |& < 1/2. Put K (&) = (&) H(£) and define K(D)¥ in
the natural way. We also write u” (&) = H(&) —K(¢) = (1—5(.;_))11(__5).
Then it is easily seen that ue L;. (This followg for instance from Lofstr;m
{11], cf. Corollary 3, Section 5.) Therefore, ||(H (D)—K(D))¥|,<CI¥l,
< Olglly. Thus (5) will follow if we can prove

(6) IE (D) ¥, < C (IH (D)g; Tly+ lipll)

for all pe&. We have that

(N (E(D)P)" (&) =K (&) [ (n)e" (—mn)dn.
R4

Now we expand K (&) = K(§—n-+n) in a Taylor series:

(8) K(g) = D ()T EO(E—n)n'+r(E—n,n)

laj<¥
where K(£) = D K (&) and ]
(9) IDEDyr (v, )] < OtV = (1 +min (], ()]
if N > M. Here the constant ¢ depends on §, y and N.
Introducing (8) in (7) we find that

ED)¥ = (a!))7(D?b)- E(D)g + By,
laj<N

(10)

where the operator R is defined by .
(Bp) (&) = [b"(m)r(E—n, Mo (E—n)dn,
. 3

ie.,
Bpa) = [ eo(@, )eW)dy,
ra
‘where 4 A
ez, y) = (ZW)—dff gem+@—v)p " (Ve (2, ) du dn.

Sinee b” (n)—~0 faster than any polynomial as |n|—co, we get from (9)
that .

\DED?D” ()7 (x, M) < O(L+ )™ (L +win(lz], 1))

M—-N—]ﬁl7
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for any number n. It follows that if ¥ is large enough, [#|*|e —y|%(o(x, y)}
)

8 a bouﬂded function for any ChOICQ of a and b such that fOI ingt
< < < < ] 8 aﬁlee,

le(m, I < O+ @)L+ o —y)~
which implies |[Rel, < O llpll,- Thus we get from (10) that
11 : @
(11) ||K(I>)9’fug<O(Iﬂ%culr“w)qa;Wu,,+nqvnp)-

Now we shall use fo.llowin » simple i i i
by Kohmoeeror g simple version of a well-known inequality

LeumaA 2. For any o 0 we have that

IE(D)p; Wiy < C. (H (D)5 Tlly+ llplly),
provided that W =< U.

@ Of)mbim'ng this result with (11) we clearly get (6). This completes
e proof of Theorem 2. It remains, however, to prove Lemma 2

Proof of Lemma 2. First we note that

IE® (D)p; Wi, < D IE(D)o x5 W,
F

: (a) .
$1<nce 2KF(E) vanls’hes for |£/<1/2, the terms in the sum vanish for
ium}o: (]);“ 2<j<2wehave K@ (D) q,ll, < ¢ and thus the terms in the
. T which —2 < j < 2 can be estimated by C|lpll,. It remains to esti-
mate the terms for which j> 2. But K®(&) = HO(£) = DH(E) for
[é] > 1 so that K®(D)o; = B™(D)o; for j > 2. Now let us write
Y (&) = o (5 HO(&)/H(£)

and y; (£§) = 9" (277£). Then HY(D)g, — 2-74l

! . : ;=277 H(D)y,. In order to get
the estimate of Lemma 2 it is therefore sufficient ti) show that #
(12) W (D)ys %05 Wiy < O (M (D)5 Ully+ lipl) »
whenever W =< T.
™ Suppose that ¢ is defined as in Lemma 1 and put a(z) =1-—¢(2).
angnclc(u;;v) =C(()wf/0;' ‘[‘a\vrl > 1.Lan;1{a(w) =1 for |z| < 1/2. Put o’(2) = a(z/e)

@) = ). We write H(D)y,xp = (a’y;)* H(D ¢
Just as in the proof of Lemma 1 éve see( tlgiz* Pt (H(D) « V;))*‘P-

(a®y;) x H (D) ; Wi, < CIiH (D)g; Ull,.

Thus (12) will follow if we can show that

(13) I (D) (&< O, for j>2.
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In order to prove (13) we note that

5 (D) (C”y,-)lhéO?llzxnl)”(csyj)nl it > M.

Let us write r = 27z and (@) = £(@/r)y(a). Then D (2l = 2" D" ul -
But since ye& and {(z) =0 if || < 1/2, we have that

ID"ul, <O [ Iy(@)lds < Or "
|zl=>r/2

Thus it follows that
(D) Lyl < 02Mr™™ = Ce™™.

This proves (11). (A more detailed calculation would show that the constant.
¢, in (11) is O(e™™M).) m

From the proof of Theorems 1 and 2 we get the following immediate:
corollary.

COROLLARY 1. Suppose that ¢e Do (Q) (0r e Bpioo(R2)). For every
Ucc Q there is a We DE (or ¥eBS) such that ¥ =g on U and ¥ has
compact” support in Q.

Proof. If We DZ and ¥ =¢ on U, then we can replace ¥ by by
and this latter function will have the desired properties.

3. Direct theorems. For a given kernel f we shall let A3 (£2) denote
the space of all ¢ L, such that |f#p; |, = 6(A™%) as A—oo. The space
Al (£2) consists of all ¢ such that ped,(U) for every open set U such
that U cc £. The objective of this section is to find large subspaces
of A 10(2)-

First we recall the situation in the global case. Let us take p = oo
for simplicity. Assume that F (&) = H(&)g (&) and that f and g are.
pounded measures. Then fyxp = A~ g,=H (D)g. Thus '

1F2#@lee < CA™ M |H (D) @llos -
Then it follows that

(1) ool < OIS, for 0<s< M.

This is a wellknown result (see Lofstrom [11], Shapiro [16]). In the
proof of the main theorem below we shall reproduce the simple proof of (1).

Now we shall see how one can get a local analogue of global result (1).
Thus let 2 be an open, bounded subset of R? We shall assume that there.
is a positive number m, such that

(l2) supt™ f |f(a)|de < oo.

>0 jzi>t
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‘Then we shall prove that

{3) Lwntoluc(‘Q) C‘A‘Zoloo(g) if I<s< Ma s m.

‘This is a particular case of the main theorem, but we prefer to give the
proof here. Thus assume that ¥ =< 2 and choose U such that V < U
cc Q. If pe L,NB21,(2), we can find a function ¥e L ,NBS, such that
¥ = ¢ on the set U, Clearly, fixg = fix ¥ +f% (¢ — ¥): Now lot ¢ be the
-distance between the boundary of U to the set V. If ze V, we then have

fixlp=P) (0) = [ f,(9) (p(e—y) — P(w—y))dy,

|yl>e
wince if xeV and # —y¢ U we must have [y| > & Thus it follows that
3% (9 =¥); Ve < [ 1f2(@) @yl llp — Plo-

lyI<s

Using (2) we get that
[ ihawlay = [ 1f(@)lde < 0leay.
) 1yl>s || >s4
“Thus (1) implies that
Ifa%@3 Vo < Ifa* Plio + 0(62) ™™ g — Pl
: SO I +(63) ™™ g — W) -
‘This implies (3).

Before we proceed with our main theorem, we shall comment on
condition (2). If m < M and if m is as large as possible such that (3) holds,
'we only get the inclusion

L,NBiioo(Q) « AT () it m<s< M.

‘Thus an improvement in the local regularity of ¢ will not give an improve-
ment of the local convergence rate of SFixp. We shall now show that it
is impossible to get rid of this defect.

THREOREM 3. Suppose that there emist two open (non-empty) bounded
sets U and V such that V<< U and such that

) L,nB:,(U) = 4%(7),

Jor some fized o and s. Then (2) holds with m —=s. In particular, an in-
clusion of the form IL,nBE .. (2) S A%1o(R) (fived 2, ¢ and s) will
amply (2) with m = s.

Proof. By the uniform boundedness theorem we see that (4) implies
{(5) Wfax@; Vi < CA(llp; UL, + llplo) -

It i easily verified that this estimate holds if we translate U and 7.
‘Thus we can assume that 0 is an interior point in V. Moreover, we can

icm
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agsume that U < {z: |#] < R} for some R>0. Now let ¥ fienote the
space of all pe L, such that ¢(2) = 0 for |z| < R. Ole-a,rly, Y is a Banach
space in the maximum norm. The dual norm on Y is

e = [ 1f@)idy.

WI>R

For peY we now define the functional ¥ by the formula #(g) = f1#@(0).
Since |lp; Ully = 0 for all pe¥, we get from (B) that

17 (@)l < CA°plle-

Thus
[ 1fa(—y)lday < 047,
WI>R
i.e.
Ifle) de < CA™"
|y|>Ra

This implies (2). & .

Now we shall give the main theorem of this section. We' shall work
with the space M, of all Fourier multipliers on L,. Thus M, is t@e space
of all tempered distributions f such that If *@l, < Clell,. The infimum

“of all possible constants ¢ is a norm on M,. We shall denote this norm

B 5 at M, = M., = space of bounded measures. We sh?.ll
Esye lgrelepl.y Nagiae V:IilthOut 1<->1q)1ici°:;e reference vari_f)us well-known properties
of the M,-spaces. The reader is referred to Hormander [8]. T ae

We shall also work with certain subspaces I} f’f _Mp, Wh].cf are
defined by conditions analogous to (2). Let { be an m_t"mlte.sly dif eniexg-
tiable function such that f(#) =1 if |@|>1 and {(2) =0 if |»| < /2.
Then we define the space My by means of the norm

(6) If = §u0pt’"|<c‘f)‘|,,+1f‘ lpe
Note that if "¢ My, then (If)" ¢ M,. In fact, we have that
(@) (&) = [ & (f (E—m)dn = & =" (8).

Since M, is translation invariant, we geb (.(C‘f)Alpg 0" e lf b
Here is the main theorem of this section.
TrmoREM 4. Suppose that Hy is homogeneous of m:der ﬁ[ >0 and
thdt g € M,. Put " (&) = Hy (&g (£) and assume that [~ e My: Then we
pn* .
have the following inclusions

(1) L,nDih(Q) c AY(@) o m> M,
=

(8) LpnBS(R) = Afe(Q) i m=s and 0<s< M.

2 — Studia Mathematica L VL3
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Proof. Assume first that ¢e L,nD, m(Q) Then there is a ¥e Dia
such that ¥ =¢ on a given set U cc Q Let V <« U and write f,*¢
=fi*Y+fix(p—¥). I ¢ is the distance between the boundary of U
to the set ¥V, we have fi*(p — %) = ({*f))%(¢p —¥) on V. Since

) e = [(EPH) 1, = 0((t)™),
we therefore conclude that
(9) [F3% (@ —F); Vip < O(ed) ™™ llp — .

In order to estimate the term f,*¥ we choose a sequence ¥,e¢%
such that ¥,—¥ in L,. Then f;*¥, = i~Mg,+«H(D)¥, and thus

Ifax ¥ Vi, < 02~ Msup |H (D) ¥yl
Thus we conclude that
Ifixg; Vip < O™ lg; UlpH +(e2) ™™ llp — Pll,) -

This clearly implies (7).
Next we prove (8). Again we continue ¢ outside U to a function V.
In this case ¥We Bj. Clearly, (9) still holds. We have only to show that

(10) 1z Pl < CAT° 1P

In order to show this we note that

If2x Pl < ) ok 0y Pl
j=>0
But ufz*a]*'{-fnp\Omm(naj*wnp, AM | Hyy (D) oy= Pl,). Since |H (D)o, *
*P|, < oM llay *’I/Hp, we conclude that

If% %l < O D min (1, (2//2)2) 27" |25,
i=0

which implies (10). m

In the case m = M, Theorem 4 is quite satisfactory since then a local
regularity condition on ¢ implies a corresponding local behaviour of
Ffuxp. But if m < M this is not true. In the case m < s < M we see from
Theorem 3 that no local regularity condition on ¢ will be sufficient to
guarantee that pe 4710, (2). However, we can prove that a global regularity
condition on the low order derivatives of ¢ combined with a local regul-
arity condition of higher order derivatives of ¢, will imply that ¢edg(R2).

THEOREM 5. Suppose that g~ « M, ,f =Hyg « My, where 0 < m < M.
Let H,, and Hy_,, be homogeneous fumtwns of the orders indicated by the
subscripts amd suppose that Hy (&) = H, (§)Hyr ,,(&). Assume that b (&)
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(g (&) e My. Then we have the following imclusions
(11) ) DgM""f‘ luc(‘Q) < %oc(g)y
(12) B;-mnB;IOG(Q) < p]oc(g) Qf m<s< M.

Proof. First we note that fixg = A~ ™, 4H, . (D)g. Thus if
Ve Ucc 2 we get from the previous proof that

%05 Vi < CAM (|Hpr_m (D)5 Ully™ + 1H s (D) plly) -

This implies (11).

In order to prove (12) we write ; = o;%p. Then

Ifaxes Vi < D Ifaxes5 V-

i=0
By Theorem 4 we have that

Ifaxess Vo< OA™(lpj; UL+ lgsly) -
Now it iy easily seen that lp;; UlIP< 0279 and |o;ll, < €279 if
@< By ™NBy,e(R). Thus it follows that :
Ifixay; Vi< OA~m29m=9),

Using the formula fixg; = A~ ®™h,«H,y . (D)p; and the previous
theorem, we get that

Ifaxes; Vip < <o (”HM(D)%'; U”p"!"”HM—m('D)(pj”p)'

Writing H (D) g; = 27 crj*qzj, where ¢ (§) = Hy_nm(£)c (&) and using
Lemma 1 and the fact that oe%, we see that

M 2 (D) 3 Tl < 027042,

1H 31— (D) pyllp < 0279,
Thus )

Ifaxes; Vi < QM=)
It follows that

Ifxp; Vi, < O D min ((2)2)™, (27[4)¥)2~%
7

and thus [|f;*@; Vl, < 017% This proves the result. m

4. Converse theorems. The space M, is a Banach algebra for point-
wise multiplication. In the case p = 1 this is the Wiener algebra of Fourier
transforms of Dbounded measures. The characters (i.e. the continuous
multiplicative linear functionals) on that algebra are the point-evaluations
of the functions. Thus if x” (£) % 0 on a compact set then 1/u" (£) agrees
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on that set with the Fourier transform of a bounded measure. This fact
is essential in proving converse theorems in the global case. In the case
1< p < oo the situation is similar. However, the characters in M, are
possibly not only point-evaluations. Therefore it is necessary to replace M,
by the closure in M, of &. We shall denote this closure by . On #,
‘the characters are just the point-evaluations. In fact, every character y

on #, is also & c‘ha,ra.cter o the space L; of Fourier transforms of L,-

funetlons Thus y(f°) =f" (&) for f < L;. Since & is dense in {r’,,, we
also have that L, is deme in M,. Thus (") =f (&) for all f e
Conversely, every mapping fﬂ—>f‘(§) is obviously a character on /{p
(and on M, too).

In order to prove local converse theorems we shall work with the
space My instead of M,;. We shall prove that My is a Banach algebra
for pointwise multiplication. Usually we shall have to replace M}’ by
the closure of & in M;’. We shall denote that closure by .#}. In order
to illustrate the relations between the spaces M, .#,, My and %} we

take » = 1. The space M, is the space of Fourier transforms of bounded
measures, while 4, is the space I, of Fourier transforms of integrable’

functions. The space MP consists of Fourier transforms of hounded
measures u for which

sup ™ f!d,u[< ca.
>0 1z >t

The space .#7" consists of Fourier transforms of integrable functions f
for which

limsup#™ [ |f(a)ldo = 0.

I—o0 lz>t

In general, it is easy to prove that .4 consist of all f” ¢ ., such that
) limsuptm[(i‘f)Ali9 =0.

(The reader will have no difficulty to verify this fact.)

LeMwmA 3. The spaces My and #y are Banach algebras for pomtwwe
multiplication. The characters on the space My are the functionals ™ —f" (
E‘ Rcl

Proof. The last statement is obvious. We have only to prove that
M7 is a Banach algebra. Thus assume that f°, g" ¢ M™. Then we write

Lax(f797) = La# (& #F )" )+ Lan ((F =& %f")g ")

The last term is the Fourier transform of ¢*(((1—¢')f) xg) = £¥(((1~ £)#)#
#(L"2g)). Thus we get that - :

wr (1 07) = L ()" 0" +Lax((1—29F)" (&)
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and thus
e # ("9 Mo < 127 I (IC2F) "1 lg ™ |p+I((1~c‘)f)‘fp (£#2g)" 1)«

Sinee (1 —&f) |p < A+ 2 )If |, and since My is a subspace of M,
we conclude that

e <Ol il iz m

COROLLARY 2. Suppose that f~ < A7 and that f (£) 7 0 on the open
set U. Let @ be a function in & such that ¢~ has compact support in &. Then

 there is a function b ¢ My such that fxhxp = g.

Proof. Let K be the support of ¢. We consider the space of all u”
such that 4~ agrees on K with an element of .#7. Two functions .~ and v~
are said to be equivalent if 4~ = »” on K. The space of equivalence classes
of such functions will be denoted by .#%(K). In a natural way 4 (K)
becomes 2 Banach algebra with unit element. (Note that the function 1
agrees on K with a function ¢” & < .#.) Let F' be a character on .47 (K).
Denote by u the equivalence class of all »~ which agrees on K with p”.
Write G(u") = F(u). Then G is a character on ., thus of the form
p —u” (). I ¢ es is identically 1 on K, we get

9" (O (&) =G p") =F(p) =G(u") =u" ().
It follows that é<'K. -

Now for the given function f~ we have F(f) =f () # 0 for all
characters ¥ on 45 (K). Thus f has an inverse element hin 47 (K). This
means that there is a function 2" ¢ .//l’” such that " (E)f (&) =1 on K.
But then it follows that f~ (£ (E)e” (&) = ¢ (&) for all & This gives
the result.

THEOREM 6. Suppose that 9"« M, and that f~ (£) = Ha(E)g" (£)e My.
Suppose that g (&) %0 in a nm'ghbowhaod of £ =0 and that g~ agrees
on this neighbourhood with a function g, <« A, where m > M. Then

AX.(Q) « D ().

Moreover, if
limlM 1faxq; Uly, =0

for some open set U, then: H(D)(p =0on U.
Proof. We suppose that ¢ (&) #= 0. on |£] < 36. Ghoose a function
Y& so that
1t IE[ < 4,

=10 it 18> 20
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By Corollary 1 we can find a function " ¢ 47 such that gy« h« ¥ = gxhs ¥
= ¥. Let us write
H(§) =MHQTE) =P QT EHHE@TE+AM 1 (0T H) H(2 ).
Now ¥~ (2£) = 0 if |&> 6. Thus ¥" (2¢) (L—¥" (&) =0 and thus
W AT H(E) = Y27 O (T HE(ATE).

Since ¥, = hyxg,«¥, and f; (&) = H(A£)g; (£), we therefore get that
H(D)Talz*fp = 1MW1/2*9;.*WA*fz*‘P~

Since gx¥ = g,x¥ and since gyc 47, we_ therefore get that h = ¥, *
*gx¥e M.

Nowlet V =< U == Qandlet s be the distance between the boundary
_of U and the set V. Then we can write h = (1 —£%h+{*h and thus we get

Mhaxzs Vip< C(lzs Ullp-+(s2)™o(s3) lxlly)s

where g (t)-> 0 as {-> oo, provided that 2" ¢ #7. (See formula (1).) T m> M
we therefore get that

H(D) ¥y x95 Vi < O (3™ 1ifaxe; Tlly+e(4) llpl,).

If p e A2, (), it follows that sup |H (D) ¥, %9; Vi, < co and thus Theorem
i

2 implies pe D o(2). (Note that ¥y,*p—g in L, if 2+00.) We also see
that if limi™|f,x¢; Ul, = 0, then it follows that
A0

’

EHHH(D) Yop*®; Vi, = 0.
Let xe& have compact support in V. Then it follows that
0 = Lim{H(D) ¥y, 95 2 = lim <%y, %5 H(D)z>

=<p; H(D)z> = {H(D)p; x>

Thus H(D)p =0 on V. Hence H(D)p =0 on U. m

Note that in the one-dimensional case the condition H (D)yp =0
on U means that ¢ is a polynomial of degree at most (M), where (M
is the largest integer n such that n < M.

TerOREM 7. Assume that f~ (&) # 0 on the anmulus 271~ < |§| < 21~

Jor some integer i ‘and that f* .= f; on that annulus, where f; e MY, For
0 < s<<m we then have that

A;loo(g) < -Bjaoloc(g) .

icm°®
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Proof. Let ¢~ be the standard function used in Section 1 and put
o_; = 27%g(27%). Then f ¢ ;, =f,"¢”, and thus there is a function
b ey such that :

frhwo_; =0a_;.
{Corollary 2.) Put j = ik, where %k >0. Writing 2 = 27 we then get
that (¢_;); = o, and thus : ’
hyxopxfrxp = opxg.
Consequently, we get that
low*@; Vi, < C(Ifa@; Ul +(s2) "™ liplly) s

where Voo Ucc £ and ¢ is defined as in the proof of Theorem 6.
Since 2% = 29.27% — 3*2~% we conclude that

2% o2 ;3 Vil < U(Slzpls Ifixe; Ul + ol

Using Theorem 1 we see that @eAdj;q,(£2) implies that pe Bj,(2). m

5. Subspaces of M. In this section we let o denote the standard
function of Section 1, but we shall write o;(x) = 2/¢¢ (27 @) for all integers j,
not only for j > 0. We shall work with Besov spaces B3? defined by the
semi-norms ’

Il = (3 @ llo 1))
J

We shall now prove the following theorem, which generalizes results
by Peetre [14].
THEOREM 8. We have the following continuous inclusions:
1'3121/2,1 < Lfy
_.Bglz,lmjaz’n-}-d/z,oo - m;
BEn M, if
BIrAABpne < YT if

Proof. The proof of (1) and (3) was given in Peetre [14]. Thus we
shall only prove (2) and (4) here. In order to prove (2) we note that

D loyxglh.

2l

(1)
2)
(3)
(4)

> |_'p_1'“2—1[7 2<r< o0,

r as above.

lzt*9°|1 < 2 lz't*o'j*‘Pll <0
E)

" Using (1) we get that the sum on the right-hand side is bounded by a

constant times

D 2™ opxpl < () 27") gl .

2t/2 20242
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Thus it follows that Eorgly < O™ if ge BP+#2>, This implies (2). In-
clusion (4) will follow in the same way, since by (3) we have that
ikgly <C D lojrgl, <0 N 27 joxg],. m
202 2l

:U,sing Theorem 8 it is now possible to prove the following two cor-
ollaries. We shall not give the proves here, but refer the reader to Lofstrom
[11].

COROLLARY 3. Suppose that ¢ (&) = F(H(&)), where T'(u) is infinitely
differentiable on 0 < w < co and satisfies

[ (1) — F(0)] < Oy,
IDIF ()] < Cyu7,

O<u <1,

o<u<1, i1,
and ’

F(u)] < Covfy,  1L<u< oo,
P ) < Cuf, l<u< oo, j21.
Then if >0, >0 and oM > m we have that
) pe M7
COROLLARY 4. Suppose that @(§) = F(H (&), where T has compact

support on 0 < u < oo and is infinitely differentiable except at the poimt
u = 1. Suppose, moreover, that ' '

¥ ()] < Oy lu —1]% % #1,
IDFw) < Ojlu—11, u = 1,§>1.
Then if ez (d—1)1p™" —27Y +m, m < M we have that
, pe My . .
6. Applications. In this section we shall diseuss some particular
cases of the general theory. First we give a rather general example, where

the kernel f has compact support. In this case the condition " e M

}v;i]l J?;llme no trouble, since if f" ¢ M and f has compact supporl, then
€ - )

EXAMITLE 1. .Let S be a radial bounded measure with compact support.
(The function f is radial if f(z) depends on || ,only.) We shall suppose

tha,t

(1) ff(w)da; =0,
nd\(

(2)

[ lol*f(a)aw = o.
®a

For instance, we can take flz) = do(®) —e(1— 2|73, where 0 < B
and —1 < e, and 4, is the Dirac measure at the origin.

icm°®
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LeyvA 4. Suppose that f is a radial funciion such that (1) and (2)
hold. Then we can write f* (£) = |£[2g" (&), where g~ « M and g~ (0) 5= 0.
Proof. Let « be the fundamental solution for the Laplace operator
| D%, ie. ‘
w(z) = ¢zlaf~t it 4 #2,

w(w) =¢Injp| if d=2.

Then |£]*%” (&) = 1. If we put ¢ = f+u, we have that |D|*¢ = f. From (1)
we get that

9(@) = [ @) (w(o—y) —u(@))dy,

-and hence, since f is radial, that

9(@) =1 [ f() (wlz+y) +u(e—y) —2u(2)dy.

It follows that ¢ is a bounded measure on every compact set. Moreover,
it is easy to see that g is a radial measure. In order to prove that g~ ¢ M7
it is sufficient to prove that

(3) lg ()] < C'lo] 4% 0

But since ¢ is radial we have only to congider the case # = (s, 0, ...
By a simple computation it is easy to-verify that

w(w+y) +u(@—y) —2u@) =s" %y’ —dy}) +s %0y, 9),

where ¢ is bounded as |s| is large and ¥ is in the support of f. Now we-
note that

, 0)..

[Nyl —ayday = o
and hence
9(s,0,...,0) =57 [ f(y)p(y, 8)dy.

This gives (3).
It remains to show that ¢ (0) 0. Now the Fourier transform:
of f is

7@ = S () @, .

r=0

Using a symmetry argument we see that
[Fydy = [f@)yydy =0 i i #j=
Moreover,

ff(y)yidy = %ff(y) lyPdy =o;
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wlhere ¢ # 0 by (2). Thus it follows that
Jiway = [f@) <, &ay =0, (1) @, &y = olep

and hence f™ (&)= — ¢|£]*+ O(|£[%), |£]— 0. Consequently, g™ (£) = |&~f"(&)
= —c+0(|§]) as €0, i.e. g (0) 0. m

Note that the proof also implies that ¢~ (&) is infinitely differentiable
in a neighbourhood of & = 0. Thus ¢° (&) agrees on this neighbourhood
with a funetion in say .#3. Thus we can use Theorem 7. Tt is also clear

that Theorems 4 and § apply. Writing H(£) = |£* we therefore have
the following results: :

Ezrzfloo(g) = ;loc('g))
) st)luc(g) ?Azloc(9)7 0'<8<2'
Moreover, we have “local saturation”, i.e. if

}imz2 Ifs%e; Tll, = 0

for some open subset U of 2, then ¢ is a harmonic function on U, i.e.
| D¢ =0 on T.

Examprm 2. This examiple is related to Corollary 3. Let F(u) be
an infinitely differentiable function on 0 < w < oo, such that ¥ is analytic
at u =0 with F(0) =1, F'(0) %0 and

DF(u)| < Cu=9, j = 0,1,2,...,1<u< co.

J (&) =F(H(&)—1. Then f ¢ ¥ and (&) = H(&)g" (&), where ¢° ()
= G(H(&)). Here we have

G(u) = uw™ (F(u)—1).

Now @ satisties the assumptions of Corollary 3. Thus it follows that 9 e M,.
Bince F'(0) 5 0, we also have g (£) = 0 in a neighbourhood of & = 0.
Next we prove that ¢” (£) agrees in a neighbourhood with a function
o < ML T Flu) = 1+1+eutout4..., we have G(u) = o,-+cyut...
These expansions hold in a neighbourhood of % = 0. Let y e have compact
support in this neighbourhood and asyume that z(u) =1 in a smaller
neighbourhood. of % = 0. Put @ (&) = 2 H(&). Clearly, we than have
¢ <& and H(&)g" (€§)e A#M. Therefore we have that ¥ (&) = o9 (&) +
+aH(8)g" (&)e 4. Put Fy(u) = y(u) (6(w) — 0, —cqu). Then

DB (u)] < Gu~?

Then F satisties the assumptions of Corollary 8 with a = 1. Now put

, §=0,1,2,...,

and F, has compact. support. Writing fi (8) = F(H (§)) we therefore
have fo « M3 (Corollary 3). Thus it follows that fo e MM, Now put
90 (§) = x(H(&))g" (¢). Then g, =f; +¥" and thus 9o € A

icm
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Now we can use Theorems 4, 7 and 8. In this case ged};(R2) if
and only if

Ifaxp —g; Ull, = O(17°)
for all U cc Q. We get the following conclusions

Eﬁoo(g) = A%DG(Q)!

B;loc('g) = -A-;Ioc('Q)a 0<s< M’
and

LmAM||fx9; Ull, =0
A-00

implies H(D)p =0 on U. ,
As a particular case we take f = §,—%, where

k(z) = cexp(—|af’).

Then %" (&) =exp(—c,|£F). Thus f(§) =1—F(H(§)), where F_(M)
= exp( —c,u) and H (&) = |£]* The kernel & is usually the G&ugg—Weler—
strass kernel. We can also consider the generalized Gauss—Weierstrass
kernel k&~ (&) = exp (—H(£)). For instance, if we take H (&) = |&] we get
the Cauchy-Poisson kernel k() = (14 |z®)™% ) ;

Another particular caseis given by the funetionf” (&)= 1— (L+H (&))"
If B, = (u+H(D))™" denotes the resolvent; of H (D), we have fxg =1 —
—(uR,)’ g, where u = A™. Thus we get convergence results for Phe powers
of the operator uR,. Note thatif H (&) = | andd =1 we havef =1 —?o B
where k(2) = cexp( —¢,|2|). This case is connected with Abel-summation
for the Fourier transform.

Examprr 3. In this example we shall take F(u) = 1—(1—u)s.
Corollary 4 is designed for this function. We see that if f (&) = F (E{ (&)
and if @ = (d—1)|P'—27"+m we have f ¢« M. Let us write g° (£)
=@ (H(§)), where G(u) =u"'(F(u)—1). Now et y be an infinitely
differentiable on the real line, such that (%) = 0 for » > 1/2 and y(u) = 1
for w < 1/4. Then we write & = Gy+G,+G,, wihere Go(u) = x(u)G(u),
Gy(u) = (1—y(4u)) G(v) and G(u) = (1~x('u,)x(4u))G(ju). Then &, and: Q,
satisfy the assumptions of Corollary 3 and @, satisfies the assumptions
of Corollary 4. Thus it follows that

g" € _M'glin(m,M).

It 0<m< M, we put h" (&) = H™(£)g" (£). Then k" (&) = FO(H(E)'),‘
where Fy(u) = ' ~™™(F(u)—1). This function can be decomposed in
the same way as G. It follows that &~ e M. .
By the same argument as we used in Example 2A we sehe:( ilgwa;t g (&)
=gy (£) = 0 in a neighbourhood of & = 0, where g, e AF™"™. Thus
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we geﬁ that if m > M

Dffoo(Q) = 435,(2),
;loc(Q) =A;loc(9)y I<s< M.

It 0 <m < M, we write Hy_,,(£) = H* ™™ (£). Then we get

Har_ =H ] =
D, "D, 4(0) = AX..(Q) = Dhit(@),
By NBpieo () = Ag100(2) = Bhoo(2), m<s< M,
(@),

B:splno(‘Q) =A§Jloc ‘Q) 0<sm.

We also have the local saturation theorem of Example 2.

In the particular case H(é) = |£ we have that f = 8o+, where

Jorap(l@])

k(z) = ¢, o[

where J, 4, is the Bessel function of order «+-d/2. Since

cos |z +6)

Jopapn(l@]) ~c¢ o[

)

we see that

If we assume that a = (d—1)/2-+m, we see that f < M7* and f'¢ ML

N fcos (o] -6)

k(z) T

if s> m. In the case m < M we see from Theorem 3 that the inclusion.
Blioc(£2) = Ag0.(£2) does not hold, at least not in the case P = oo,
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