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For every positive integer n, and every n-tuple ¢ = (e, ...y 8,), where
& = =1, let ™) denote the sequence whose ith term is given by

Lo i 1<i< ’
mg""’)z—. %+18i SIS N,

0 otherwise.

The norm of the difference of any two different such sequences is at least
§, and thus the collection A of all such sequences is a closed set in the
open unit ball. Since supf(4) = |f|l for every fin ¢, co (4) is the closed
unit ball of ¢,.
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The distribution of energy in the Brownian motion
in the Gaussian field and analytic-hypoellipticity
of certain subelliptic operators on the Heisenberg group

by
A, HULANICKI* (Wroclaw)

Absteact. Lot a particle perform a Brownian motion X (¢) in R and ¥ (¢) be anothex
Brownian motion in R* independent of X (f) interpreted as a random constant
field of forces in A™. The joint distribution of X, ¥, and the energy B produced
by the motion is ealeulatod by interpreting (X (f), ¥ (1), B(f)) as a process on the
Heisenberg group ¢ connectod with a subelliptic operator on @.

In [4] and [2] a construction of a semigroup of functions p,, &> 0,
associated with, a subelliptic operator on a Lie group was given. The aim
of this note is to point out the role of the functions p; in random walks
on & Lie group which in turn may arise in a very elementary physical
problem, The link of the p/s to a subelliptic operator on the general
Heisenberg group enables us to compute the p, explicitly. This apart
from an apparvent physical interest shows that certain subelliptic operator
on R*"! iy analytic-hypoelliptic.

The author iy grateful to Professor H. McKean for a conversation
in which he convinced the author that the explicit formula for the p/s
can be obtained though by a different method than the one applied here,
as well as to Professor Palle Jorgensen. for illuminating remarks concerning
analytic-hypoecllipticity.

L. Introduction. Lot G be a connected Lie group, U = U~ an open
neighbourhood of the identity in @ such that the exponential map exp:
L@@ is wlocal diffeomorphism onto U. Let gy, ..., g, be a seb of generators
of G, i.e,, the smallest analytic subgroup containing ¢y, ..., ¢, is ¢4 or, in

containing A, ..., ), s LG Suppose that u is & symmetrie probability

meagure equally distributed on gy, .oy gy g7y ooy g5t anfi let for ¢> 0
and n =1, 2, ... the probability measure g, of & be defined by

Wt
(M) = 8(20)~%, it s of exp[;l:'l/-ﬁ- xj]e M.
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It can be easily deduced from [3] that
lim {wn, > = <Pu f>

for every continuous function f on @ vanishing at infinity, where P,
t> 0 is a semigroup of measures whose infinitesimal generator is

HX 4 ... +X3) =2.

Since X,, ..., X, generate L@ as a Lie algebra, it follows from either
[4] or [2] that

P(M) = [p(9)dg,
M
where p, is & C* function and is the fundamental solution of the equation

(%—~3’)u(t,w) =0 with %(0,) = f(x), feL®(Q),

ie.,

@ u(t, ©) = pisf(a). |

Let Y (¢) be a d-dimensional Brownian motion which we interpret
a8 a random force in R Suppose a particle performs a Brownian motion
X(t) in R? independent of the force Y (¢) and we are interested in
the joint distribution of X, ¥ and the energy ¥ produced by the motion
of the particle starting at the time ¢ = 0. Clearly enough H(¢) is given
by the It6’s integral

i
B(l) = [ ¥(s)dX(s)

and this eould be a starting point for our considerations, but the following
simple discretisation of the problem makes the theory of It6’s integral
unnecessary for our purposes and, on the other hand, shows the relation
of the problem to a random walk on the Heisenberg group.

Consider the phase space R*xR%xR, where the coordinates of a
point (#, y, 2) in the phase space describe the position of the particle, the
force and the energy produced, respectively.

Let for a positive number ¢ the position of the particle and the force
vary independently and the probability of the transition

x—x', Y-y
be equal to (4d);* if either
¥ =wxtae; and y =y,
or
¥ =x and Y =yditae,
where €; = (0,...,0,1,0,...,0) in R% j =1,...,d.
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In the first case the energy produced is equal to 4 ae;-y, and in the
second case it is equal to zero. This describes a random walk in RIxRUxR
with the transition probability

Pz, y,2|a',y,2)

4™ i x—x = tae, y—y =0 and ¢ —2 = tae y,
or &' —x =0,y ~y = Fae and &' —2=20,
h j=1,...,4d,
0 otherwise.

Now let us identify R?x R®x R with the Heisenberg group @, the multi-
plication being defined by
(2) 99’ = (®,y,2) (®,y,%) = @+, y+y', 2+ +xy).
Then the unit element ¢ in & is (0, 0, 0) and we see that
Pu(glg) = Palgg 'le) ]

‘Now it is clear that if u, is the measure defined by

pa(M) = D' Py(gle),

ged

then the probability of reaching a set M from e in n consecutive steps
is 4i"(M) (where * denotes the convolution on the Heisenberg group Q).
We see that the measure u, is equally distributed on the elemerdfs
(4ae;, 0,0), (0, tae;, 0),j =1,...,d, and that the Lie algebra of G is -
generated by Xy, ..., Xg, Xyy .-y Y,;, where

expX; = (€;,0,0), exp¥; =(0,€,0), j=1,...,4d,

(X, Y] = 847, expZ = (0,0,1).

Thus, by what we have said above,

timd i, f> = [ f@, y, 2)pi(@, y, o) dedyde,
N0

with

where p, is the fundamental solution of (1) with

. a

(3) % =1 (XG+X)).

j=1
On the other hand, it is clear that the limit of the joint distribution of
the position of the particle and the random force at a moment @ has
the density ‘
w o [l —lyP

o,y = | mila,y, ) = @myroxp| L],

{
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2. Explicit calculation. In this section we shall find the Fourier trans-
form of the fundamental solution of (1) on the Heisenberg group with
£ being defined by (3).

Ag is well known (cf. e.g. [6]) “the group G has the following gseries
of representations 7% A¢RN\{0}. For a g = (¢, y, )¢ and a function
f on R® we write

(T56) (&) = exp[id(y & —2)If(E—w).

Of course, T is a linear operator on the space of bounded uniformly con-
tinuous funcuons on R? and it is easy to verify that 1,7, = ' Since
e LN @), we may write

(4) (T5,5) (&) = [pilg) (Tif) (£)dg
= [mi(@, y, 2)explid(y-&—2)1f (¢ — @) dedyde
= [p(@, —i&,I)f(¢—x)de,
where for a function p(®,y,2) on RxRXR we writh
P(®@,8,2) = [p(@, y,2)exp[—if-yldy

and similarly with respect to other variables.
For a fixed i let d, = 8T* We then have

. 0 .

a X; = -——0—%—, 4, Y; =ilg;,
and so

RST
A 2

3L = L 52 ( o8 — 4 é;)
It is easy to verify that then
(5) LT3 1(8) = — [T3,£1(&)

Let, for an o in R? f(£) = exp[ia-&]. Then, by (4),

(73,51 (&) = explia-glp(a

Let p = —A¢&; then, if
a
¢
7 = (w55 ~#)

J=1

H _ZE7 l) .

and
(6) u(t, a, B, 2) = Pyla, B, Nexp[ —ii " a- f],
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then, by (B), s
0] _Z}ﬁ’bb(t, a, B, 4) ="5't' w(t, a, f, 2),

with  w(0, a, §, ) = exp[ —iz="a-f].
For m =0,1,2,...,let

@t ar
rale) = oxp 5] (-1 T exp L0,

Pnl@) = (2" m!V7) "V, (),
Wi (@) = A"y, (w1472,
Then, in virtue of [7], p. 76, we verify that

I ,
(M_d_w? "W’) V(@) = —12] (2m 1) ().
a
Consequently, if m == (my, ..., my), my =0, |m| 121 Mgy @ = (@1, ..., Bg)
and
Vin(®) = ¥, (@) o ¥ng(@a);
then ‘
Loy () = —|2] (21m] ) pp ().«

On the other hand, by an easy change of variable in [7], p. 78, we get

f "pls

£ exp[ il a Blyh ()&

Vi () doe = Oy
Now let

a I"OO
r [ exp [ —iA™! ayﬂj]wfnj(ﬁf) ag;

mn ] -0
/ [ i (2r) B3] Yy, (= o/ A1)
= (2m) P A g (Y 12147 @),
By an easy rogularization process, (7) yields .
u(l, a, fy A)

of. [7], p. 8L

= exp [11}] exp[ —i4™" e B1,
that is,

ulty @, 8,4 = Y tyuGxp[—tI2] 21mI+8)n(B)

L2 onl79)

n

N\ - Y
e (2ﬂ>d/zke~mm L\J jimig ﬂtllllml,,/)m(_

"
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Thus, by (6),

' a
(8) Pila, B, 1) = 2m) [ ] o5,
Je=1
where
N Vidl 1
Y sm ,—2f|Alm oM = a1,
op =6 g"‘ ¢ "/’m( 7 aa) "Pm(l/M[ ﬂ.’i) exp[o;B;47"]
It ,
V1Al 1
(9 s=¢MA g o= - % =7ﬁ—l‘ﬂja

then, by [7], pp. 77-78,

oy = st g™ 2 (58)™ 0 () P (9)

Mm=0
s 1z z—isy)? .
|zt o= B ],
whence, pﬁtting back abbreviations (9), we obtain

—3} (o} + B})sinh 222 104 f3; (sinh £A)?
2Acosh 2t

0 = (2ncosh2m)-1/”exp[

which yields our final formula
(19

Dila, B, 1) = (coshzzz)‘d’zexp[ *%(Ia[z—l_lﬁ'z)smmHa'p(smu)z].

2Acosh2tA

It is clear that even though the formula above was proved under the
agsumption A 3£ 0, it still holds for 2 = 0, since

tu (e, 8, ) = expl —(al*+ A1),

which, of course, is the characteristic function of the joint distribution
of the position of the particle and the force (both Gaugsian and independent).

Thus we have proved the following

THEOREM 1. If ¢ = R*xR°xR is the Heisenberg group, & is defined
by (3), then the Fourier transform'of the fundamental solution p, of equation
(1) 4s given by (10). This can also be interpreted as the characteristic Sfunction
of the joint distribution at the moment ¢ of the position of the particle, the
force, and the energy in the Brownian motion in the Gaussian field of forces
as described in the introduction.
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Analytic-hypoellipticity. Now we are going to show that (10) implies
that p,(2, Y, #) is real analytic in B*xR%xR%x R. This is an immediate
consequence of the following

TueoREM 2. There is an open neighbowrhood U of RTxRExRIxR
in CxCx 0¥ C such that p,(®,y,2) is the restriction to R* xRxR*x R
of a holomorphic function p.(&,n,L) in U.

Proof. Let for a = = t-44s, 1> 0,

— }(a® 4 ) sinh v/ 4 2iaf (sinh Jﬂz)n]
Acosh7d ’

For fixed a, 8, 4, since coshz = 0 implies Rez = 0, f(z, a, #, A) is holo-
morphic in {r: Rer > 0}. We also have

flz, ay By A) == (coshﬂ)"””exp[

d
(11) Dela, B, 2) = [ [ f(x, 05, 85, 2).
Gl

It a =rcosdh, p =rsing0, n =sind, then

. . 2
‘ _ 12 . sinh vA — 2in (sinh §71) ]
flzrya, B, ) = (coshzd) exp[ 5 7cosh7d -

We are going to evaluate ReM, where ‘
sinh ¢4 — 2in (sinh {vA)?

M= Acoshrh ’

from below as a function of = and A.
By routine transformation we get

M= ;j. [1-(cosh $vA)* (sinh §74)~2]~"- [cosh 374 (sinh §v4)~" —ir]
2(.4 —1n)

RV EN
where

Alt-ds) T . A48\ ginhtA —isinsd
ginkh, i T B
2 2 coshil—cossi
We select a branch for Argz and if, say, |s] < 3¢, we have |[ArgA| < ¢< e
for all such ¢, ¢ and arbitrary real 1. Hence, since —1 < n < 1, for suitable
choice of - depending on 4

A = cogh

A —in 1 .
' = - | = e - Arg (A —
|Arg A | Argl—l—A” Arg1+A’+ rg (A —in)
1 _ Axi| 1
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Hence
2 1 2

where ¢(4) > 0 if only |s] < }¢.
On the other hand,

lcoshzl|* = cos?si-Fsinh?4) > Foosh2td > e,

if only |s] < 3.
Consequently, for [s| < §¢

2
1Bala, B, 1) < 2ﬂexp{— L Mrdt},
‘where
a
w2 = D) i+ 3.
j=1
Let ’

U ={(vy&n,0)e CxC*%C*xC: Im7| < $Rer, Im&| < $dRex}.
Then, for a (v, &, n,{)eU, we have

1p+(a, B, A)expila-&+ pon+AL]I

< 2dexp{-H—Rerc(A) +Refa- &+ prut—12

|2 dRex
2 )

2
and consequently the integral k

@m)* [ p(a, B, 2)expi[a- &+ B -+ iL]dadfdi

ROxRIxR

is absolutely convergent to a holomorphic function ».(&, , ), whose
restrietion to RTxR*xRIxR is p,(x, ¥, 2).

3. Remarks. The following remarks concerning Theorem 2 arve due
to Professor Palle Jorgensen.

It follows immediately from Theorem 2 that if

a 4
9o = jZ;XH Y = }_;Dijwzﬁ(wg)z +24; D,y — D,
p i=
then du(x, y,2,t) = 0forx, y, 2, te R*x R*x Rx B+ an for ap, 1 s; P < 0o,
(-, B)ll, < c for all teR*, then u(x, y, 2, 1) is real analytic. This should
be compared with an example due to M. S. Baouendi and C. Goulaouic
[1]. They show that the sublaplacian

Di—[—Df}—{-— (yDz)Z
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is not analytic-hypoelliptic. The vector fieldy X = D,, Y =D, Z =yD,
generate a nilpotent Lie algebra, the corresponding group being the product
of the Heisenberg group and the real line.

On the other hand T. Matsuzawa showed [5] that D%+ (xDy)? is
analytic-hypoelliptic,

Added in proof. 1. After this paper wag submitted for publication B. Gaveau
gave an allornative prool of Lormula (10). This makes use of Paul Lévy formula for

g
f YdX —Xd¥, whoro X (t), ¥ (1) arc independent Brownian motions [ef. B. Gaveau,

]
C. R. Acad. 8o. Davis, 280 (Mars 1975), pp. 571-573].

2. The fact that 2 alone is analytic-hypoelliptic can be also deduced from the
explicito formula for the solution of Zu = ¢, as G. B. Folland has shown to the
author in o letter.
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