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Approximation of commutators of singular integrals

by
(]

DAVID C. SHREVE (Miwaukee, Wis.

Abstract. Wo consider approximations of singular integral operators of type
B > 1 and show that certain associated operators satisfy a disercte smoothing property.
‘We also consider approximations of the corresponding continuous smoothing operators,
and show that the discrete smoothing operators lead to error estimates stronger
than those given by the elementary approximation results. These estimates are
suggested by the continuous and discrete smoothing properties of the operators.

1. Introduction. In this paper we continue our investigation of
approximations of singular integral operators. We give discrete smoothing
results for approximation of operators of type A which are analogous
to the theorems on smoothing operators proved by Calderén. We also
prove error estimates for approximation of these smoothing operators.
Our methods are based on an extension of a theorem of Calderén and
Zygmund [2] on boundedness of an operator with-a discrete kernel, on
gsome LP approximation theory using Fourier multipliers, and on our
earlier work on approximation of translation invariant operators (see [7]
and [8]).

In Section 2 we present notation and define the approximation of
a translation invariant operator on L?(R"). In Section 3 we apply a result
of Riviére in order to obtain the desired extension of a theorem of Cal-
derén and Zygmund. In Section 4 we apply the result of Section 3 in
order to prove the discrete smoothing properties associated with operators
of type . The technique is similar to that in the continuous case but
becomes more computational, and geems to require stronger assumptions
on. the original singular integral operators.

In Section 5 we give an mtere%mg error estimate for approximation
of the expressions

Dy(A* —A*)u, D;(AB—AoB)u, Adu-—AdAu.
We show. for example that for « in HY,
1D, (A" — A%y — 8y, ;(Af — AF) ul, = O (W)
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where # is (almost) the fraction part of g and 8, ; is a difference operator.
On. the other hand, the approximation theorems of [8] show that for u
in HY,

ID;(A* — A%*)u —D;(A; — AF)ull, = 0(1).
Certain restrictions on the operators 4 and B appear to be necessary
for these extended error estimates. The proofs become quite technical
but we cannot see any way to avoid this.

2. Notation and definitions. ‘We shall define the Fourier transform "
of a test function » by
w'(§) = @2m) ™" [ u(@)e >0 d.
w4 is the inverse Fourier transform of w. We shall uge the standard defi-
nitions and notations for multi-indices, differential operators, L? and 1P
spaces, and the Sobolev spaces H%,. We denote the norm of « in I” by
lull, and in ¥ by |lull,. The norm in H% is
lullp,2e = ) (1D°ull,.
i<
The seminorm in H%, is written
Wlp,ar = ) 1D%ull,.
: la|l=M
‘We shall often. work with the sets
X = (< R": |&| = 1},
Q ={fcB" —n<g<m j=1,...,n},
Q@ ={zeR": —1<20;<1,j=1,...,n}
We shall write flull, o for the norm of % in I”(£).

‘We assume that the reader is familiar with standard results on singu-
lar integral operators (to save space we shall write SIO hereafter) and
Fourier multipliers. The facts we shall use implicitly may be found in [1],
[3]) [4], and [B]. For earlier results on approximation of S8IOQ’s we refer
to [7] and [8]. We shall only define the approximation method here.
Let 7 be a fixed 0> function which has support in @ and is one in a neigh-
borhood of the origin. If 4 is a tramslation invariant operator on IL?,
then

Auw = Txuy
for some tempered distribution 7. For %> 0 define T, to be periodic
with period 2=/h and for A& in @,
Ty (§) = n(h&)T"(8).
Define
Apu = Thsu.

icm®
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If we assume T~ is positively homogeneous of degree 0, then

A u( 2’ @, % (% — uh)
peZ™
where .
@, = (2m)™" [ (8T (8P a.

3. Discrete singular operators. Using a result of Riviére [6] for singular
integrals on locally compact abelian groups, we shall show that a Calderén—
Zygmund kernel truncated near the origin and at infinity, and restricted
to the integers, determines a bounded convolution operator on I and L7,
1< p < oco. If the kernel were not truncated, this result would follow
from a theorem of Calderdén and Zygmund ([27], Section 8). We also obtain
boundedness of the operator with kernel truncated only near the origin.

For a >0 define .

U, ={ueZ: —a< <
!
and U, = Z"\U,. It is easy to see that {U,, ¥}, where ®(a) = 2a, is

a regular Vitali family as defined in [6], Section 3.
In order to simplify the notation we shall write

2f(w)y  Zif(w)

to denote the sum of f(u) over x in U, and u in U[,nU , respectively.
We allow y = oo and write U, = 2™

A singular kernel for the regular Vitali family {T,, 2a} is a function %
on Z" satisfying the conglitions (3.1) and (3.2).

oy, j=1,...,n}

(3.1) k 4s summable over every bounded subset of Z™ which does not contain
the origin. Moreover, the sum

2of (1)
18 uniformly bounded for y > a > 0, ahd for each y, its limit exists
as a—>0.
(8.2) The sum Z2|k(u)| is bounded uniformly in a.
1Theorem 3.1 is the version of Theorem 4.1 of [6] which we shall
apply

TrmoreM 3.1. Let k be a singular kernel for the regular Vitali fmmly
{Uq, 2a}. Assume that

(3.3) . I3k —2) —h(p)| < O

Jor all v in Uy, uniformly in . Let &, ,» be the function & on U,NT, and
zero elsewhere. Define

Koyu(@) = boyywt4(0) = Z2h(w)u(@—p).
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Then for 1 < p < oo and w in 17,

VKo, 0ll < O ]

and Op, < C[p+1/(p—1)] where C depends only on the uniform bounds
in the definition of regular Vitali family, in (3.1), (3.2), and in (3.3).

TrrorEM 3.2. Let k be a function on R" which is 0" emcept at the origin,
positively homogeneous of degree —m, and has mean value 0 over X. Define
k(0) = 0 and consider k to be & function defined on Z". Then % is a singular
kernel for the regular Vitali family {U,, 2a}. Also, (3.8) is satisfied. Thus
with K., as defined in Theorem 3.1, we have for 1 < p < oo,

oy ully < Opllully,  welP.

Also

<O +1/p =111kl 2+ ) 1D; ks, )
j=1
Proof. In order to show that (3.1), (3.2
it suffices to consider U, with ¢ = m-+},
Define

(3.4)

)y and (8.3) are satisfied,
m a non-negative integer.

Vo=U+Q ={o = p+y: pe U, y<Q}
and V, = R™\V,. Define the operator E by By (w) = u(u) for & in u--¢Q.
¥
Let [f(x)dx denote the integral of f over V.NV,. Set V., = R" Then
a

rd Y .
(3.5) Zh(p) = [ [Ek(w)—k(w)]dw-i—@f k(@) do.

The assumptions on % imply thab

(3.6) | [ #l)20 | <Ol »

with O independent of a and y. Using Taylor’s formula, we write
k(o) = Bk(2)+Bk(p, 2)

for. # in x+@Q. Obviously,

LN

(3.7) Ile(ﬂ, WMhure < O lal™ Z 1D Bl -

srianie Lawd J=1

(3.1) now follows from (3.5), (3.6), and (3.7). The same method shows
that (3.2) is satisfied. Let »e U, and write
—k(u)|

Zzo?ilk(/“"”) g.’I_1+Iz+Ia,

icm®
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where

I, = [ |Bk(a—v)—k(o—»)|de,
28 '

~ | Bh(e)~t(o)las,
28

I = [ |k(e—»)—k(a)|da.
28
(3.3) follows from trivial estimates for each of I,, I,, and I;. The result
now is an immediate consequence of Theorem 3.1.
Remark 8.3. Let % be as in Theorem 3.2 and for % in 0F° and & > 0,
define
K u0(0) = Zyk(u)u(o— uh).
In view of Theorem 3.2, we have for 1 <p < oo, h > 0, and for all %
in 07,
“Ku,y,h%”p < Gp "u”p
with C, as in (3.4).

Note that the series K, ,,u is absolutely convergent almost every-
where with bound independent of y. Thus the limit as y—oo exists, and
we write

Ka,oo,hu(m)
We immediately obtain

COROLLARY 3.4. Let k be as in Theorem 8.2, Then for 1 < p < oo,

h >0, and for all uw in CF°, we have

= Z2R(u)u(0 — uh).

”Ka,oo,hu”p < Op”u”p
with 0, as in (3.4).

4. Discrete smoothing operators. We shall prove that the commutator

- of two SIO’s of type f satisfies a discrete smoothing property similar

to the smoothing property for operators with continuous kernels. The
same result holds for discrete adjoints, and we prove boundedness of
the operator A,a,—4,4;. We begin by summarizing the notation and
properties of spherical harmonics which we mneed. The proofs may be
found in [1] and [5]. Let {¥,,} be a complete orthonormal system of
real spherical harmonics for I*(X). The positive integer m is the degree
of ¥, and the number of harmonics of degree m is O(m"~%). ¥, is 0
except at the origin and is positively homogeneous of degree 0. For each.
index a there ig a constant O, independent of the family {¥,,} such that

(4.1) 1D® Y, (€)] < Ol =02 g =1,

(4.2) [DA[ Y (&) ]2 "]l << 0 m[aH(n-z)/zlzl—n lal_
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Algo if p.v. denotes principal value, then

(4.3) D7 T () 171" (&) = 0 Tom (&)
where

vm = "0 T(m[2) [T((n+m)j2)] 7,

¢, is a real constant depending on = and n, and I" is the gamma function.
Thus

(4.4) lyml < Om—nlzy 1777111 < Om"™®,

-We turn now to functions in B, and operators of type . Leti f> 0
‘Wé say that f is in B, provided

sup | Df(#)] < oo
and ‘

sup [y|"~?|Df (@ +y) — D°f (@)] < oo,

where the first sup is over « in R®, |a| < [#], and the second sup is over

¥ # 0, 2 in B", and |a| = [8]. We denote by |f|, the maximum of these
suprema.

Consider an operator A defined by
Au(m) = a(z)u(z)+p.v. fk(m,m—y)u(y)dy

for w in C5°, @ in By, and k having the following properties. For each «
in R" k(w,2) is 0 in 2 except at the origin, positively homogeneous of
degree —n in 2, and has mean value 0 over X. Let T (z, £) denote the
Fourier transform in the second variable of p.v. k(z, 2). We write

o(d) (2, &) = a(@) -+ (2n)"* T (&, £)
and call o(4) the symbol of A.
Let IV be the least even integer greater than 5n/2. We say that 4

is an operator of type § provided that for each index a with || < N and
for each & in X, the function Dis(4) is in B, in 4. We define

l4llp = sup [Dso(4) (+, &)lls,

where the sup is over & in ¥ and |a] < N. Calderén used N = 2# to obtain
results on the boundedness of 4 on H%, and to study pseudoproducts
and pseudoadjoints of operators of type f. Our method of proof of the
boundedness of

ah,j (4B, —4,0B,)u]

©and )
O, [(AZ —AF)u]

-iIcm
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seems to require the choice of N above. However, we shall see that for
boundedness of

Apdy— Ay Az,
it is sufficient to choose N such that N -+1 > 3n/2.

The series representations of Aw and o(4) (, & with respect to
{Y},} will be written as

Au(@) = ) (%) By (@),

Lmz=0

o(d) (@, &) = a(@)+ 3 b(®)5(Bim) (8),

Limz>1

(4.5)

where Ry, has kernel Yy,(2)le™",
(4.6) o (Ryys) (8) = (2m)" yp Yim (),
and the coefficients in (4.5) satisty aq = @, llall; < C|4);, and for m =1,

(4
(4.7) lagmlls < Om™Y2 | Allg, G = via' bim-

"Also we have

(48) Hle” < OpJ
where [[R;,| denotes the operator norm of Ry, on L”.
" The approximation 4, is constructed as in [8] using the smootl%
function #. Thus
Ayu () = [o(4y) (@, ")u"] (),

a(4y) (@, &) = a(w)+ (2= T} (2, &),

and T (x, £) is periodic in & with period 2x/h, and for h¢ in @',
Ty (@, &) = n(RET" (w, ).

It is easy to see that
(4.9) Au(@) = D) Gy () Byt (2)

Lmz=0
and

o(dy) (@, &) = a(@)+ D) byn(®) 0 (Rima) (8)-
Lmz1 :
Also the operators Ry, and 4, have coefficients independent of &. By
Theorem 3.1 of [8], we have

(4.10) 1 Bymnll < Cp-

We prepare for the discrete smoothing theorems by proving some
technical lemmas. For simplicity in proofs we shall write R for Ey, and R,
for Ry, O denotes a constant which does not depend on I, m, h, or any
function in Bj.
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LEMMA 4.1. Let K be an integer greater than n. There 18 & constant Cg
such that for u in Z" and u + 0,

(411) ]P-V»f [n(&) —1lo(By) (&) 6i<“‘5>d5| < Om® 7 u| ™,
Proof. Let ¢ be a 0® function such that
supp () = {f< R": 270 < [£] < 2}
and

D w8 =1, £,

. k=—o0
where ¢, (£) = ¢(27%&). Clearly,

1D (8)] < 0,274,
If 5(£) # 1, then

D8 =1.
=0
Let a be-an index with |a| = K and consider
Fi(w) = [@1(8) [1(8) —110(R) (§) D*e<® ae.
Using integration by parts, (4.6), (4.4), and (4.1), we see that

B()] < O~ 2k,
Since
0
ppv. [ [n(8) =110(B) (D ae = 3 7y (u),
=0
the result follows immediately.

» The next lemmas angd those in Section 5 deal with an arbitrary
function @ in B;. We assume > 1. Then

(4.12) la(z) —a(@—y)| < nlal,lyl,

(4.13) a(0) ~a(@—y) =i 34, Dya(0) +b(w,9),

=1 .
where with 6 = min(2, p), )
(4.14) b(z, 9)| < Ollallplyl”.
05,5 will represent either the forward difference operator,
On,gu(®) = (ih) ™ [w (@ + he;) — u(w)]
or the symmetric differencé operator, :
Op yu(2) = (240) 7 [w (o + heg) —u (@ — hey)],

where d; is the Kronecker delta and 6; = (815, ..., dy). 73 ; represents
the translation operator appearing in Leibniz’s formula for 0,5 (uw)

\

icm®
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Lemya 4.2, There is a constani C such that for all u in 03"’ we have
05,5 [(@Rimn — Binn @) ully, < Cllallm™+ flull, .
Proof. We shall consider only the forward difference. Let
Y (2) = Tp(2) 2] ™"
be the kernel of R. Since R, has coefficients independent of %, we have
Ryu(z) = 2 @, % (% — ph)

HeZn
where

@, = (2m) 7" [ ()T (8) H 2 as.
In view of Lemma 4.1, we may write
a, = Y (p)+F(n)
where Y (0) = 0, F(0) = ay, and for u # 0,
P(p) = @m)"pv. [ [1(8 —11T" ()P de.
Then R,u = Ry u -+ F,u, where
Rpgw(o) = DY (u(@—uh)  and  Fru(@) = X F(u)u(@—ph).
It is obvious t;.a.t ’

Onj[(aRy— Rya)u] = (0,50) By g0+ J 1+
where ,
Jy = aBy30,,;% —~ B30y, ; (au),

C Iy = ally 8y yu —F,0,,(au).
Using (4.10), we see that
(0n,10) By vp, jull, < € H“”ﬁ“u”p .
It remains to estimate J, and J,. Write

0 F () = —i[F(u+e) —F ().
Then it is clear that

Jo(a) = b~ 310, F(p) [a() —a(o—ph)]u(@ ).

Applying (4.6), (4.4), (4.1), and Lemma 4.1 with K =n-+2, we obtain
' 131l < C llallpm™ ful .
We turn now to the more technical estimate for J;. Write

0, (u) = —i[¥ (utep)— T(w].
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Then .
(4.15) Ta(@) = 7" 370, Y (u) [a() — alo— uh)lu(a — ph).

We shall split J, into several pieces, one of which will involve a discrete
singular operator. Recall the definition of 2} from Section 3. Writing
t =17, we have
h Jy =dut+dpt+ds
where
T (@) = b2 0; ¥ () [a(w) — a(w — ph)Ju (e — ph),
J1a(®) = b7 2] 9 Y () [a(@) — al® — uh)Ju (o — uh),

Jis(®) = 2P 0, X () [@(@) — a(@ — ph)Ju(w — ph).

Jyy and Jy; are easily estimated using (4.2) and (4.12). It remains only .

to estimate le. Using (4.13), we write

J12 = J121+J122 '1‘J123
where

J101(2) =i D' Dya(@) 5}, D; ¥ () u(a— uh),

fe=1

3
T10a(0) =1 D) Dyo(@) 2% 10, Y (1)~ D; ¥ () (0 — uh),
Je==1
J1aa(®) = B 20,V (u)b (m, uh)u(m—uh).
J10e and Jy are easily estimated using (4.2) and (4.14). Since 2,.D; ¥ (2)
is €™ except at the origin, positively homogeneous of degree —mn, and
has mean value 0 over X, we may apply Remark 3.3 and (4.2), and we
obtain '
, 1 1a1ll, < Cllallgm* ™ jull,.
This completes the proof of the lemma.

LevmA 4.3. There is a constant C such that for 0 < M < [f—1],
1<j<m, for h> 0, and for all v in CF°, we have

105, (@ Bpnn, — Rin @) w]llp, 2 < Ol g™ fthl 21 -

Proof. The case M = 0 is proved in Lemma 4.2. The general result
is easily proved by induction.

We assume hereafter that 4 and B are operators of type f. We use
the standard definitions of the adjoint A* and pseudoadjoint 4% of A4,
the product AB and the pseudoproduct AoB of A and B, the Riesz
transform R;, and the operator

4=Y

icm
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See [1] or [B] for these definitions. The discrete approximations A4},
Af, and A,0B, are defined in [8]. We define

n
4y, = Zthah,j'
=1

For future reference we list the series expansions of some of these operators.
w~ denotes the complex conjugate of u.

A = 2 a’llenu

L,m

B : Z blmRhm
Lm
A = D=1 Bitiy  AF = D (~1) 05 Ry,
-AB = Z“lmRmbstRah 40B = Za’lmbet-leRat'
Similar expansions are valid for the discrete analogs of all these operators.

The discrete smoothing properties of the approximation operators
are given in the next theorem.

THROREM 4.4. There is a constant C depending only on p, n, and B
such that

(4.16) 10,5 (A5 — A )l 0 < Ol e, 32,
(4.17) ”ah,j(AhBhu — 43,0 Byu)llp, 3 < O 1A 1Bl 1|, ars
(‘118) I]A71.Ahu _AhAh%Hp, M < ONA”,‘I ”u”p,Mi -

for o< ML [f~1], 1Li<n, b> 0, and for all u in CF.
Proof. In order to prove (4.16), we write

Afw—Aifu = D —1)™ Ry G — G Bins) -
m

Applying Lemma 4.3, we obtain
105, (ARw — AFF )y, 20 < O D) M [@pllplull, a1
i,m
Since the number of harmonics of degree m is O(m"™?), (4.16) follovys
from (4.7) and the choice of N. The proof of (4.17) is similar and will
be omitted.
In order to prove (4.18), we write

n
AhAh'”’ ""AI»Ahu = 2: Z ah,j [( a’lm-th "tha’lm) Ry v]—

f=1 L,m
n
- 2 Z (ah,j a’lm) RM-leh Th,j -
j=1 l,m

The second term on the right may be estimated using (4.7) and (4”'__1,?_);
In order to estimate the first term, we note that B; has kernel 2; =l
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and 22| is a spherical harmonic of degree one. Applying Lemma 4.3
and (4.10), we see that the first sum is dominated by

D) lollp ol 2z

l,m
It follows from (4.7) that the first sum converges if N is the least even
integer such that N1 > 3u/2.

5. Extended rates of convergence. In this section we shall investigate
approximation of the derivatives of smoothing operators associated with
operators of type §, and also the operator A4 —A4. It follows easily
from the approximation theorems in [8] that

ID*[(A* — A%)u— (47 — Af)ull, = 0(1)

for |a| = M < [f], h> 0, and w in H%;. In other words, there is no rate
of convergence for highest derivatives of the approximation of the smooth-
ing operator A*— A% A similar statement holds for AB— AoB.

We write § = f,4-%, where 0 < %<1 and B, is a positive integer.

Loosely speaking, we shall show that
WD (A* — A¥*)u — 0, ;(Af — APV ullp 37y = O(h*)

a8 h—0. A similar result will hold for AB—A4oB. In each case there
will be slight restrictions on 4 and B. This result is suggested by the
smoothing properties of the SIO’ and the discrete smoothmg properties
established in Seection 4.

We agsume that if 0 < % <1 then 0,; represents the forward diffe-
rence and the integer N in the definition of operator of type f is the least
even integer greater than 5n/2. If » = 1, then 0, ; represents the symmetric
difference and W is the least even integer greater than 1--5n/2. These
technical changes are necessary at only two points in the proofs. We
shall assume that » < 1 and only indicate at the appropriate places the
reasons for the changes. As in Section 4, we first work with a single term
in the series expansions of the operators, and use this to obtain the general
results.

‘We shall use some estimates for the remainder term b(z, y) in the
expansion (4.13) of the function a. Recall that ¢ is the minimum of 2
and g. For x in Z" and ¥ in @ we have

b(, uh+hy) —bla, uh) = a(a—uh) —a(w—uh—y) —ih 30, Dy0(a).
k=1
It follows that

—b(@, ph) = b D'y, [Dya(e —uh) —Dya(z)]+b(z — ph, hy).

k=1

b(z, uh +hy)

icm
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Thus
(5.1) b(w, ph-+hy)—b(2, uh)| < Ollal,sh,
(5.2) 1 (w, ph+hy)—b(w, ph)| < O’“a’”ﬁh‘s ].u[dnly
and :
(5.3) |.Qf [5(@, ph+hy) —b(@, uh)1dy| < Ollallh’.

LuMMA B.1. There is a constant G such that if m +# 2 then for all u
in OF ond for 0 < h <1, we have
(5.4)  IDy[(aRyy — By a) ]~ 0y, s ({6 By, — Ripn @) ]l »
< Ollallpm ™ B0~ .

A necessary and sufficient condition that (5.4) be valid with m =2 4s that
for all harmonics X,,,

(5.5) > D

o) [ Tu(§) & gdo = 0.
k=1 =
Proof. We write

D,;[(aR — Ra)u] — 0y ;[(aR, — Rya)u] = H4-H,

where
B = (Dja)Ru——-(BMa)ha‘h’ju,

= [aRD;u — RDy(au)] — [aRy0 ;u — Ry, 04 5 (au)].

We can estimate F easily. We have ‘
B = (Dya) (B — Bp)u+(D;ya) (v —v3,5%) +(Dsa — 8, 50) Byvy 5u.
Using (4.8), (4.10), and the method of Theorem 4.1 of [8], we see that
1Bl < Ollallgh’™ lwllp,y -

It remaing to show that we can dominate H in L® by the right-hand side
in (B.4) if and only if (5.5) holds. This process is rather long and we shall
divide it into several steps.

First step. We let R* have kernel, the kernel of R truncated ab dlstance

& from the orlgm, and write

(5.8) = [aR*Dyu— B*D;(au)] — [aR,0; yu — B, 0 ;(au)].
Let K, be the SIO with kernel y,D;¥(y) and Kj, the SIO with the
same kernel truncated at distance & from the origin. It follows from ([5],
Part I, Chapter IV, Theorem 7) that Ky, has operator norm on L*

(8.7) el < Ollye Dy Xy, 2 < Cm 2, *
Also : \
(5.8) ©o(Ey) = —Dil&a(R)].
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‘We consider the continuous terms on the right in (5.6). Using integration
by parts, we see that

(6.9) * [aR°Dyu—R*D;(an)] ()
=i ) Dya(o)Eju(a)+ [ DY (y)b

k=1 wi>e
where Bju i8 the boundary term,

Bju(w) = &* f:l/,

) Y)u(@ —y)dy —iBju(w),

y) [a(®) —a(w —ey)Ju (s —ey)do.

Using (4.13) and Taylor s formula, we see thai; in I7,

Biu () = u(w) ZDkawc) f Y39 Y (y)do+ 0 (e).
F==1
It follows from the decomposition theorem for homogeneous polynomials
in terms of spherical harmonies ([58], Part II, Chapter III, Theorem 3.3)
that if m £ 2 then

[T (y)do =0

z

and thus Bju—>0 in I as s->0. We shall show that the limits (as s—>0)
of the other continuous terms on the right in (5.9) are approximated by
the discrete terms in (5.6) for all m. Thus for (5.4) to hold, it is necessary
that Bju—0 in L” as s—0, and hence (5.5) is necessary if m = 2. Since
“H*->H in L®, we have shown that

(10) H =i ZDka(m ot (9) — [0y, Oy 0 — By By 5 ()] () +

+ [ D, Y ()b(w, yyuiz—y)dy.

Note that it follows from standard theorems on SIO’s that the last integral
exists in I”. This completes the first step of the proof.

Second step. We shald consider the discrete terms in (5.10) and focus
our attention on approximation of each K. It is easy to see that

(5.11)  [aRy0,;% — B0, 5(au)] (@)
N
=i D' Dya(@) D) mdyaui@—puh) +h7" 3 0;a,b(w, uh)u (e —puh),
fe=1 » . I3
where 9;a, = —i(a,,—a,) and the a, are the coefficients in R,. In

the third step we shall see that the last sum in (5.11) is an approximation
‘to thé& last integral in (5.10).

icm®
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An easy calculation shows that

(512) xuka a = Jk[l«_x fhep 9
where ]
G = (27) [ (8) D (67 —1) o (B)] (£) < g,
B = (2m)7 [ Dy (£)i(6¥ — 1) o(B) (§) FP ae.
Congider the functions wy and 2 defined by
05(8) = 7(8) Dyi(6 —1) o(R)] (8),
L i
a(§) = Dyn(£)i(e? —1)o(R) ().
Since # is in 0F, it follows from (4.8) and (5.7) that w;, and 2, are Fourier
multipliers with norms bounded by 0, m™” and 0, , respectively, 1 < p < oo.
Define Ky, and Zy, to be the dlsclete operators whose symbols o(K"z;,)
and o(Zy) are periodic with period 2=/h and for A& in Q,
o (Epa) (8) = wp(hé),
0(Zyn) () = 2 (RE).
It follows from Theorems 2.1 and 2.3 of [4] that o(K,) and o(Zy,) are

Fourier multipliers with norms bounded by O,m"™* and 0,, respectively,
1 < p < oo, Using (5.11) and (5.12), we see that

[“Rhah g "'-Rhah s{au)] (2)

= be[Dka(K,khu-l—ijhu)] (@) +1? Za,a b(@, ph)u(®— ph).

k=1
Inserting this into (5.10), we obtain

n
(5.18) H =1 D [Dyo(Eyt—Kpyu—Zpw)] (@) +

fe=1

+ fD, Y ()b (@, y)u(w—y)dy —h~ 2 0;0,b(w, ph)u(w— ph).

We conclude this step by estimating | Euu —Kyyul and |Zg,ull. First,
we write
(614)  [(Kp—Eya) ]

= R (hE) (Dyu)” +[L—n(hé)] [o(Kg) — o(Epa)1 (RE) 4",

where
W(E) = (&) {—[i(e —1) + £1&7 EDo(B) (O +
+7’6ﬂ:(6j Ej U(R) E)}
Since %(&) [z( 1)+ &1 and 7 5)( 1) & are both in OF, it

follows from (B. 7) and (4. 8) that ¥ is & I‘ourler multiplier .with norm
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bounded by'Opm”’Z, 1 < p < co. Using this fact, and applying the method
of proof of Theorem 4.1 of [8] to estimate the inverce transform of the
remaining term in (5.14), we see that

(515) ”Kﬂcu_KﬂchM“p < Omnlzhlulp,l'

Since 7 is one near the origin, we may estimate Zj,;4 by using the method
of proof of Theorem 4.1 of [8] again. We obtain

(5'16) ”Zﬂchu“p < Ch [“lp,l'
This completes the second step of the proof.
Third step. It remains to estimate the expression
. .
H, = [D;Y(y)ble, yyul@—y)dy —h~ ) 8,a,b(@, uh)u(o— uh)
M

from (5.18). Write a, = ¥ (u)+ F(u) as in the proof of Lemma 4.2 and
let 2 denote the cube

‘ Q ={yeR™ 2|yl <3h, j =1,...,n}.
Then
(5.17) .
H, = DT W)@, v)ulo—y)dy—h" 20, T (9)blo, wh) —u(o—uh)—
—h"FZ 0 F ()b (@, ph)u(w — uh) +Su ()
where

Su(a) = h—lzfaf[Dwaw)b(m, w4+ Ty) (@ — b — ) —

— ;X (y)b(w, ph)u(z— uh)1dy.
Using . (4.2) and (4.14), we see that

L] 22w, 91wt ) ay], <Otallm 1= .

The second term on the right in (5.17) may be estimated similarly. Apply-
ing Lemma 4.1 and (4.14) to estimate the next sum, we obtain

=2 X 8,85+, whyu(- —uh)|, < O lallym® 10 ),
“®

In order to estimate Sw we write it in the form

Su(@) =122 3 [ N,(w, u,9)dy,

=1Q

icm
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Appr
where
No(@; py y) = [D; X (g +9) ~ 0, ¥ ()] [b(w, ph+hy) —b(z, h)] x
X [w(@ — ph—hy) —u(@ — uh)],
No(wy gy y) = 0; ¥ () [b(w, ph+hy) —b(, uh) ] [u(e —ph—hy)—
—u(® —uph)],
Nal@, pyy) = [D; X () — 0; X (u)1b (2, ph) [u(ax — ph —hy) —u(w — uh)],

Na(@, oy y) = [D; ¥ (u+y) — 0, X ()] [b(w, ph+hy) —b(z, uh)]o (@ — uh),
No(w, oy y) = 0; X (u)b(w, uh) [u(®—ph—hy) —u(z —uh)],

No(@, g, y) = 0; X () [b(2, ph+hy) —b(e, ph)lu(z—ph),

No(@, pyy) = [D; ¥ (u+y)— 0 X (u)]b(w, uh)u(s — uh).

Using (4.2), (5.1), and (4.14), we see that for » = 1, 2, and 3, we have

2.0 ], < Oty he =,
Using (4.2) and (5.2), we see that
S 2 0], < Ot B
Turning to Ny and applying (4.2) and (5.3), we obtain
e, vl < ovatmn ==y
In order to estimate N, we note that

| 2T ()0, T () ] < Omeren -

since 0;; represents the symmetric difference operator when g = 2.
Now it follows from (4.14) that

“(é[ No(y o, (l/)d?/”p < 0”“”,5'""'["“”/2 [ l,ul‘”"”"’['” llell, -

Finally, we turnto ¥y which we split into four parts, one of which involves
discrete singular operators.

Z:oéf-Ns(m’ Hy yzd?l = Ny 4.+ Ny

2 — Studia Mathematica TVI1
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where with ¢ = k™%,

Ny = 240, Y (u)b(, ph) éf [(@ — ph — hy) — (@ — ph) 1 dy,

Ny = 270, V(1) [6(0) ~alo — )] [ (wla — b —y) — (o —h))ay,

N = ih D) Dya(@) 52 [D; ¥ () — 8, X ()

Je=1

1) [l — b —hy) ~
—~u (@ — ph)]dy,
n
Nu = —ih D) Dya(@) E°uD; ¥
fo=1
Elementary estimates show that for ¢ =1, 2, and 3, we have
¥ ssllp < C llallgm™™h2 [ul,, .
‘Applying Gorollary 3.4, we obtain the same bound for ¥,,. Combining
the estimates for all the N,, we obtain
18ull, < O llaflmt ™™ B0~ ], .
summarizing the third step, we have shown that
1yl < O llallymt ™™ B0 [y,
Inserting this estimate, (5.15), and (5.16) into (5.18), we obtain the

desired estimate for H, and thus we have completed the proof of the
lemma. In the next lemma we extend the estimate to higher derivatives,

Levma 5.2. There is a constont O such that if m # 2 and u s in CP.
then '

\D; [(aRy, — Ry, a)u] — ah,j [(aRyy — Ry ) ) ”p,ﬁg—l
<0 Hallﬂ’m[’:””“h" el p, -
Proof. The case 1 <.8 < 2 is exactly Lemma 5.1. The general case
iy easily proved using Leibniz’s rule and then Lemma 5.1.
‘We are now ready to prove estimates for approximation of smoothing
operators. Recall that N is the least even integer such that N > 5n/2
if x<1 and N>1+58n/2 if » = 1.

TeEOREM 5.3. Let A be an operator of type B such that for all spherical
harmonics Yy,

mof [16(@ — puh —hy) — (@ — uh)]dy .

fd(A) (@, &) Ypn(£)do(£) is independent of w.

Then there is a constant C such that for 0 < h <
have

(5.18)

<1 and for all w in O, we

HDj(A*“ A#“) BM.Ahu A iy w)llp, Be—1 < O A7 Jwlly, By

icm
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Proof. Using series expansions we write

Dy(A*u— A% u) — 8, ;(Afu— AFu)

Since a; commutes with Ry, it follows from Lemma 5.2 that the left-
hand side is dominated by

lea'lm - a’lm le) u] ah i [(leh. alm - a’lm leh) u]}

> 5’ Wl ],

Since the number of harmonics of degree m is O (m™™?), (5.18) now follows
from (4.7) and the choice of N. Clearly, the second choice of N is necessary
if »% = 1.

THEOREM 5.4. Let A and B be operators of type B such that either O’(B)
s independent of x or for all spherical harmowics XYi,,

J o) @, 8 Fu(e)ao =

There is a constant C such that for 0 < h <1 and for all u in Oy, we have
1D (4B — A 0 Bu) — 8y, ;( A Byt — 45,0 Byw)llp, 5, 1

Proof. We write

< Ol IBllsh" lullp, 5, -

ABu—A0Bu = 2 ) ty(Rinbs — byt Rim) Bostt
Im 8,
with a similar expression for the discrete operators. By assumption, either
a; =0 or b, commutes with R;,. Using Lemma 5.2, we proceed as in
the previous theorem to complete the proof.

The approximation of 44 —AA4 does mot involve any restrictions
on 4, and we may allow N to be the least even integer greater than
3n2 —1.

THEOREM b.5. Let A be an operaior of type B. There is a constant C
such that for 0 <k <1 and for all w in 07, we have

(Ad —Ad)u—(Apdy— Ay dz) g1 < OllAllgh* 1l g, -
Proof. We write

(A4 —Ad)u = D' DD, [(ty, By — By y) Bi] —

F=1 l,m

(Dy @) By By

l,m

Ms

j=

ot
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with a similar expression for the discrete operators. Since R, has kernel
227" and #|2|~" is a spherical harmonic of degree one, we may apply
Lemma 5.2 in order to estimate

D[y By — B @) B 0] — By, s [ B, — By ) By 0]«

The remaining terms may be estimated easily using Theorem 4.1 of [8]
and Lemma 4.3,
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Discontinuous translation invariant linear functionals on L' ()

by
PETER LUDVIK (Edinburgh)

Abstract. The main result of this article is the proof of the existence of discon-
tinuous tramslation invariant linear functionals on the group algebra L!'(&), for all
compactly generated locally compact abelian groups.

0. One of the well-known results in an abelian harmonic analysis
on locally compact groups is that any confinuous translation invariant
linear functional on IL'(&), the space of all Haar integrable functions
on @, is just a complex multiple of the Haar integral I,

I(f) =ffdz, fe (@), A is a Haar measure on 6.

We may ask whether this result remains valid if we omit the word ‘con-
tinuous’ in the hypothesis.

The purpose of this note is to prove the following.

THEOREM. Let G be any compactly generated locally compact abeliam
group. Then IMG) admits discontinuous tramslotion invariant linear fumc-
tionals.

The proof will be deferred till the end of Section 3.

The motivation has been provided to a great extent in [6], [7], where
related problems have been solved for various funetion spaces associated
with locally compact groups.

1. Let G be a locally compact abelian group (LCAG); we will denote
by M(@) the algebra of all bounded Borel measures on @, with convol-
ution as multiplication, i.e., we define

(1) ' pxv(H) =f,u(E——~g)dU(g) VE,

where p, ve M(G), B is a.Borel set in G and H—g = {h: h+ge B}, with
the total variation norm on M(G). . .

It is well known that M (&) can be identified with the strong dual
of 04(@), the space of all continuous complex valued functions vanishing
at infinity. '

Also, I*(@) can be canorically embedded in M (&) and will be a norm
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