122 . ¥, Zo

Proof. We assume that the unitary ball is the support of K; then

(2.13) (@< [ 1K@)ife—-2"y)ldy
lyl<1
<WEl( [ 1fw-2yray)”,
[yl
where p' <g¢< o, 1/¢'+1/g = 1.

It jq denotes the Hardy-Littlewood maximal function of [f|Y, we can

rewrite (2.13) as
(2.14) Fla) < O(fy(a)™.

Now the fact that f, i.e., the Hardy-Littlewood maximal operator of f, is

weak-type (L, 1) (see [2] ) implies (2.12). It ¢ = oo, we split K as follows:’

~vE = EXyqeny, VK = K —yK. Then
Eywf(@) (o) [ K(@)do = [ wE () {f(o—2""y) ~f(@)}dy +
fNK ) {f(e—1"y)—fl@)}dy = yIa(w) +"1i(2).

Tt is not difficult to establish the following two inequalities:

(2.15) VI ()] < (1 flleo + [ 1K ()| da,
|l N
(216)  IyL@) < (f@i+ 1) [ IyE@)lde+
{2 | v E(2)| =)
+72 [ Ifle—y)—f(@)dy.

w<i—iN

Now, considering Tm lim lim on (2.15) and (2.16), we have

N-»00 T'—>00 >0

lim |K+f () — f(2) [K (2)da] = 0 a.e.
=0
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The I} problem and degrees of mon-reflexivity
by

W. J. DAVIS, W. B. JOHNSON* and J. LINDENSTRATUSS
(Columbus, Ohio)

1. Introduction. The material presented in this paper originated
from an attempt to solve the “If problem? first raised by R. C. James [6].
Let X be a non-reflexive Banach space. Is it true that for every &> 0
and integer » there is a subspace B of X such that d(B,I7) < 1-+¢?

Before continuing let us recall the definition of the notions appearing
in the statement of this problem and some closely related notions.

‘We consider here Banach spaces over the reals and If denotes the n-di-
mensional L; space, i.e. the space of n-tuples # = (#,, 4,,...,®,) of

reals with
n
ol = D lal.
1=1

By I, we denote as usual the space of all sequences » = (y, 2,,...)

with |z| = S’Imil < oo. We gay that d(B, C)<< A for some Banach spaces

q=1

B and € and a veal 1> 1 if there is an (always linear here) operator T
from B onto C such that |T||||7*| < 2. A Banach space Y is said to be
finitely represented in a Banach space X if for every finite dimengional
subspace B of ¥ and every ¢> 0 there is a subspace 0 of X such that
d(B, () < 1+ If P is a property which is meaningful for general Banach
spaces we say that a Banach space X is “super P if every Banach space ¥
finitely represented in X has property P. Of particular importance is the
property super reflewive introduced by James. Thus, according to the
general rule, a Banach. space X is super reflexive if every Banach space ¥
finitely represented in X is reflexive.

In paper [6] in which James posed the I problem he proved that the

* The second named author was supported by NSF GP-33578.
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answer to it is positive for n = 2. We tried to solve James’ problem by
combining the basic idea of his proof for # = 2 with a careful study of
the “degree” of non-reflexivity of X and first of all with the properties
of the quotient space R(X) = X**/X (here and later on we assume,
unless stated otherwise, that X is embedded canonically in X™). By
extending the arguments of James we showed that if B(X7) is “big” then
the answer to James’ question is positive for n = 8 and that similar
(but more complicated) statements hold for arbitrary n. Together with
this result we found two constructions which produce for every non-reflexive
space X a space ¥ which is finitely represented in X and for which E(Y)
is “big”. However, it turned out that the bigness of R(X) obtained in
these constructions is not of the type which ensures the existence of
copies of I{ in ¥ (and thus in X).

Thus our approach did not lead to a solution of James’ problem.
There was a good reason for this failure. James [9] recently constructed an
ingenious example of a non-reflexive Banach space X which does not
contain almost isometric copies of 1. In view of this negative solution
to the I problem in general there is, however, some interest in the partial
results obtained in our approach, in particular, since it singles out a certain
‘““degree” of non-reflexivity which is reflected by the local structure of
Banach spaces.

In this paper we introduce a notion of local k-dimensional structure

(local k-structure in short). This notion by definition depends only on
the local structure of a Banach space X (i.e. the finite dimensional sub-
spaces of X) and iy invariant under isomorphism. Also, by definition,
local %+1 structure implies local k-structure. Moreover, it is trivially seen
to be a self-dual property (i.e. X admits a local k-structure if and only
it X* admits sueh a structure). For k = 1 this notion agrees with the
negation of super-reflexivity (i.e. X admits a local 1-structure. if and only
if X is not super-reflexive). We show that if R(X) = X™/X admits alocal
k-structure for some integer %k then X admits a local (k+1)-structure.
There is also & partial converse to this statement: If X admits a local
(k+1)-structure, then there is a space Y, finitely represented in X, such
that B(Y) admits a local k-structure. Thus, for example, X admits a local
2-structure if and only if there is a Banach space ¥ which is finitely repre-
sented in X with E(Y) not super-reflexive. More generally, if we define the
(quite complicated) object R*(X) in an obvious way (ie. R*(X) = R(X),
RE(X) = R(R*(X))), we show that X admits a local k-structure if and
only if there is a space Y finitely represented in X so that R*(Y) + {0}.
The connection between the notion of local k-structure and the I problem
is provided by showing that if X admits a local k-structure then for every
&> 0 there is a subspace B of X with @(B, I*') < 1 + ¢, and actually asome-
what stronger statement holds. The proof is a “k-dimensional”’ vergion

e ©
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" of the proof of James of the main result in [6]. Tn view of all these facts

the recent example of James [9] shows therefore that there is a space X
which admits a local 1-structure but not a local 2-structure. This example
provides the main justification for the introduction of the notion of local
k-structures.

In Section 2 of this paper we make only a beginning of the study
of k-structures. It is not clear to us whether they play a role also in other
problems in Banach space theory and thus deserve much more careful
study. Two questions are, however, of quite obvious interest and remain
unanswered here. (1) Does there exist for every & a space admitting a local
k-structure but not a loeal (k+1)-structure? James’ example does not
seem to be easily generalized to the case where &k > 1. (2) Is it true that
a Banach space X admits a local k-structure if and. only if for every equiv-
alent norm ||| ||| in X and every ¢ > 0 there is a subspace B of (X, ||| |||}
with d(B, B*) < 14-8% (Of course, it is the “if”’ part which is open:) For
k=1 the answer is known to be yes. This is the content of the beautiful
result of Enflo [4] and James [7], which shows that a space is super-
reflexive if and only if it is uniformly convexifiable or if and only if it
has a uniformly non-square norm. The connection between local 1-structure
and uniform convexity indicates perhaps the existence of a notion of
“k-uniform convexity”.

In Section 3 we continue the discussion of Section 2 but with a some-
what different aim in mind. Our interest in Section 3 is in enlarging R*(X)
for spaces admitting a local k-structure without “‘enlarging® the local
strocture itself. Our first construction is that of taking iterated dmals.
For every non-reflexive Banach space X we have the natural and canon-
ical chain of inclusions

XX XW = X0, c X <

[=°]

We.can therefore define also a space X as the completion of | X"
n=1

and continue to define by an obvious transfinite induction the spaces X

for every even ordinal number a. It follows immediately from the principle
of local reflexivity [10]that for every a the space X is finitely represented
in X. We show in Section 3 that if X is a Banach space such that R*(X)
# {0} for some integer %, then if « is large enough (a > »* to be precise)
R¥(X™) is infinite dimensional. Thus, taking e.g. the case &k = 1, it fol-
lows that there is no meaningful notion of “super quasi-reflexivity”. I X is
a space such that for every Z finitely represented in X we have dim R(Z)
= dimZ™*|Z < oo, then X, is already super reflexive. This fact should

~ be compared with the result of Section 2 which shows that “super Z**/Z

reflexive” is a meaningful notion (i.e. that of admitting a local 2-structure).
Another construetion presented in Section 3 emphasizes in a stronger
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form the non existence of “super quasi-refléxivity’””, Even the formally
stronger notion “super density character of Z**/Z < density character
of Z'" already implies super reflexivity. If X is any Banach space with
R¥(X) # {0}, we construct a separable function space ¥ on the k-dimen-
sional cube [0, 11 so that ¥ is finitely represented in X and R*(Y) is non-
separable.

2. Local k-structure and the [?-problem. We start with the definition
of the main concept appearing in this paper. ,

DeriNirIoN 1. A Banach space X is said fio admit alocal k-dimensional
structure (local k-structure in short) if there is a congtant M having the
following property. For every integer m thére emist n® elemonts Begigy s

1< igy gy voey <o in X and n* elements {fy 5. 2%, V< dyy Jay oo Ja S0

in X* such that

(21) 1 iy S My Wil < M

and

L oif jp<ip,p=1,..,n,

22) iptneie@irstnsin) =1 :
0 otherwise.

It is worthwhile to read this definition with the following geometric
picture in mind. The By iy, ., 206 functions on the k-dimensional lattice
of length = (i.e. consisting of n* points). They are the characteristic functions
of the set {(j1, Jas -~ J1); Jp < ip for all p}. The Fipdge....qp, @re the (extensions

to X of the) evaluation functionals at the points.of the lattice. To illustrate

this definition assume that X containg ¢,. Let f;e X* be extensions of
norm 1, say, of the evaluation funectional of the jth coordinate in ¢,.
Take any »* different elements of these {f;}i2, and arrange them into
a k-dimensional lattice of length n. Then for any subset of -this lattice
there is an element of norm 1 in ¢, and thus in X which is the characteristic
function of this set. Thus a space X which contains ¢, (or, more generally,
in which ¢, ean be finitely represented) admits a local k-structure for
every k (here M can be taken even as 1). The same is easily seen to be
true if ¢, is replaced by 7, (see Proposition 1 below). Another simple fact
which is worthwhile to keep in mind is the following. If X admits a local
k-structure and ¥ admits a local h-structure, then X @ ¥ with any tensorial
norm admits a local (k- h)-structure. (Let Bigyirsir Tty B0L Yo oy
[/ be the elements ensured by the existence of local structures in X
and ¥, respectively. Then @, ; ®Y, ., and fh“_.,,-k®g,]wﬂh can be
used to verify that X @ ¥ admits an (% - k)-structure.) In order to simplity
somewhat the notation we shall introduce a special symbol to denote the

right-hand side of (2.2); we shall denote it by I, (;:1’ v ;;’)
1o oo s Il
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PropOSITION 1. 4 Banach space X admits a local k-structure if and only
if X* admits such a structure.

Proof. Assume that X has a local k-structure and let By i€ X
and f;, . ¢ X" satisfy (2.1) and (2.2). Put of oty = Frmiymigy.n—t, € X
and By 5 = B0 0 gy g, X" where J: X—>X** denotes the canon-
jcal embedding. Then clearly all elements are of norm < M and

L _ M—F1s s B—fr\ _ (s oyt
Fflv--’jk('l}"i1s--wi/g) - F”( * ) = Fn( T

L Jis -eea dn)

Hence X* has a local k-structure. Assume conversely that X* has a local
k-structure. By the first part of the proof the same is true for X**. Using
the w*-density of the unit ball of X in that of X** or, more precisely,
the theorem Day [3] calls Helly’s theorem, it follows that X itself also
admits a local k-structure (the constant M has only to be replaced by
M +¢ for any &> 0). ’

PropostTioN 2. Let X be a Bamach space such that R(X) = X**|X
admits a local k-structure. Then X admits & local (k-+1)-structure.

Proof. There is no loss of generality to assume that X is complemented
in X**. Indeed, it is trivial and well known that X** = X*@X' where
X* is canonically embedded in X** and X' denotes those elements
in X™* which vanish on the canonical embedding of X in X**, i.e. it can
be identified with B(X)*. Hence B(X") is isomorphic to B(X)* and by
Proposition 1 it is enough to prove the present result for X* which is,
ag remarked above, complemented in its second dual.

Let therefore P be a projection from X** onto X and let ¥
= (I —P)X™. By our assumption there is a constant M such that for
any integer n there are elements {y; i . ;3 1< 41,00 ..oy i< n} in ¥
and elements {F ;. ;5 1 <jy,fay--, fp S} in Xt < X** all of norm
< M so that ) ]

Bt = T3 7100
By Helly’s theorem there are elements of norm < M1 in X* which
we denote by {fy s,...515 1< Ju Jas ooy a0} 50 that
Gyy Bgy vors ¥
yiw'z;-~»:11c(ff1ﬂ'zwn1k:1) =T, (jll,jz, s g];:)
Again by Helly’s theorem there are {4, .. 515 L 9,00, o0r G <0}
in X so that
iy, 9g, zk)

Tt Piniiigt) = T (jl, Gas s

Observe that since ¥ = X', we have that F; ; . (%4, .41 =0 for

a,il {Gpfi_; and {5}, (we remind the reader that we assume thab X is

2 — Studia Mathematica LV.2


GUEST


128 W. J. Davig, W. B. Johnson, J. Lindenstrauss

identified with its canonical image in X*). By using again Helly’s the-
orem we find elements {fj s, ..z.25 1< Ja Jes vy fe<<m} in X* of norm
< M -1 which take the same values as those of Fy ., on those finitely
many elements of X** (and for that matter of X) which have already
been singled out. In other words,

By oees B

Yiysigsernit Fivigorripr) = T (il, ...,J'zc)’ Frytgonsitr Bigsgaensipn) = 0

Next we apply Helly’s theorem fo find elements {1, 40,.0vipe} X which
take the same value as Yy s, .5, 00 those elements of X* which we already
singled owt. Continuing in this manner » times we construct for every
p < n elements f; ;. ..5,.p 0 X* and Bt iy AT X all of norm < M1
8o that )

Bys vees i e g
n(;lg ! 'c) it D8y
fi i o (B 4 1) = ATIRETEN)
FETETITIN) %5 (A Sath PURRIRPL) it .
0 i p>s.
In other words, we have
f . (ﬂ’) i o ) e '51: coes By Tl
Fradgsee oI d 41 Y00 o 5T lgp 1 LAV R P /Y

and this concludes the proof.

The converse to Proposition 2 is obviously false. There are even
reflexive spaces X (for which thus X**/X = {0}) which admit a local
E-structure for every k. However, if we take into consideration also spaces
Y which can be finitely represented in X we get a valid converse to Prop-
osition 2. In order to do this we introduce first another definition.

DEFINITION 2. A Banach space X is said to admit & global k-dimensional
strugture it there is a bounded &t {m; 4, 435 1< 4, fay-.0) i < ),
in X and a bounded set {fy s, ..z ¥ < Jusdas.esfp < o0} in X* so that
j:'il,jz,...,jk(mil,iz,..‘,ik) =Ty (’;ii : ;Z .

(The symbol I',( ) is the obvious extension of I',( ) to an infinite
k-dimensional lattice.) Tt is easily seen and well known (cf. e.g. [6]) that
a Banach space X admits a global 1-strueture if and only if it is non-
reflexive. The connection between global k-structure and local k-structure
is clarified in the next proposition.

PROPOSITION 3. A Banach space X admits a local T-structure if and
only if there is a Banach space ¥ with a global k-structure which is finitely
represented in X. :

Proof. The “if” part is obvious. To verify the “ounly if”’ part, let M
be the constant ensured by the assumption that X has a local k-structure.
Choose for every integer = elements {#; ., (n): 1<y, s, ..., < 7}
in X of norm < M for which there exist functionals f]-h,_u,-k(n)eX* 50

icm
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that (2.1) and (2.2) hold. By a diagonal process we find a sequence {1, }5_
of integers so that m =

1

(2.3)

1] 5 oo

t” 2 Pty Tag, gy
Teenslpe Usenerlpy «

exists for every finite sum ' and all choices of rational o; (by &, .
’ i Treeeslzy Ufsenns?
we denote elements which form an algebraic basis for an abstract lilneaif

space Y,). It is clear that the limit in (2.3) exists automatically also for

arbitrary rea.,l o’s and that ||| ||| defines a seminorm on ¥,. The existence
of the functionals fjl,jg,m,jk(n) in X* implies also easily that the equation
. ",_ . o ’l:,...,ik . . . .

fn,ﬂz,nuik(““wz,---,fk) =TI J'i' o defines for every jj, ..., j, (a unique)

functional of norm < M on (¥, ||| |]]). From this we get also that [} |||
is actually & norm (not only a seminorm) on ¥,. The completion ¥ of Y,
is a space having a global k-structure which is finitely represented in X.

PROPOSITION 4, Let X be a Banach space admitting o global k-structure
(k> 1). Then B(X) = X*™|X admits a global (k —1)-structure.

Proqf. Leb {z; ¢, 4} = X and {finig.ip} € X* De the sets ensured
by the existence of the global k-structure in X. Since, as easily verified
R(Y) is isomorphic to a subspace of R(Z) whenever Y is isorhorphic t(;
a subspace of Z, there is no loss of generality to assume that the @0 2}
span all of X. Tt follows from this assumption that for every fixed j: , ;2, k
vevy Jp—1 the sequence {finigiyopnin=y tends w* to 0. Let now, for each

Dy eney ooy, Bor be a limit point in the w*-topology of X** of

Toeipmy TV the
sequence {m'ipiz,-nﬂ‘k—w}wl' Then, clearly, :
o - ) Y = Ay eers B
m‘ll:u.,'bk_l(f:‘lldg.v..qjk_‘]_:]k) - I’w (]'1, ey jk«l).
For every ji, ..., jp let Fy ;. ¢ X be a w*limit point (i.e. in the
T o 1 ok
weak topology determined by X**) of { Fivuigsernippndnma - Then TN D

Kok R (TR YA
and F; o =TI, (j1: B

1:---:%—1) vees S
of a global (k—1)-structure in X**/X. .

Summing up the contents of Propositions 1-6 we get:
: TunorEM 1. Let X be a Banach space, and k > 1 an integer. The fol-
lowing three assertions arve equivalent.

(1) X admits a local k-structure,

(i) X* admits a local k-structure,

_ (iii) There is o Banach space Y finitely represented in X such that

R(Y) o {0}.

Proof. If R¥(Y) # {0}, then R**(Y) is non-reflexive and thus
admits (even a global) 1-structure. By Proposition 2, ¥ admits a local -

e and this proves the existence
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k-structure. The same will be true for X if ¥ is finitely represented in X,
If, conversely, we assume (i) (or (i) which is equivalent to (i) by Proposi-
tion 1), then by Proposition 3 there is ¥ which has a global k-structure
which is f]mtely represented in X. By l’roposmlon 4, this Y gatisfies
Rlc 7& {0}
The relation between local k-structure and the ll‘ problem is exhibited
in the next theorem. )
TumorEM 2. Let X admit .o local k-structure. Thenm for every &> 0
there is a subspace B of X with d(B, ™) < &. Move generally, for every integer
n and every s > 0 there are n vectors {w,}i, tn X all of norm 1 so that

(24’) Holml + 02”2 + e onmnll 2 9 8

for every choice of signs {0}, in which there are at most k chamges (i.e. each
6; is either 41 or —1 and 0,0, = —1 for at most I indices i).

It is clear that for m = k+1 the second statement of Theorem 2
reduces to the first one. For n = 2, & = 1, Theorem 2 is exactly the main
result of [6]. James ([6], [7]) and others proved and used this result
in the case k = 1 and # arbitrary. The proof we give here is the natural
generalization of James’ argument to the k-dimensional setting. Since
the notation becomes quite involved for large » and %, we present the
proof in detail only for n = 3, & = 2. At the end we indicate briefly what
has to be done for arbitrary » and %.

Proof. By Proposition 3, we may assume without loss of generality
that X has a global 2-structure determined by elements {m[ by 1Sy,
1< coin X and {fy 5}, L <jy, fa < oo in X* Let M be an upper bound
for the norm. of all these elements. .

Let m=1, <P <P5<c. < Doy W <M< Ty< ... < My, DO
integers and put
2.8)  8(m, (1), (®) = {we X; fi (@) = (—1)", for

‘ Don1 < 01 < Py, a0A 7y < €y < gy 1K By LS m)
Let also
(2.6) E(m, (p), (m)) =int{|zl; oe8(m, (p:), (=)}
and
27 E(m)=lm lim ... km Lm .. Im K(m, (5), (%)

D1-+00 Po—+00 Doy ro0 my—+00 Tgy->00

The fact that the iterated limits exist is easy to verify. Observe that if

T By g T oy gy
then wy,; is (regarded as a furction on the two-dimensional “lattice’
fiyiy) the .characteristic function of the rectamgle py_; < 4y < Par

W, ==

Doy ™ Pogp_ 1,
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Tgpq < 772 < my. Hence the vector f f‘ 1)"*ap, ; is & member of the seb
8(m, (p), (m;). It follows that e;:n; K (m) is finite, more precisely,
(2.8) KE(m)< 4m2M, m =1,2,... ‘
Turther it follows from the definition that for every ‘m,

M < K(m) < K (m+1).
It follows from this and (2.8) that
(2.9)  lim K (m)[E(m—1) = 1.

(==

Let &> 0 be given. By (2.9) we can find an integer m and a 6> 0
80 that
(2.10) (E (m—1) = 8)/(E (m) + 0) > L —}e.

By the definition of K (m) and XK (m—1) there are sequences (p,),
(rs)y (8a)y (me); (0), (o) all of length 2m so that

Pr<Ti < <Pe<Pa< 7Ty <73 <8 <8< Py<.vn < 8y,
Ty <00 <y < Wy <0< P30y << 03 < 0y < oot < Oy
and satisfying
K'(m, (24), (”t))
(2.11) K(m, (r;), (g,-)) < K(m)+9d
K (m, (3, ()
and
(2.12) )
K(m——l (13 P2y S35 Py ++ 3 Sam—3y Pom—2)y (01, Tay Ogy .0y ”zm-z))
IC('m,-—— (Pss 7oy D5y Tas -+ -5 Pame1y Tam—z)s (015 Tay Oay ovvy Tams))
K(m 1 (Tay 82y 53 Say oy Tamets Sam—s)y (01, Tay Ogy -y W2m—z))
( 1, (75, $2, 75, 34: cooy Pame1y Samea)y (Wsy 02y Ty Qay +ovs sz—z))
> K(m—1)—46.

Ohoose now 4, v, and w to be vectors of noxm < K (m)+ din 8(m, (p,), (),
8(m, (1), (0,)) and 8(m, (s;), (i)}, respectively. With these choices of w,
v and w we have

'%(@""'0'4'”’)‘5 S(/m'"l (85y ++vy Dom—z)y (O1y -1y 7'72m—z))7
H—uto+w)e S(m—1, (Pg, ..., Typ_s); (G1y -y Mam—s)),
H—u—v+w)e S(m‘"l (T35 -ves szsz)y (O3 v ey ”m—z)):

Fu—v+w)e S(m"‘l (Tgy +v s Sap—n)y (ay oo vy sz—z))-
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Tt follows from (2.12) and (2.13) that for every choice of signs | oo 4wl
> 3(E (m—1)~5). Thus in view of (2.10) we get that if o = u/|ju|,
y = v/l and z = w(lpwl, then |wty 42| > 3 —¢ for every choice of signs
and this concludes the proof of the theorem (for k& = 2 and n = 3).

In order to prove the theorem for k& = 2 and % > 3 we work instead
of with three sets of the form 8 (m, (p,), () with n such sets. The require-
ment (2.10) on m must be replaced by (I (m—n+4-2)—8)/(K (m)+ 9)
> 1—e¢/n and also (2.12) has to be generalized in a suitable form. The
procedure is the same as the extension of the theorem in the case & = 1 to
n>2 (see [6] for n =3 and [7] for general n). In order to prove the
theorem for & > 2 we again repeat the same procedure but in the k-dimen-
sional setting.

We state now the simplest case in which our results give new infor-
mation. .

COROLLARY 1. Assume that X is a Banach space with X™ | X non-refleaive.
Then X contains arbitrarily close copies of 1.

Proof. Use Theorems 1 and 2.

CorROLLARY 2. A Banach space X admits a local k-structure for every
L if and only if 1, is fimitely represented in X.

Proof. For the “if” part use the remark following Definition 1.
For the “only if” part use Theorem 2.

The example of James [9] of a non-reflexive space which does not
contain arbitrarily close copies of I} is in view of Corollary 1 an example
of a space admitting a local 1-structure but not a local 2-structure.

As for a possible converse to Theorem 2, for & = 1 the converse of
the second staternent of Theorem 2 (i.e. for # > 1 arbitrary) is trivially
valid. This is no longer the case if & > 1. Indeed, let X be a s pAce haiving
a global L-structure with {2,}%, < X all of norm 1 and { fi¥52 € X* bounded
(this is the case in every non-reflexive space ) Introduce in X an equiv-

- alent norm [} ||| by putting

]l = sup (=]l sup (@) - 2y, (@ +2f¢1 2)|).

] \ ’l\ d
Then |llzl] =1 for all i and for all j, < j, < j; we hewe
s+ ot o Ay =g~y gy — oy by Ay lll = js

(apply f1~9j31+1+9j§z+1 %o this vector). In (X, ||| |]|) the conduhlon of
Theorem 2 for k = 2 holds for every n > 2 and even with & = 0. However,
James’ example shows that X may fail to have a local 2-structure. We
do not know however whether the validity of the conclusion of Theorem 2

for X in every equivalent norm already 1mphe,s that X admits a local
k-structure.
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3. Methods of enlarging R*(X). In this section we present two methods
which enable under certain conditions the enlargement of R* (X) without
“enlarging” the local structure. Before we do this, we would like to recall
two simple observations which were used already in the previous section
and will be used repeatedly below.

(i) For every Banach space X, R(X)* is isomorphic to B(X*).

(i) If ¥ is isomorphic to a subspace of X, then R(Y) is isomorphic
10 a subspace of R(X).

(To wverify (ii), let X': ¥--X Dbe an isomorphizm into. Then T**
T*--X* bxtends T and induces in an obvious way an operator 1':
Y)Y X" X which is, as easily verified, also an isomorphism into.)

The first method we present for enlarging R*(X) is that of taking
transfinite duals, which were already defined in the introduction.

PROPOSITION 5.}1!’07* cvery Bamach space X and every integer k

dim RF (X)) > 2 dim R*(X).

Proof. The only case which requires a proof is of course that in
which the dimension of RF(X) is finite and positive. In that case the di-
mension of R¥(X) can be characterized by the existence of “triangular”
k-dimensional structures in X which is a notion between the loeal and
global k-dimensional structures studied in Section 2. The characteri-
zation is as follows. The dimension of R¥(X) is >« if and only if there
are at least n independent triangular %-dimensional structures in X, i.e.

vectors {ag] ;. mr%f in Xwhere l <, <t <. Ky <ocandm =1,...,n
and vectors {jj1 fanonty 10 X* where 1<]1 Jo< .. Kjp< ccand | =

1,...,n so that these vectors form bounded sets 'md

1 i4,<ipl<p<k, and I =m,

B g i) =1 g
The proof of thig fact is very similar to the arguments presented in Sec-
tion 2. More precisely, the proof of the “only if” part resembles that of
Proposition 2. In that proof we stopped the construction at the nth step.
Thix was of course not necessary. What was important in the proof of
Proposition 2 was the fact that at each step of the construction we had
to congider only @ finite number of vectors constructed in the previous
stages., Thiy ix the case in the triangular structure because given any
integer j there ave only tinitely many f; ., for which j; = j. The proof
of the ‘““if” part is similar to that of Proposition 3. We omit the details
of the verification of this eriterion.- '

Using this criterion we proceed to the proof of the proposition and
for simplicity of notation we assume that % = 2. Put » = dimR*(X),
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By the above-mentioned criterion, there are bounded sets {8 ssh1iyigonr
m=1,...,n, in X and bounded sets {ff jlicicig<ws M =1,...,m
which. satisfy (3.1). ]

We consider the elements of X also as elements of X for every
integer r (without changing their notation) and elements of X* as elements
in X0¢) for every integer s. More precisely, if Jp: ¥—Y"" denotes
the canonical embedding we consider the following chains of isometries

Ix Txee Txl4)
x5 e 2y X0y,

Jxw Joxreen
L e L X

Thus e.g. an element x¢X is identified with the element Jxwe ywd y®
of X and similarly, an element e X® ig identified with JxmJxen
in X9. With these identifications the bilinear form (u, v) with we X
for some r and ve X! for some s is well defined (in particular, independent
from the choice of 7 and s). _

With these identifications in mind we choose for every 1 <4, r < o
and 1< m < n an element §7%e X which is a limit point in the weak
topology determined by X~V of the sequence {z}’}%.;. Similarly, we
choose for 1< j, s < oo and 1 <I<<n an element g, X which is
a limit point of the sequence {f},}x; in the weak topology determined
by X,

By passing to the appropriate limits in (3.1) we geb
(3.2) (@i Ghs) =0 all iy, ig, §,8,m, 1.

ipin?

. 1 if jy,<iand m =1
(33) W fhs) = s ’
0 otherwige.

By passing in (3.2) to the limit (with respect to 4,) we get
(3.4) Wl ) =0 alld,j,m,lifr>s.
Similarly, we get qfrom (3.3) for s =7

' 1 if j<iand m=1
(3.5) (W2 ghs) = = ’
0 otherwise.

Put now 2, = yi" —971; then by (3.3)

(3.6) (o fls) =0 all 4,7,55,4,, m, 1,
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and by (3.4), and (3.5)

w1 1 i §<4, s<r and m =1,
S (&l Gia) 0  otherwise.

The relations (3.1), (3.2), (3.6) and (3.7) show that in X we have at
least 2n independent triangular structures, i.e. {#] ;} and {sf’,} with the
corresponding functionals being {fflpiz} and {g},s}. (Actually the {z
form a full rectangular structure or global 2-structure in the sense of
Definition 2 since we (o not have to require that ¢ < #, but this does not
matter of course.) This concludes the proof of the proposition.

Remark. For a finite integer n we have that R*(X™) is isomorphic
to (R*(X))™. Proposition 5 shows that this is no longer the case if we
replace # by an infinite ordinal a. ]

The objects R*(X®) are obviously very complicated even for relati-
vely simple spaces X (unless X is reflexive). In general, they cannot be
deseribed explicitly. It is worthwhile, however, to consider at least one
example which is relatively simple and which illustrates Proposition 5.
Let J be the classical example of James [5] of a quasi-reflexive space.
The space J consists of all the sequences & = (&, &y, ...) of reals such
that )

k3
(3.8) Il = sup | 3 (0, =@y, )+ (@, — 0] < o0,
=1
where the sup is taken over all p; << P, < ... < Ppyay and for which in
addition Lim #, = 0. James showed in [B] that J** can be identified with

-+
the space of all the sequences » = (,) for which (3.8) holds. Since (3.8) easily
implies that @, = lims, exists, J** is obtained by adding the constant se-

n~+00

quence to J. James observed also in [5] that the map T+ J ** > J defined by
T(@yy Bgy - v-) = (— Bogy By~ Bogy Bg— Bgy - +2)
is an isometry onto. Consider now the space ¥ of two-sided sequences
of reals ‘
® = (oo Doy By, Boy Byy By o)

for which (3.8) holds and lim s, = lime_, = 0. Let ¥, be the subspace
of ¥ consisting of all » - Z;i)ﬁ,mali; Y for which a; =0 if ¢ < —n.
It is clear that each Y, ix isometric to J. We identify J with ¥,. The
isometry T defined above can therefore be considered as an isometry T,
from J** onto ¥, for which 7y, is the identity. Similarly, the same T
delines for every & an isometry T from J® onto ¥, such that Ty gee—2)

= T%_;. It follows that J© can be identified with the subspace kU Yy
=0
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of ¥ which is easily seen to be equal to Y itself. In particular, J© iy
isomorphic to J@J and dimR(J*)) = 2. For ordinals ¢ > o we do not
have such a neat representation of J®. It follows however that J?
is isomorphic to JU@J@, ie. to TOIDJIDJ and, in general, that Jew
is jsomorphic to (JB®JID ... D), with 2F terms, for every integer k.
We have not examined J? in detail. (We know that B(J“%) is infinite
dimensional by the preceding remarks but we did not check e.g. whether
RHJY) + {0}.)

We state now formally an immediate consequence of Proposition 5.

TreorEM 3. Let X be a Banach space and k an inteyer so that R*(X)
+£ {0} Then R*(X“Y) is infinite dimensional.

Of course, dimR*(X) = oo also for all a> w? On the other hand,

the example considered above shows that w? cannot be replaced by a smal-
ler ordinal. If X is the space of James [9], then the results of Section 2
show that in spite of the fact that R(X®) grows as « is allowed to grow
this space remains reflexive for every ordinal a. We would like also to
mention here the remark we made already in the introduction, namely
that by the principle of local reflexivity [10], for every Banach space X
and every ordinal ¢, X™ iy finitely represented in X.

We pass now to the second construction which enables the enlarge-
ment of R*(X). We give the details only for & = 1 since heve we can apply
a result of Brunel and Sucheston [1]. For % > 1 we have first to generalize
the result of Brunel and Sucheston to this setting. We shall later on indi-
cate briefly the form this generalization takes for arbitrary k.

THEOREM 4. Let X be o Banach space admittmg a local L-structure.
Then there is a separable Banach space Y which is finitely represented in X
such that Y|V is non-separable.

Proof. Brunel and Sucheston [1] proved that there is a Banach Kpace
Z which is finitely represented in X and which has an ESA (equal signs
additive) normalized basis {)52;. A basis {e;}i2, is said to be an HSA
basis it whenever p, = 0 < p, < ... < P and sgne; = sgna, for p, < i,
JF< Py (r=0,...,m—1) then

@0 |Sac =13(_ 3 afe].

Peal ’l:mjl,,q_ml—l-

Tn general, Z** is “small” and actually dim 27 =1, it Z contains
no copy of ¢, or l;, however starting with such a Z it is easy to construct
the desired space Y. Let ¥, be the linear space of real-valued functions
on the unit interval [0, 1] which is spanned by characteristic functions
of intervals. For every.fe ¥, there is therefore a partition ¢y = 0 < #, < 1,
< ... <t =1 such that f is constant on <o <y, 4 =0,...,%—1
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Put now for such an f
n i

(3.10) 0= 3 frmae).
=1 47y

It we replace the partition {f;}7., by a finer partition {s;}7-, say (i.e. we
add new partition points), then property (3.9) ensures that in (3.10) we get
the same value for ||f]| if we use in it the partition {s;}/%,. Hence |f]| is
a well-defined quantity and it is easily wverified that it defines a morm
on ¥,. The space Y, is finitely represented in Z (and thus in X) since
for every given {f;},.., in ¥, there is a partition {1,}?., of [0, 1] such that
all the f; and thus all their linear combinations are constant on each of
the intervals (%;,%;.,) of the partition. By the definition (3.10) of the
norm in ¥, it follows therefore that span {f;}}..; is isometric to a subspace
of gpan{e}i, in Z.

Let ¥ be the completion of ¥, (normed Dby (3.10)). Clearly, ¥ is a
Banach space which is finitely represented in X and which is separable
(the characteristic functions of intervals with rational end points span
a dense subspace of Y. -

For every te[0,1] the functional ¢,(f) = [f(s)ds is a functional

0

of norm =1 on Y. This follows from (3.10) and the trivial observation
that for normalized ESA basis {6}, the relation m*(ZAie,) =2k

% 2
defines & functional of norm 1. Let now 0 <? < 7<{1 and let g,, denote
the characteristic function of the interval [t, z]. Then, by (3.10), g, .|l
= 7—1%. From the definition of ¢, we get that ¢(g,,) =0 and ¢.(g,.)
= 7—1. Hence |lp;—¢.| = 1 for ¢ # 7 and this proves that ¥* and hence
also Y™ is not separable.

Remark 1. If X is the space constructed by James [9], then by
Theorem 1 the space ¥ constructed in Theorem 4 has the additional
property that Y**/¥ is reflexive. Several other examples of spaces ¥
with ¥ separable and Y**/Y non-separable but reflexive were constructed
recently (see [8], [11] and [2]).

Remark 2. The statement of the generalization of Theorem 4 to
general & is as follows: Tiet X admit a local k-structure. Then there is
a separable space Y finitely represented in X such that RF(Y) is non-
separable. The space Y ix defined as a completion of a space of functions
on the k-dimensional unit cube [0, 1), The first step of the proof is to
generalize the Brunel-Sucheston result to a k-dimensional setting. This
can be done by using essentially the same arguments as in [1]. For & = 2
the result reads as follows: There is a space Z finitely represented in X
and unit vectors {6} <0 N Z satisfying for every choice of scalars
a;,; (with only finitely many s 0) every integer p and every Az 0


GUEST


“138 W. J. Davis, W. B. Johngon, J. Lindenstrauss

[e » ' o0
(3.11) HZ(Z 5305+ Ay 81,5 ) 2‘ ai~1,jﬁf,y)l‘
Fo1 il Pt
=3 St @t D],
J==1 {=1
14D

and 2 similar relation holding if we interchange the roles of ¢ and j.
The space Y (for k& = 2) is constructed as a completion of the space
¥, consisting of those functions f on [0, 1T such that for some 0 =3 3, < 1,
<.ty =1 and 0 =8, < 8 < ... <8, =1 the function f is constant
on (t;, t;.1) X(8, 8;41) for each ¢ and j. The norm of f iy now defined by

nom ¢ &
(3.12) Il = H‘szt fi f’f(s,ﬂd“'d"'@f,fu-
t=1f=1 by 85—y

Ag in the case k =1 the relation (3.11) shows that [|fl| is well defined
by (8.12),1.e. does not change by passing to a finer partition. The generali-
zations to % > 2 should now be obvious. Let us only remark that the
proof that R*(Y) iy non-separable is done by induction on k.

Remark 3. Brunel and Sucheston [1] were led to the notion of the
ESA basis and all the questions related to the I problem by considering
ergodic properties of isometries. The notion of k-structure (local or global)
will arise in their approach if we study instead of only one isometry a com-
muting family of % isometries. In view of Jamnes’ example [9] and the results
of this paper it seems that the gap between J convexity and B convexity
in the terminology of [1] can be filled from the ergodic point of view only
by taking mto consideration such families of commuting isometries.

Remark 4. There is a realization of R*(X) which may be of use in
studying its properties. The natural embeddings of X®? into X
are JE2, JYY, JESO L T yeu-n. BF(X) is simply X2 /[JEe-2 g2
vovy  xin—2) XEF,
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