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A note on approximation of the identity
by

FELIPE ZO (Minneapolis, Minn.)

Abstract, Let K eI In L[0,1] be a non- -decreasing function on [0,1] and
K. 1, (@ x)| = Ay K (Apw), then itis proved the existence of the pointwise limit of K Ay ()
wheu {4n} 18 o lacunary sequence and fe me For non-lacunary sequences it is shown
that there exists fe L' such that K, +f(x) diverges a.e. whenever K is unbounded
outside the origin. Results of similar na,ture are also discussed for fe L?, 1 < p < oo.

0. Tntroduction. In the present note we consider the pointwise con-
vergence of an approximation of the identity, a problem which is usually
stated as follows: consider an integrable function K on R; let f be an
L? funetion, 1 < p < o0, K;(v) = AME (1), and let K,(f)(x) be the con-
volution of K, with f at the point »; then the problem coneelnmg us will
be: Does the Wm K, (f) () emist almost everywhere when 1 tends to infinity 2

‘While the ex1stenoe of the limit of X,(f) in norm p,1<p < oo,
is an eagsily obtainable fact, the mere assumption that K be an L* function
is by no means enough to obtain almost everywhere convergence. It is
known that if K is majorized by a radial I function the pointwise limit
exists a.e. for any fe L?, 1 < p < oo. A nice treatment can be found in [1].

Using a decomposition lemma for an L! function, we shall establish
inequalities for the “maximal operator’ sup [K,(f)(»)|, which will imply

i>0

pointwise convergence under conditions for K slightly more general than
those stated. The goodness of the method is more appreciable when we
see that, using it, we can rescue convergence where K has singularities,
outside the origin, K in the class LIn* L at its singularities, and a lacunary
sequence {1,} is used ingtead of the continuous parameter 1. Non-lacunary
sequences will be enough to obtain divergence almost evergwhere on L2,
when the function K is unbounded outside the origin regardless of its
type of singularity. We also consider divergence almost everywhere
on L? forl < p < oo.

‘We would like to thank Professor N. Riviere, who posed us the prob-
lem with illuminated suggestions. We also acknowledge with gratitude
Professor 0. Calderén for the useful conversations on the problems of
this note.
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1. We shall present a theorem which is a useful tool in the study
of pointwise convergence for a family of convolution operators. Its proof
vests principally on the following lemma due to Calderén and Zygmund.
TmmnA L. Let f be a non-negative integrable function on R™, and let ¢
be & number greater than zero. Then there ewist sets G and B on R such that
" (i) GUB = R™, GnB = 0,
(ii) for almost every we @, f(w) <4,
(iii) B is the wnion of cubes Q;, whose inleriors are disjoint, and for
each cube €; we have
1

(1.1) b= ff(m)(lm < b,

e )

where ¢ s w constant depending only on the dimension, |Q| denoles the Lebesgue
measure of €.

For a proof of this lemma see for example [1].

TuroreM 1. Let {K o be o family of measurable functions on R
which verifies the two following conditions:

(j) The integrals [|K, (@) dw are uniformly bounded in .

(). If ¢(x,y) denotes the empression »‘vﬂl:]l) K () — K (@)], then

[ (@, y)dw is uniformly bounded in y for some constant 0 <g< 1.

aiel>y’
Then the operator

Jw) = sup [ B, | (@)
verifies .
(h) For all f belonging to L'(R™) we have

<ot [ 1f (@)l da,

¢, depends on the comstants arising from (j), (jj) and on the dimension.

(hh) For all f belonging to L2 (R™), 1 < p < oo, [ifll, < 6,1, holds,
¢, depends on (), (3j), » and the dimension.

Ag a reference for the future an operator f will be called weak-type
(1,1) if (h) holds for some constant ¢,, and strong-type (p, p) if for all
p-integrable functions f, | fllp < ¢|fll, where the constant ¢ it independent;
of f.

Proof of Theorem 1. Taking in account (j), we see that fis strong-
type (oo,00). If we know in addition that fis weak-type (1, 1), from the
Mamcmkmwwz interpolation theorem we obtain that our operator. is
strong-type (p, p) for any p, 1 < p < oo. For a proof of the Marcinkiewicz
theorem see [2]. Therefore we focus our m‘rentmn on proving that Fis

[{z, f(m) > #}|

icm
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weak-type (1,1). Consider fan integrable function and ¢ > 0, fixed. Now
we apply Lemma 1 to [f], ¢ and set

g =fXa+2%‘Xoa
7

where ; is the average of f over the cube @;. Let & be the function such
that b+g = f. From (1.1) and (j), there exists a constant x depending
on the dimension and the family {K,} such that ||§ll, < ut. Since f < 7+,
we have

(1.2) {oe R™, f(z) > 2ut}] < {we R™, B(a) > ut}].

Let us denote by @ 5the cube @, expanded by a fixed quantity, depending
on the dimension and g, in such a way that if #¢Q; and yeQ;, then
|z —y;1¢ = |y —y;| where y; is the center of the cube @;. Call B” the union
of the @7 and the complement in R of B”, G". Our election of ¢; and
(1.1) allow us to write |B™| < st |Ifl, 4y depending on g and the dimen-
sion. Hence

(1.3)  loe RY, B(a) > )] < w0 |fl+ e @, B(a) > ut}l.

In order to conclude the estimate for the last term in (1.3) we observe
that the integral of bX,, is zero for every j. Therefore for. any K,

2 ffKﬂ & —9y)—
k)
y) = swﬁp [Kp(w—y)—

< feﬂ; (2, 9)1b(y)l dy .

J

(1.4) Iyxb(w (e—y)}tb(y)dy.

Writing ¢; (%, Ky(2—1y;)l, it follows from (1.4)

(1.5) B(w)<

Integrating (1.5) over G~, we have

JP@das 3 [i( [ oo, vda)ay
7 24Q
'44, f}b(?/)l (@, ) dw) dy < pg Z f|b(y Iy
Y =y @y ujl 7

Here u, is the constant arising from (jj). The fact [blly < 2[ifll, gives

> ut} < o™ [ |f (@) do.

Collecting (1.2), (1.3) and (1.6), we obtain (h) and the theorem follows.
As an easy consequence of Theorem 1 we have the next theorem about
approximations of the identity.

(1.6) {we G, B(x)
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We shall denote by I a function on R such that:
() L is a positive integrable function.
(1) For any e R™ — {0} there exists the gradient of L and moreover
VL (@) < O o]~
Given a function K, write K,(2) = A K (w) and K,(f) = K*f.
TuEOREM 2. Let L be under the conditions (1), (1) and K be a measur able

function such that |K(2)|< L{w) for a.e. x. Then the operator f(w
sup K, (f)(»)| is weak-type (1, 1), strong-type (p, p), 1 < p = oo, Mmeom
A>0

(1.7) 111111(1(] (@) f.TC y)dy  a.e.
for any fe IP, 1< p<< o0
Proof. First observe that

fle) < sup [Lyl [fl(w) = T}IO)I’A #f ()

if our function f is non-negative, but it is clear that it is enough to consider
~only this case. Hence the statements for the operator ffollow if (jj) holds
for the family {L,};.,; indeed, we have:

- Y
(1.8) f p(o,y)de = fqa(m, l'ljl) dx.

lzi=21y]| . ] =2

By the mean value theorem and (I1),

Y\ °
L(A (m —m)) L(zm)tg TR

Using (1.8) and (1.9), we have

(1.9) PR

sup f (@, y)ds < oo..
Va2 .
In order to obtain (1.7) observe first that it is true for any function

fe Co(RM), i.e. for f continuous with compact suppoﬂ; Now define a.e.
the following operator

fla) = T |f(0) [ K (y)dy — I:(1) (@)

It will be enough to prove that f(w = 0 ane. Take a sequence {f,} in 0,(R™)
sueh that [If —f,ll,—~0, have 1 < p < . Since

@) < 0lfi(@) + (), F@) = F—fu(a),

©

: &
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we have
(1.10) {m, f(@) > 1 < Cpt™[ |f — f, P do.

Then (1.10) and the fact that f, tends in norm to f establishes for all
>0

o, fl®)> 8 =0, ie f(z) =0 ae.

Hence (1.7) for any fe L can be obtained by reducing this to the case
already done. In fact, take any natural number ¥, and write f, = FX m<nys
fo =f—fi. We know that im K, (f;) () exists a.e., besides

A-s00

K@ <Ifle [ 1E()ldy
[WI=N2
if |o] < N/2, that is, K,(f,)(#)—0 as A->co. This completes the theorem.
The condition given in [1] to obtain the pointwise convergence is
the following:

(1.11) [ (@)t < U([2]),

where [r~'[(r)dr is finite and I(r) non-increasing. But if we are under
0

condition (1.11) for I it is easy to construct I which satisfies (1) and (1)
and still | K (z)| < L(2). A natural process that allow us to smooth I(|z|)
as much as we need outside the origin is the following

2J|rl 1z}
Lia) = or - [ 1oy,
I
then we have

o) < I ()<9M—11('Zl) and  |VL(2)] < for » #0, a.e.

¢

< e
The next goal will be to use Theorem 1 to obtam pointwise convergence
for an approximation of the identity where we translate our majorant
function L of Theorem 2. We shall restrict our attention to the one-dimen-
sional case, this will gimplify the computations. A sequence {4,} is called
a lacunary sequence if there exists a number ¢, 0 < ¢ < 1, such that for
any % we have 0 < 1, < ql,wrl If for a function f deflned on a measurable
set B < R we have that

[ifin[max(1, (f)]ds = [ |f/In*|f|ds
Vil B

is finite, we say that f belongs o the class LIn* L(B).
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TurorEM 3. Let L be a positive non-decreasing function with suppors
in [0, 1] belonging to L In™L{0, 1], let {1,} be a lacunary sequence, and let
K be a measurable function such that |K (x)| < L(m); then the operaior f(x)
= sup [, «fl(®) is weak-type (1,1). Moreover, for any function f locally

n
integrable on R we have

1
(1.12) lim I, xf (%) = (@) [ K (y)dy we.
[

P00

Proof. We see first that f is weale-type (1, 1). It is enough to verity
condition (jj) in Theorem 1 for the family {2, L(4,®)}. Let ¢ be the nunber
attached to the lacunary sequence {4,}; choose any integer s wuch that

q+2¢° < 1. Without loss of generality we may assume that L(s) = 0 if
0 < #< g-+¢°. For the remaining part of I we apply Theorem 2. Call, ay
before,

@@, ) = sup i) L4, (@ —y)) — L(%,»)

and observe that

1
sup f (@, y)de < GfL(m)dw.
) 0

Vo<V glai >y

So it suffices to consider the case 0 <y < ¢*. Negative y’sx have
analogous calculation. Let us consider ye A5}, 4;%] and let us split the
integral f (p , y)de as follows

-1 1 -1
k—ﬁsﬂf+1"”’ P T

wm ST ALY
=0 ,~1 -1 -1 i
= rn Aty W

We assume that A, = L. Denote the integrals in (1.13) by I, J;, 4, B,
respectively. It is not hard to see that 4 -+B<(C f L(x)de, where the

constant € depend% only on ¢g. While for the I’s we hzwe the estimate

lj‘:,_ll—{~z/ lf_,‘llw
b [ Lhpal@—y)de+d, [ L(yo)de

i 5

l ‘

1Y Ay EERY

< Ll—w)dw+ [ L(1—n)de< 2 [ L-a)de
0 [ 0

©
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It is on oJ; where the fact that we have & difference is used

At
J
5< [ BiLye) —L (ke —y)} do
Wity
Ay af—7
_ <[ Li-ode< [ LO-0)de
0 0
But
Jo— S.ql—]
E [ La-e)d 1+f1, 2)In" L () du).
=0 0

This concludes the proof that f is weak-type (1, 1). Since the existence of
the limit (1. 12) is a local problem, it suffices to consider f in Ll(R and
the proof follows the lines of that Theorem 2.

We shall see that the character of lacunaricity for the sequence {4,}
is an essential condition in order to assume existence of the Limit (1.7)
it we allow for the function K singularities outside the origin. We
write B4z = {y-+o, ye B} '

LeMMA 2. Let {E,} be a sequence of measurable sets in [0, ;] such that

DB, | = oo; then there ewists a sequence {x,} in [0,1] and an interval
n
A < [0, 1] such that for almost cvery we A there are iquim’te many B, -+,

which contain .

For a proof of this lemma with a slightly different statement see
[2], p. 116, vol. IL.

TurOREM 4.. Let L be a non-decreasing positive unbounded function
on [0, 1], let {2,} be a sequence increasing to infinite but non-lacunary, then
there exists o function f in L*(R) for which

(1.14) limsup Ly (f{@) = +oc0  a.e. veR.
n—oo
Proot. Call L(z) = sup A,L(A,x), where i, =4, and set
nz0

At =1o<e<i, L=,
o conrputation shows that

o

1
A.JZ

n=0

Alt) =

2
{ " Lw<l, AﬂL(w)zt}l.

j'1144-1

Taking in account the nature of our problem, (1.14), and the non-lacunari-
city of the sequence {1,} we can assume that lim4,1;}; = 1. Hence there
. N0
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exists a sequence {8,} increasing to 1 in such a way that L(») = n for
8, < » < 1 and asequence of integers {ny(n)} for which we have 1,, = 4,,,,s,
where m 2 my(n). Let us seb 1, = nl,y,; then

(1.15) b A(6,) = .
Therefore it is possible to find a sequence {f,} of positive funetions in

I'[0, 1] whose integrals are 1, a sequence {¢,} tending to infinity and a se-
quence {s,} such that

(1.16) HoSa< 4™ (@) > s} = 0,877
Indeed, if the construction of (1.16) were not possible we would have for
the sequence f, = nXy,y;, for example, that the following inequality
is true

o< o< 4™ fule) > < oft

for some constant ¢. This implies, after a limit process, thait

sup tA(t) < oo

>0
which is in contradiction with (1.15). That is, (1.16)is true. Now, choosing
a subsequence, with repetitions if it were necessary, we can assume for
the elements in (1.16) the additional property

Z‘cns171=°°7 28;l<°°' .
We apply Lemma 1 to the sets in (1.16) and we find a sequence {u,} in
[0,1] with the properties established there for an interval 4 < [0 , 11
Consider the sequence m,, tending to infinity but such that S myspt < oo
and define the funetion

f(m) = Zmnsﬁlj;z(w_“wn);
f is an integrable function and f(#) = +co a.e. ze 4. Hence we have
limsupL; (f)(#) = +o0 ae zcd
n—-ro0
and now (1.14) follows easily.

2. After Theorems 3 and 4 it is reasonable to ask ourselves whether
or not there is divergence a.e. for fe L”[R] where p > 1. Naturally, the
answer will depend on how strong is the singularity of the approximating
kernel K, outside the origin. We shall see that it is possible to have an
I* kernel K for which, given 7, 1< p < oo, there always exists a function
fe I? such that

limsup K # f(@) = +o0 a.e.

A-rc0

©
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" Also there are kernels whose singularity is so weak that only for p =1

we can select a funetion in I' with the above property, while for the
remaining p, 1 < p < oo, we obtain pointwise convergence a.e.

For the next theorem, {1,} will denote any sequence tending to
infinity such that the quotients @, = 4,,,4;" are non-increasing, and
for some w>1 we have 1 <@, <1-4el;”, or any sequence for which
we can find a subsequence with those properties. If we call ,, the minimum
i such that the following is true

(2.1) A<y Qg S TH+202500,
. then it follows for our type of sequences that

(2.2) If 23 = Ay, then (2.1) holds for 2;,

(2.3) Ay, < Oy

We also use the following notation. If L is a function in Z'[0, 1] and p
is the number, 1 < p < oo, given by

sup{g>1; Le L7[0, 1]},
we denote by p;, the conjugate of p, ie. pr'4+p™ =1 for 1 < p < oo,
pL=lif_p:OOELIId]JL=OOifp=1. .

TuBOREM 5. Let L be a positive function, non-decreasing, in L1[0, 1] but
unbounded. Then _ ‘
(k) If 1< g < py there exists fe LL[R] such that

(2.4) limsulen(f) (#) = o0 a.e.
if pr, =1, (2.4) holds with ¢ = 1.
(k) If py, < ¢ < oo for all fe I7[R],

1
(2.5) lim L,(f)(2) = f(a) [ L(@)dw ae.;
2—00 g
if py, = + o0, (2.5) holds with g = + oo.
Proof of (k). We write
Ly (@) = 2, L(3®),  fal®) = 457 Xy (A0 a),
min (1, 2,,2)

(2.6) L, (fu) (@) = Lysfn(e) = 24 [ L(y)dy,

max (0, 22— 1)

f;z(m) = q‘i;pI’n(fm) (w) .
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Our first aim is to prove
1
Tn(@) > 2" [ L)X o (0);

~1
l—lm

—
S
-1

iy a8 in (2.1).
A wtl,
Congider 4, <4 and Ay, < Ant'; we have

1

Rz s [ Dway ¥
Y

gl

Using (2.1) and (2.2), we have

1 1
me [ pwasae [ b

1 PP A S
A4 1(”‘”7&‘_1) 7—“(7{ - lw-H)
m m

and elearly,
1
Fu(@) 2 2 [ L(y) dyXpg sm1-ay ().
0

Let us write

I, = [0, Z;—IL T, = fn ”Jl'yn”th:

= A fL LA

1-11

: 1

Gm == Olm( f L(f’/)dy)q7
1-12 g

where .C is a constant.
We translate (2.7) as follows:

(2.8) Supphi, © Iy € {0 S @ < 15 (@) 2 8} -

By (2.3) we have
] = 85O
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Observe that if 1< ¢ < p;, then .sup O, = oo. Indeed, i this were
not true, we would have

. 1
1
e, (1* T) <Ml f L)y < ¢;
" 1-51
therefore, for other constant g,
LYY < 1 p <z 1
L) <o gy 0<o<l.

Then, if we choose P < a< g, we would have Le L*[0, 1], which contra-
dicts our definition of p. Hence, taking a subsequence with repetitions,
if it were necessary, we can assume

(2.9) D Mal =00, N'8i0< oo;
finally, take a sequence R, tending to infinity, but
(2.10) o Y RLS< oo
Let us set

F(@) = Y Ryt (2 —1,,),

where {z,} is a sequence chosen in such a way that max(I,-+a,,)
=min(T,;+®,,;). The fact that [h,l, =1, (2.8) and (2.10) imply
fe LL[R]. Moreover, the function f has the property that given A> 0
we can gSelect ;> 0 such that

(2.11) (7, +00) < {w; (@) = 4.

(2.11) follows from: f(w) > R, 87 h(z—,) for all m, (2.8), (2.9), the
fact that {I,+w,} are non-overlaping and limR, = co.
Now the function

Flz) = Z n 72 (@ 7,)

belongs to L% [R] but F(z) = + o0 if 2> 0.

The second result, (kk), is contained in the next lemma.

Lovma 3. Let K « L?(R™), K of bounded support. Suppose fe L(RM)
where p' < g << oo, p’ the conjugate of p. Then

(2.12) Lim I+ f (@) = f(a) [ K (z)do a.e.
o0 | .

Moreover, if ¢ = oo, nothing but the integrability of K is mecessary.
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Proof. We assume that the unitary ball is the support of K; then

(2.13) (@< [ 1K@)ife—-2"y)ldy
lyl<i
<WEl( [ 1fw-2yray)”,
<1
where p' <g¢< o, 1/¢'+1/g = 1.

It jq denotes the Hardy-Littlewood maximal function of [f|Y, we can

rewrite (2.13) as
(2.14) Fla) < O(fy(a)™.

Now the fact that f, i.e., the Hardy-Littlewood maximal operator of f, is

weak-type (L, 1) (see [2] ) implies (2.12). It ¢ = oo, we split K as follows:’

vE = KXoy, YE = K —yK. Then

Eywf(@) (o) [ K(@)do = [ wE () {f(o—2""y) ~f(@)}dy +
+ [YE @) {fle—1"y)—fla)}dy = yIa(o) +VTa(0).
Tt is not difficult to establish the following two inequalities:
(2.15) I, (@) < (I flloo + [ 1K ()| da,
|z)52.N
(216)  IyL@) < (f@i+ 1) [ IyE@)lde+
{o: | K ()| = 1)
+12 [ Ifle—y)—f()ldy.

w<i—iN

Now, considering Tm lim lim on (2.15) and (2.16), we have

N-»00 T'—>00 >0

lim |K+f () — f(2) [K (2)da] = 0 a.e.
J—0a
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The I} problem and degrees of mnon-reflexivity
by

W. J. DAVIS, W. B. JOHNSON* and J. LINDENSTRATUSS
(Columbus, Ohio)

1. Introduction. The material presented in this paper originated
from an attempt to solve the “If problem? first raised by R. C. James [6].
Let X be a non-reflexive Banach space. Is it true that for every &> 0
and integer » there is a subspace B of X such that d(B,I7) < 1-+¢?

Before continuing let us recall the definition of the notions appearing
in the statement of this problem and some closely related notions.

‘We consider here Banach spaces over the reals and If denotes the n-di-
mensional L; space, i.e. the space of n-tuples # = (#,, 4,,...,®,) of

reals with
n
ol = D lal.
1=1

By I, we denote as usual the space of all sequences # = (1, 2,,...)

with |z| = S’Imil < oo. We gay that d(B, C)<< A for some Banach spaces

q=1

B and € and a veal 1> 1 if there is an (always linear here) operator T
from B onto € such that |T||||7*| < 2. A Banach space Y is said to be
finitely represented in a Banach space X if for every finite dimengional
subspace B of ¥ and every ¢> 0 there is a subspace 0 of X such that
d(B, () < 1+¢ If P is a property which is meaningful for general Banach
spaces we say that a Banach space X is “super P if every Banach space ¥
finitely represented in X has property P. Of particular importance is the
property super reflewive introduced by James. Thus, according to the
general rule, a Banach. space X is super reflexive if every Banach space ¥
finitely represented in X is reflexive.

In paper [6] in which James posed the I problem he proved that the

* The second named author was supported by NSF GP-33578.
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