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THEOREM. Sei f strikt konves und Epi f flach konvew. Die Hyperebene
H = Kern u, sei f-Chebychev. Dann ist die metrische Projektion Py(-, f)
genaw dann stetig, wenn die Abbildung

Mz, wobei  f*(Aug) 1 (m) = luy(®),
v,
A(ug)=>(Py (-, f))7(0)
stetig ist.
KOROLLAR. f und H migen die Vorausseteungen des Theorems erfiillen.
Ist f auferdem differenzierbar, so ist Py(+,f) genau dawn stetig, wenn
(f’)”1|;1(100)~u0 stetig ist. *

Beweis. In [2], Seite 59, wird gezeigt, daf
P(A) = ()7 ().

Literaturverzeichnis

[1] TF.Deutsch, W. Pollul and I. Singer; On set-valued metric projections, Hahn—
Banach extension maps, and spherical image maps, Duke Math. J, 40 (1973),
8. 855-370. .

[2] R. B. Holmes; 4 course on optimication and best approwimation, Lect. Notes
in Math. 257, Springer, 1972.

[3] ~ On the continuity of best approximation operalors, Sympos. on infinite dimen-
sional topology, Princeton, Princeton University Press, 1972.

[4] R. T. Rockafellar; Oonvex analysis, Princeton, Princoton University Press,
1970.

MATHEMATISCHES SEMINAR DER UNIVERSITAT, KIEL

Received July 10, 1974 (859)

icm®

STUDIA MATHEMATICA, T. LV. (1976)

Some permanence properties of locally comvex spaces
defined by morm space ideals of operators

by
HELKKI APIOLA (Helsinki)
Abstract. The concept of an «7-space, o an ideal of operators betwéen normed

gpaces, a8 introduced by A. Pictsch allows one to treat simultaneously many important
classos of locally convex spaces. In this paper necessary and sufficient conditions are

- given for the space 2 (l, F) of continuous linear maps between locally convex spaces

B and B and the tensor product BE®.F (a = ¢ or ) to be spaces of type o provided
that o possesses cortain stability properties. As an application of our results to “con-
eretie” @/-spaces somo known results of A. Grothendieck and D. Randtke on (strongly)
nuclear and Sehwartz spaces arve derived.

1. INTRODUCTION

Let = be an -ideal of operators between normed spaces. A. Pietsch
[11] has introduced the concept of an s7-space, which unifies the treatment
of various important classes of locally convex spaces. For example, if
s is chosen to be the ideal of nuclear (resp. precompact) operators, the
corresponding #7-spacey are the nuclear (resp. Schwartz) spaces. Nuclear
and Schwartz spaces share many remarkable stability properties. Sub--
spaces, quotients, arbitrary products and countable direet sums of these
spaces are of the respective type. In fact, as pointed out by A. Pietsch
[11], all the above mentioned properties are shared by all s7-spaces under
certain general assumptions about' the ideal 7.

In this paper spaces of linear operators and topological tensor pro-
duets will. be dealt with. We shall introduce the concepts of “Hom-stab-
ility” and “®,-stability” of an ideal & and prove necessary and sufficient
conditions for & (#, 1) and H®,F (a = ¢ or =) to be «/-spaces provided
that o/ possesses the respective stability.

We shall include the proof of Hom-stability of the ideals of nuclear
and type ¢ operators, which is essentially contained in an unpublished
manuseript of K. Vala, who has kindly let me make use of his material.
The @ ~stability (¢ = ¢ or x) of these ideals and the ideal of precompact
operators and also the Fom-stability of the latter all follow from results
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of J. Holub [8], [9], K. Vala [14] and the author [1]. This shows in par-
ticular that our theorems (3.3 and 4.4) on «7-3paces generalize the cor-
responding results of Randtke [12] and Grothendieck [56] concerning
(strongly) nuclear and Schwartz spaces.

2. NOTATIONS AND DEFINITIONS

Ideals of operators. The class of all bounded linear mappings (briefly
called operators) between arbitrary normed linear spaces will be denoted
by & and the set of all operators between specific normed spaces by
¥ (B, F). Following Pietsch [11] we say that & class « of operators is
an 4deal if for each set

oA (B, F) = L& X, F)

(1) #'Qyesd (B, F) for each ¢'¢B' and yel,
(2) ' o (B, F) is a linear subspace of % (E, F),
(3) it Te o (B, F) and SeZ(F, @), then STes?(H, ),
) it Te#(E,F) and Seo (I, @), then STe & (B, ).
The operator #'®y in condition (1) means the rank one operator:

¢—>{z, 4" >y. The finite rank operators & obviously form the smallest
ideal.

An ideal o is called injective if for any topological injection (i.e. an

isomorphism into) Je% (¥, @) the following is true:
if Se% (B, F) and JSe o7 (H, ), then S¢ o (H, F).

The smallest injective ideal containing « is called the inmjective Lull
and denoted by ..

The composition of two ideals o7 and & will be defined as follows:

Te(of0 %) (B, @) if and only if there is a normed space ' and operators
Se# (B, F) and Re «(F, @) such that T = RS.

Two ideals o and # are said to be eguivalent if there ave integers
n and m such that

M@ and P,
where &/"t= 0 #0...0 & (0 times). .
- For example, the ideal of quasi-nuclear operators is an injective
.ideal equivalent to the ideal of nuclear operators.
An ideal & is called symmetric if
Teo (B, F) implies T'es/ (I, N,
where 7" is the transpose of 7.
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Locally convex topologies and bornologies of type .«7. Lt E be a Haus-
dorff locally convex space and A"y a fundamental system of balaneced
convex neighbourhoods of the origin. The gauge of a set UeA'm will be
denoted by Py and the factor space E/ker Py by Ey. The norm of By is
defined by the formula

lpy @)y = Py(@), @B,

where wy: J—I iy the canonical surjection.

Let <7 be an ideal of operators in normed spaces. We say (after Pietsch
[11]) that a locally convex space I is of type « if there is a fundamental
gystem A7 of balanced convex neighbourhoods of the origin such that:

for each U ey theve ewists o Ve N g such that V = U and the canonical
mapping Yy, Ly—+By belongs to o (By, By).

Similarly, if ¥ is a separated convex bornological vector space and
S a fundamental system of bounded convex balanced sets, we denote
by B, the vector subspace generated by 4<S. In this case the gauge
P 4 is a norm on ¥,. The canonical injection BB will be denoted by 4.

A convex bornology G is said to be of type .o if there is a fundamental
system S, of balanced convex bounded subsets such that:

for each A <G, there exists a BeG, such that B > A and the canonical
mapping i4,p: B4y belongs to o (B, Bg).

Tor the basic concepts of bornology the reader is referred to [6].
We shall put our statements in such a form that in fact no aquaintance
with the theory of bornology is necessary. By a convex bornology in a locally
convex space we simply mean a family of bounded subsets which covers
7 and is saturated in the sense that it contains arbitrary subsets, scalar
multipley, finite unions and balanced convex hulls of members of the
family. In bornologic terms this means that we are dealing with convex
bornologies compatible with a given locally convex topology. To avoid
unnecessarily complicated use of language we take us the freedom of
speaking about bornology even if we were dealing with a base of bornology.

3. SPACES OF LINEAR OPERATORS °

Tiob- B and B be locally convex Hausdortf spaces and & a bornology
on F. We shall consider the space L (B, F') of continuous linear mappings
from B into I equipped with the &-topology. The sets N (fet, V) =
{TIT(A) = V}, AeB, Ve Ay torm a fundamental system of neighbour-
hoods of the origin of Zg(H, F). o

Let B, ..., B, be normed spaces and let Se2 (B, B,) and Te.SP.(E,,,
B,). The mapping which to each UeZ(Hs, B,) assigns the composition
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TUS will be denoted by Hom (S, T'). Thus Hom (8,
T a bounded linear mapping from Z(#,, Ey) into & (,, E,).

Lemya 3.1. Let B and F be locally convew Hausdorff spaces, let A be

a balanced convex bounded subset of B and let UeN . Then the normed space
[Z(B, F)lyu,v) con be isometrically imbedded into & (B4, 1'y).

Proof. Let i,: H~F be the canonical injection and y,: F—J; the
canonical surjection. We claim that there is an isometry J which makes
the following diagram commute:

) Hom (i 4,¥y)
,?(E,F) g(EA,y’FU)

N A

(£ (8, F)]xu,v)

(p is the canonical surjection onto the factor space.)
It is enough to show that

Py, oy (1) = [Hom (i, ) (D) for all T2 (B, F),

where Py, ) is the gauge of the nelghbourhood N(4, U). For Te 2 (B, I
we have:

Pyuoy(T) =inf{d> 0] T(4) = AU}

inf{A > 0| Py(Te) < 4 for all med)
sup Py (Is) = sup (i T3 4) (@) s
2e.d xeH

= |[Hom (yy, 1) (T

II

in #(H8,, FU)

Bo the required equality has been established. m

In order to state our stability theorem concerning spaces of linear
operators we shall need the following definition.

DEFINITION 3.2. An ideal  is said to be Hom-stable if the following

holds: Given normed spaces D, ..., H, and operators e (H,, H,),
Te ot (B, B,) it follows that

Hom (8, I')e ‘y( (By, By), (EL’L4))

Let us pomt out that if 7 is Hom- -stable, then ifi is in particular symme

tric,
because choosing By = B, = K (= the’ scalar field) and T = id, we have
Te s (B, B,) and thus

o 8 = Hom (S, T)e o/ (E;, B,
as soon as Se (B, B,).

T) is for fixed S and
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© TumoREM 3.3. Let o be an ideal of operators which is Hom-stable and
equivalent to its injective hull. Let B and F be locally convez H ausdorff spaces
and let S be a bornology on B. Then the space L (B, F) is a locally convew
space of type o if and only if G isa bomology of type o and F is a locally
conven space of type 7.
Proof. 1° Assume first that £ (H, F) is of type . To prove that
F iy of type «7, imbed F into & (B, F') by assigning to each yF the rank
one operator: @-+{a, w>y in (B, F), where @, is any fixed non-zero
element of E'. It is eany to see that the G-topology induces the original
topology of . Ax & is equivalent to its injective hull it follows exactly
as in Pietsch [10], Proposition 5.1.1, that F as a subspace of an «7-space

iy itself of type .

To prove that & is a bornology of type &, imbed E'into £ (E,F)
by assigning to each #'eZ’ the operator: a—{(x, »'>y,, where y, is a fixed
non-zero element of #. The S-topology of ¥ (E, F') induces the S-topology
of 7', so we conclude as above that B’ is a locally convex space of type 7.
Thus, given A <G, there is a Be¢G such that B > A and the canonical
mapping

Voo, 00 D=
B o). As o is symmetric, it follows that
('/’B(»,Ao)l 5"?{/((1'7:40)': (E;;o)') .

It we identify J, (vesp. Hj) with a subspace of (E )’ (resp. ()
the restrietion of (1/)130‘ l(,)’ to B, coincides with i4 5 (cf. Pietsch [10],
0.11). It follows that

Delongs to (1, -

i4,p¢€ J’ZJ(EA; Hy)

which implies that & is a bornology of type s, as & was assumed to be
equivalent to its injective hull.

29 Assume that & and F are of type <. Oonﬂlda the fundamental
systern

N o= {N(4,U)| AeS, UeH 5}

of nmg,hbmnhoo(ln of the origin of Zg(E, F'). We claim that for each
M (4, U)et there ix an N (B, V)ed" such that N (B, V) « M(4, U)and
the canonical mapping

[T [ (L, ]’T)JN B, 1)‘“’( LB, F)]aca,v)
belongs to /.
Given A ¢S and U eA"p, there exist Be@ and Ved'y such that B o A4,

¥ « U and the canonical mappings

]
iyp By—>Bp and  ypy F,—Fy
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" belong to 7. The mapping .
Hom (i, 5, ¥r,v): £ (Ep, Fy) =& (B, Ty)
thus belongs to o (¢ (By, Fy), £ (B, Fp)), as o is Hom-stable. Let
on: L(B, F)~[Z (B, I)lygy and @ Z(B, F)->[2(F, F)]M(A,U)

be the canonical surjections and Jy and Jy the corresponding isometries
according to Lemma 3.1. For T e % (B, ¥') we have:

[Hom (1,5, ¥r,p) 0d x](px(T))
= [HOln(iA,B? Yy, )0 Hom (i, wpr) (1)
= ¥p,u¥rligisn = ppTi, = Hom(i,, p,)(T)
= JM(‘PM(T)) = JM(‘PN,M(‘PN(-T)))-
Hence:
Hom (44,5, Yy p)ody = .Moq"N,M'

It thus follows that
(PN,Me‘ﬂ{J([-(I(E: )y [¢(E, F)]M)

and the conclusion follows from the equivalence of .« and 7. m

The question whether the structure of an o-space is preserved under
Passing to the space of linear operators has thus been reduced to the
question of Hom-stability of the given ideal ..

In order to deal with the space Z(F', F) it is more natural to assume
a slight variant of Hom-stability of the ideal .

DBFINITION. An ideal 7 is said to be Hom'-stable if the following
holds: Given normed spaces B, Iy, B,, F, and operators Sesz(Hy, I),
Te o/ (Hy, Fy) it follows that

Hom(8', T)est (& (B, By), & (F,, Ty).

Observe that if « is Hom-stable, then it is Hom -stable. Moreover’
every Hom’-stable ideal < has the property that the bitranspose 1"
belongs to . for every 7' in «.

TaEOREM 3.4 Lel o be an ideal of operators which is FHom'-stable
and, equivalent to its injective hull. Then Lo ( By, T) is an A-space if and only
if B and F are oZ-spaces. (¢ = the topology of equicontinuous convergence,
b = the strong topology of the dual.)

Proof. The necessity follows by imbedding 2 (vesp. F) into .2, (%, , F).

To prove sufficiency replace B by B, and take for & the family of
equicontinuous sets of B’ in the proof of Theorem 3.3. Observe that

e ©
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i,4,p 15 the transpose of Yp,oys Where V4 =B, U) = 4 and V, and U,
are chosen so that VLo, € .M(E,.l, EUI). As o is Hom'-stable,
Hom(iyp, yr,u)e o/ (£ By, Fy), £ (B, Fy).

Then proceed exactly as in the proof of Theorem 3.3. m

COROLLARY 3.5, Let o/ be am ideal which is equivalent to its injective
hll and such that T belongs to o for all T in of. Then a locally convex
H (l/l,l,h’(jotff spuce 1 is of type o if and only if B equipped with the topology
of equicontinuous convergence is of type of.

Proof. Take F = Iy = Fy = K and y, ; = idg in the proof of
Theorem 3.4, m

It iy well known that the ideals of precompact, nuclear and type-
s-operators satisfy -ithe above condition and hence the conclusion of
Jovollary 3.5 holds for the corresponding &7-spaces (cf. also [13], (10),
P. 77). We shall next show that the statement of Theorem 3.3 holds for
strongly nuclear, nuclear and Schwartz spaces by proving the Hom-
stability of the ideals in question. This will then show that Theoiem 3.3
generalizes the corresponding results of Randtke ([12], Proposition 4.1).

ProrositioNn 3.6, The ideals of

(i) finite rank,

Locally conven spaces 27

(ii) type s,

(iii) nuclear,

(iv) precompact
operators are Hom-stable.

Proof. The proofs of (i) and (iii) chn be regarded as simplified Versiogs
of the proof of (ii), whereas (iv) is the content of [14], Theorem 3. So it
gufficies to prove (ii). )

Let 8: B,—~E, and T: B;—~E, be mappings of type s between given
normed spaces. (For the definition and properties of s-type mappings
the reader is referred to [2], [3] and [10], 8.5.) ’;Dhus there exist sequences
(@;) in By, () in By, (yy) in B, and (yy) in By such that

o«
Sz = _2<w,m;>w¢ for weB,,
dwa]
o0
Tz = Z(z,y;ﬂ)y,, for zeH,
el
and
(1) sup i o] ool < oo, supk il llyell < oo
1eN keN
for all p and r in N (= the set of positive integers). )

5 — Studia Mathematica LV.3
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A simple computation yields:

Hom(8, T)(U)(2) = D) <@, oy Uy, Yo Yn

lc Z

for Ue%(B,, Bs) and seB,. Let 2, denote the continuous linear form
on Z(E,, B,) defined by

(U, 2y = Uy ypy  for UeZ (Hy, Hy).
Define further V% (E,, B,) by ‘
Vs = <&, 8>, @by,
Thus we can write

@) Hom(8, T)(U)(@) = D' <U, &> V(o).

It

Tt follows from (1) that the series representations of 8 and T con-
verge in the norm of the respective spaces of linear operators. From this
it follows easily that the double series representation (2) converges uniformly
on the unit ball of B, for any fixed U< (E,, H;), i.e. we have the rep-
resentation '

Hom (8, T)(U 2<U >V  for UeZ (B, By).

There remains to be shown that the sequence (liegll |Vl s is rapidly
decreasing. For this, observe that

leiall < lwelllyzll - and 1V gl < gl lyell-
Thus, for any positive integers p and :

sup i " el 1V aell < (Sgpi”nm,-ll HwZ-H)(Sgpk"llyknllykllk 0o

ik

by (1), and the conclusion follows from Lemnia 3.7 to be given below. w

To see that the double-indexed sequence ([l | Vll)s , in the preceding
proof can indeed be arranged to a rapidly decreasing sequence we pProve
the following simple lemma.

LevymA 3.7. Let (by)y;, be a double-indemed sequence of non-negalive
numbers such that

supzf‘krb,k< oo for all p,reN.

Then the sequence a, = b@n by M =1,2,... 45 rapidly decreasing,
where the mapping n—»(i,; 7cn) 48 the “dwg(mal mdeming” of NxN.
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Proof. From the estimate
W< 142y by =1 = Hi o+ Toy) (5 + T, —1) < (34 )
it follows that n?a, < (4,-+k,) “b, e for any geN. So the conclusion
follows by expanding according t0 the binomial formula. m

The ideals (i), (ii) and (iv) of Proposition 3.6 are injective, whereas
(iii) is equivalent to the injective ideal of quasi-nuclear operators. So these
ideals indeed satisfy the requirements of Theorems 3.3, 3.4 (and Corollary
3.5).

If o is an ideal satisfying the assumptions of Theorem 3.3, then
the space £ (I, I) equipped with the topology of pointwise convergence
is of type o if and only if ¥ is of type «.

Making use of the fact that the compact bornology of a Fréchet space
is a Schwartz bornology ([7]) Proposition 3.1, p. 60) we get, as a
consequence of Theorem 3.3 and Proposition 3.6,  a result of the same
kind concerning Schwartz spaces and compact convergence:

TurorEM 3.10. Let B be a Fréchet space and F a locally conver Haus-
dorff space. Then £ (B, I) equipped with the topology of compact convergence
i8 & Schwartz space if and only if F is o Schwartz space.

4. TENSOR PRODUCTS

In this section we shall consider the tensor product of two «7-spaces.
Let us recall that the e- and =-topologies of a tensor product of locally
convex. spaces can be defined by means of the following families of se-

minorms:
n
&
&g,y (7) = sup {JZ <ty | a'eT", Z’/'fvo}:
k=1
where

M
¢ = D 0@y B, Uehy, Velp;

lgw= )

n T .
mp(2) = it { 3 Py(@)Pr()| & = D 0@y, nel},

Jeesl k=1
UeAyy Vetp.

TRecall further that B @, F can be regarded as a subspace of Z,(E,, F)
(¢ = equicontinuous convergence) and my, » equals the gange of I'(URY)
= balanced, convex hull of the set {#®ylaeT,yeV}.

As an immediate consequence of Theorem 3.4 we get the following:

Tumorsem 4.1. Let o be o Hom'-stable ideal of operators which is equi-
valent to its injective hull. Then B ®,F is an - space zf and only if B and
I are o-spaces.


GUEST


274 H. Apiola

Proof. Imbed E®,F into #,(H,, F) and apply Theorem 3.4. For
the converse imbed B (resp. F) into Q. F. &

This result generalizes Corollary 4.4 of Randtke [12] concerning
strongly nuelear, nuclear and Schwartz spaces because of Proposition
3.6. In the first two cases the e and m-topologies coincide and even in the
case of Schwartz spaces it is known that their w-tensorproduct is again
a Sehwartz space ([5], Chapter I, p. 48). We shall show that for any ideal
o which is “®,-stable” (« iy either & or =) the tensorproduct E®,I of
two of-spaces B and F is of type . This generalizes the results of Gro-
thendieck and Randtke mentioned above (and even Theorem 4.1). In
particular, we get a unified treatment of the & and a-tensorproducts of
Schwartz spaces whose methods of proof look quite different in [6] and
[123.

DEFINITION 4.2. An ideal o is called ®,-stable if the following holds:
Given normed spaces H,, Fy, B,, Iy and operators Se o (B,, F), Te

(D“FE) it follows that
8RTe o (B,Q,H,, F',Q,F,).

Luna 4.3. For any locally convex Housdorff spaces B and I ihe
space (B®,F)y is isometric with Hy®,Fy, where Uel gy, Vel p and

W= {sleypr)<1} if a =g,

W= {lagpre)<1} if a=m=.
Proof. 1° a =& Let py denote the gauge of W, i.e, Py = ey p.
We claim that there is an isometry j which makes the following diagram

commute

vueyy

EQF By @F,

(EQ@F)y

where vy, v, and p are the canonical surjections. It is enough to show
that .

(1) pw(®) = lyo®y) (@,  #eBE .

The dual (EU)’ can be identified with &’ - by means of the corre-
spondence u'«> o’ defined by:

Syp@), uh =<{w,8">, @b, mleEIUw
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In the same way we identify (%)’ and E . Let

2 = Zw,c®ykeE®17'.

k=1

| n
pte) =sup{| 3 <o, @ w0 | T, 47 7)
=]

=sup{| X' <wu (@), w><wr (02,

Tpmal

1, ol < 1)

= (9o @) (@],

H 'PU @) @ wp (U3),

The proof of part 1° is thus complete.

2° a = m. In this case py = @y, and we have to prove equation
(1) with ¢ replaced by =. The inequality

Wvo @vp) (@), < pw(2), 2cBQF
follows directly from the fact that

o @wy) (2)ll,
= inf {ZPU(“’I:)I’V(%H (vo ®yp) (2) = (P @vy) (Zmlc‘@."/lc)}-
& k

To prove the reverse inequality we shall first show that

ker(vy @yy) < ker py.
From the formula

- ker(yy @uy) = keryy @ F +F @keryy
(cf. [4], p- 25) it follows that every weker(yy ®wy) hag the representation
0 = IZ%@W- Zw@% v (@) = yr(y) = 0.
Thus |
Pw(@) < ,Z Pu (@) Py (y) + ) pulu)py(s) =0
4 J

ie. wekerpyy.
Lot now (yy®ypp) (e, ®y,) be an arbitrary representation of
k

(wu@ypyp)(2) in By@Hy. As
- Z oy, @Y eker (py; yyp) = Kerpy,
F

it follows that
P (R) = Py (Zmln®yk) B X ZZ’U(%)PV(?IM-
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Thus

() < (¥ ®@vr) (2l

and the proof is complete. m

TarmorEM 4.4. Let B and F be locally convew Hausdorff spaces and
of an ideal of operators which is ®-stable (resp. ®,-stable). Then B @I
(resp. BQ,F) is of type o if B and F are of type of. The converse holds
" if o7 is equivalent to its injective hull.

Proof. We shall treat both topologies mmultaneou,sly using the
same notation as in Lemma 4.3. Consider the following fundamental
system of balanced convex neighbourhoods of the origin of the tensor-

" product in question:

{(W(U, V)| UeN gy Vel g}

Let Ued pand Vet p. As F and F are of type o, there exist U, e/if ,"
and Voed'p such that U,c U, Vo= V and

vu,ve & By, By), Y ves (Fyy By).
We claim that
Yot (B Fhyp > (HQ Fy

belongs to 7, Where Wy = W(U,, Vo), W= WU, V). Identily (B&® ),
with L’U®FV and (B®@F)y, with I‘U @ Fp, according to Lemma 4.3.
The corresponding camomcal sm“JeeLwns I10m EQL into (EQF); (resp.
into (F®F)y,) will then be identified with py®yp (vesp. wy, @ vy
Because of the commutativity of the diagram

¥t

WUOQZW;:" vy®vy

EU ®FV “’Uo Uy, v E‘u@l"y

;t I:;]Jow& that wy, w = vy, (;®1py0,,;, which Dby assumption belongs
0

The converse fo]lowa by identifying H (resp. F) with a subspace of
the tensorproduct. m ‘

All t}.le. ic}ea.ls in Proposition 3.6 are both ®, and ®,-stable. The
proof of (1)-1s immediate, (ii) follows from an obvious modification of the
proot of (iii) by Holub [8], Theorem 3.7, (iv) follows from [9], Theorems
2 and 8 (or [1], Theorems 4.5 and 4.9). Thus we get the following:
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QorOLLARY 4.5. B ®,F is strongly nuclear, resp. nuclear, resp. Schwartz,
if and only if B and I are both of the respective type, where a is either & o7 m.

Remark. The proof of Theorem 4.4 does not change if instead of
®~stability it is assumed that o is equivalent to &7 and SQT ¢ o7 as
soon as § and T belong to <. This implies that the “c-part” of Theorem
4.4 generalizes Theorem 4.1, as is seen by the following observation:
Let H;, I'; be normed spaces and T,e% (B, F), i =1,2. If B,Q,F,
(vesp. By ®,T,) is regarded as a subspace of 2 (H;, B,) (resp. £ (F;, Fy)),
then T,® T, equals the restriction of Hom (T}, Tp) to B,® B, (see [1],
p. 24). Thus, if & satisfies the requirements of Theorem 4.1, then it also
satisties the (modified) requivements of Theorem 4.4.

Finally, we shall apply Theorem 3.3 to locally convex spaces whose
strong duals are of type &. Such spaces will be said to be of type co-«.
Our result will depend on the “probléme des topologies” of A. Grothendieck
({51, Chapitre I, p. 33), i.e. whether every bounded subset of E®,F is
contained in some et of the form I'(4 ® B) = balanced, convex hull of
{(r@y| wed,y B}, where 4 = F and B  F are bounded. Grothendieck
pxoves in [5], I, Proposition B, that this condition is satisfied if F and

T ave (DF)-spaces (i.e. locally convex spaces with a countable fundamental .
system of bounded sets and with the property that every strongly bounded
subset of the dual, which is a countable union of equicontinuous sets,
is itself equicontinuous). We shall need the following lemma:

LosvmA 4.7, The strong topology B{(B®.F), B®,F) is finer than the
topology induced by the inclusion

(B®,T) ~2,(T, ).

The question of equality of these topologies is equivalent to the “probléme
des topologies”.

Proof. The dual of B ®,F can be indentified with the set of conti-
nuous bilinear forms on K x F by means of the formula

@y, 2> = f(@, y).

Denote by T the linear form: y—f(#,y) on F for s<B. Thus we
can wssign Lo each 2'e(# @, F)" an operator I'e % (B, ) such that

o®@y, & =<y, Tw).

Lot A7 (4, B') be u neighbourhood of the origin of 2,(B, F,), where-
A el and B el are bounded. Then ity “intersection” with (EQ,F)
equals the sot

(¥ e(B®,T) | T(4) = B} = (A®B),
whieh is & neighbourhood of the origin in the strong topology of (£ ®, I,
since A® B is bounded in H®,F for bounded 4 and B The rest of the
statement is now obvious. m
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Making use of the result of Grothendieck mentioned above that for
(DF)-spaces the “probléme des topologies” is seftled in the affirmative,
we get as an immediate consequence of Theorem 3.3 and Lemma 4.7 the
following:

TEROREM 4.8. Let B and T be locally convem spaces of type (DF) and

let o be o Hom-stable ideal which is equivalent to its injective hwll. Then
E®,T is of type co-s if and only if B and I are of type co-of.
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Two weight function norm inequalities
for the Hardy-Littlewood maximal function
and the Hilbert transform

by

BENJAMIN MUCKENHOUPT* and RICHARD L. WHEEDEN*
(New Brunswick, N.J.)

Abstract. Necessary conditions are obtained on non-negative funetions ﬁ(m)
© o0
and V(2) so that [ ITf (@)U (z)ds < O [ 1f@PV (@)dw, where 1<p< oo,
-0 —0o0
T'f (w) denotes either the Hardy-Littlewood maximal funetion or the Hilbert transform
of f and ¢/ iy a constant independent of f. In the case p = 1, the necessary condition

is also shown to boe sufficient; in case p > 1 the necessary conditions are ghown to be
sufficient if varions additional rostrictions are placed on U(x) and V (z) or on flz).

1. Introduction. The first norm inequality of the form

(1.1) [ @P U@dw<0 [If@)PV(2)d,
where ‘
f*(@) = sup %wzf!f(t)ldt

‘i‘s the Hardy-Littlewood maximal function of fand 1 << p << oo, was proved

in [2] with U(®) == V(o) = 1. The first norm inequalities of the form

]

(1.2) [ @ U@do<0 [ f(@)PV(@)da,
where

floy =tim [ W

j(M) W.“ER: o =p|>8 z—y dy
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