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On the integrability of a class of integral transforms
by -
YOSHIMITST HASEGAWA (Hirosaki, Japan)

Abstract. In [6] and [7], K. Soni and R. P. Soni proved L-integrability theorems
and intogrability theorems of Tauberian character for a class of integral transforms,
where it inclndes the Hankel transform and so on. We prove some LP-integrability
(1< p< o0) theorems for the class of integral transforms, and further give an answer
of Boas’s conjecture (see [2]).

1. Basic assumptions and definitions. Throughout this paper, the
function %(t) satisfies the following two assumptions.

(A1)  k(t)is real-valued, measurable and uniformly bounded in 0 < ¥ < co.
(A2) ‘
B E(0)+BtF+o0(t*) as t—>--0 for f> 0, where B0,
{1 = '
%(0) +o0(1) as t—>-+0 for g =0,

First suppose that the function f(¢) is real-valued in 0 < << co and
is of bounded variation in T <t< oo for every T > 0. In particular, if
f(+0) is not finite, then we define, for every measurable function #(w),

[ 1@ df(@) = lim [ n(@)df(@), a>o0,
0 &

&>+40

whenever the limit exists and is finite. Now we define an integral transform
as follows:

v )
It [|%(t)—k(0)||@f(f)] < oo, then the function F(a) is defined by
i ‘

F(a) = f{k(mt)»«k(O)}df(t), 0< &< oo,
]

and denotes the k-transtorm of f(t).
Remark 1. In the definition of the k-transform, if > 0, then the
1,
condition J|Ic(t)wh(0)||df(t)|< oo can be replaced by
1
f t1df (1) < oo
b

"from (A2).
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K. Soni and R.P. Soni [6] defined the k-transform in a slightly
different form than in our definition.
Throughout this paper, we put
1 1
—_— __|__ e
V)

=1, I<p < o, 1<

Alyo, the letter €, with or without a subscript, denotes a positive constant,
not necessarily the same at each appearance.

2. Main results.

TaworEM 1. Let > 0 and 1[p <y < B+1[p. Suppose that f(t) is
defined in 0 << t<< oo and is of bounded variation in T <1< oo for every

1
T> 0, and that [#|df(t)) < oo. If
0
i
=020 [ of \af (@)] 17 (0, o0),
[}

then o™" F(w)eL?(0, oo)
As a corollary of Theorem 1, we have the following theorem.
THROREM 2. Let =0 and —ljg<y<pB-+1/p. Let k(0) =0 for
B> 0, and %k(0) 5% 0 for B = 0. Suppose that k,(t) is defined by

¢
(2.1) ky(t) = [*(w)du, 0<1< oo,
0

and is uniformly bounded in 0 <1< oco. Suppose that f(i) is defined in
0 << t<< oo and is of bounded variation in T <1< co for every T > 0, that

1
F(8) tends to zero as t—co, and that [¥df ()| < oo. Then
0

(2.2.) Fla) = Tok(wt)f(t)dt
[

converges for every > 0, and w“"f’(w)eL”k(O, o0) if

; , ‘
=20 [ @4 |df ()] e LP(0, o).
0

As a collorary of Theorem 2, we have a theorem as follows:

- TuEOREM 3. Let §20 and —1l/g<y< ﬁ+1/p Let %(0) =0 for
B> 0, and %(0) 0 for p = 0. Suppose that k,(t) is defined as in (2.1)
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and s uniformly bounded in 0 <1< oo. Suppose that g(t) decreases to
zero in 0<t<< oo, and that ¥¢(t)eL(0,1). Then

(2.3) G(@) = [ T(at)g(t)at
0
converges for every @ > 0, and w“?é(w)eL”(O, oo} if TP () e L7 (0, oo).
As the inverse case to Theorem 1, we have the following theorem.

TunoreM 4. Let f> 0 and let 1/p <<y << f41/p. Suppose that f(t)
s monotone in 0 < t<< co and tends to o finite value as t—>co, and that

1
f F1df (1) < oo. Suppose that there emists a Sfumction w(®) such that
[}

(i) o @) eL(0,1), o’w(@)eL(l, o) and fmﬂ @)da #0,
(ii) T*(y) —X%*(0) has no change of sign in 0 < y < oo, where

(24) T () = [ (@) kay)dw

If @V F(@)eL?(0, o), then ##=P=% fwﬂczf )eLP(0, o).

As a corollary of Theorem 4, we hauve the followmg theorem inverse
to Theoretn 3.

THEOREM 5 Let B0 and —1ljg<y< p+1/p. Let k(0) =0 for
B> 0, and k(0) 50 for B = 0. Suppose that k,(t) is defined as in (2.1)
and s un@fr)rmly/ bounded in 0<t<< co. Suppose that g(t) decreases to
zero in 0 < t< oo, and that t°g(t)eL(0,1). Then (;(m) 18 finite for every
%> 0, where it 48 of the form (2.8).

Moreover, if there emists a function o,(%) such that

(1) wy(@)eL(0,1), &+ w,(@)eL(l, ) and [ w,(s)de 0,
b

(ii) %} (y) has no change of sign in 0 < y << oo, where
T () sz wy () by (wy) da,
0

and if m"‘"”é(m)aL”(O, oo), then 142 g(1)e L7 (0, oo).

Remark 2. In Theorems 1 and 4, we attend to the casep = 1. K. Soni
and R. P. Soni [6], Lemma 1, gave a vesult as follows: Let g(u) and p{u)
be two monotone functions (¢}, p)) defined in 0< u << oo, such that ¢(+0)
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5} . o0, .
=yp(+o0) = 0. If one of the integrals S p(u)dy(u) or ofz/)(u)dqo(u) is
0
fimite, then the other integral is finite and

lim p(w)yp(u) =0, lim p(u)yp(u) =0,

U0 4~+00

f (u)dy(u) = -—f () dop ().
0

Let (¢ fm”]clf ) and w(#) = *~F*(notice y—B 1< 0). Then

oo o0 o0
(L +p—y) [ v a f o df (o)) = [ ¢l = [ o7 ()-
0 0 0 0
Thus we see that Theorems 1 and 4 for the case p = 1 were proved
by K. Soni and R. P. Soni [6], Theorems 1 and 2, respectively.
In Section 6, we shall show that Theorems 3 and b include an answer
of Boas’s conjecture.

3. Proofs of Theorems 1,2 and 3. In order to prove Theorem 1, we
need a lemma as follows:

Luvva 1. Let s> 0 and 1< m <sp +1. Suppose that A(u) increases in
0<< u< oo, and that A(4+0) = 0. Then w™"P ) (u) e IP (0, oo) if and only if

u—m/p—)-sf m‘sdﬂ(a})eL”(O, oo)

Proof. It is sufficient for us to prove that % *A(u)—>0 as w->co if
w~™P ) (u) e LP (0, o). Since 1 < m < sp-+1, we get 0 > (—m+1)p~t > —s.
Sinee A(u) is non-negative and increasing in 0< u< oo, and since
W™ ) (w) e LP (0, oo),

w A (w) < umHIP () (u=1)

1 o n/l Nd 1» ‘
< u”™ A
<« (m——l J‘ 1t I(w) u)

=0 as u->oco,

The rest of the proof is indeed similar to Askey and Boas [1],
Lemma 1, and 30 we omit it. Thus Lemma 1 is proved.

Proof of Theorem 1. When we put

3
= [d"if(2)l, s=B, m= —yp+Pp+2
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in Lemma 1, we have
o0 00 M w
fu"”‘z(f Idf(t)l) du << oo because 'u"‘ﬂ‘z”’ftﬁldf(t)[eL”(O, c0).
0 wn 0
Hence, by (Al) and (A2),

[=e]
f a7 | B ()|” dw
0

< [ o[ o= ko) 070 P o
0

/e
<2 {j w”(} Ve (wt) — k()] 1af (+))” da+
+ f w-rﬂ( f (T (at) — O)de(t)[)pdw}
1z
1z
Olfm""”‘“”"({ #1af ()" dm+02fm-W’( f \aF (1)) do

1/x
=0, f wr=m f 1 1df ()" du+ 0, f w3 f af(1)|) du < oo
0 0 0 w

Thus Theorem 1 is proved.

Proof of Theorem 2. Since ft”“ldf )| < oo, hm ftﬁ“[df &) =0

by the dominated convergence theorem Since >
L) 4§
f )] > [ A = o [ 1af(0)] 2 T8 — (o)l

for 0 < ¢<C 6 < 1. When ¢ tends to zero and then & tends to zero, we get
Hf(e)-»0 s 0.

Also, it is eanily seen that %, (0) = 0 and %, () = B,#*+ o (#*!) as 1 =0,
where B, # 0. Since %, (f) is uniformly bounded in 0 < ¢ < oo, and since

1 .
J(t) tends to zero as ¢-+oo and df #+4|df(t)] < oo, the integral transform

[ (o) ag(t)

converges absolutely for every o2 0
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Thus, for x> 0,

(3.1) f T (at) df(5) = Jim f Ty (at) Af (8)
N
= lim {[kl(mt)f(t)]f," —af k(mt)f(t)dt}
N—00 h

—o [ Manf@)dt = —al ().

0

I

Hence iﬂ(w) is finite for 2> 0. Since

13 &
iv—-ﬂ—zlpfmﬁﬂldf(t” - t(v+1)—(fr+1)~zmftﬂ-H [df ()] eLP(0, o),
0 0 '

we obtain, by Theorem 1,
B () = o= [ Iy (at)af(5) e L7 (0, oo).
0

Thus Theorem 2 is proved.

Proof of Theorem 3. Since g(t) decreases to zero in 0<C < oo,
it is of bounded variation in T < $<< oo for each T > 0. We put
g(u) for 0<u<t

(t>0)
0 for t<u

o(u) =|

and y(u) = u**! in Remark 2. Then, since u’y(u)eL(0,?), the integral
t

Judg (u)] =
[

notice that

13
—[uf*1dg(w) is finite for every ¢>> 0. Further we should
0

[ § Y ’
) RS RPN | ST vt
{3.2) Oj Wy (u)du = ) {t lg(t) ofu - clg(u)J > =i fu [dg (w)].

Thus, using (3.1),

(3.3) fkl(mt)dg(t) = ——wf k(wt)g(t)dt = ——wG( ), w# 0,

and so é(m) is finite for every z > 0. By Hardy, Littlewood and Pélya.
[6], Theorem 330, we get

00 t 0
[or=m([og(a)da)’at < € [ 7=*2g () dt < .
0 : 0 .

[0

icm°

- f(t) deereases in 0 << 1 =
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Hence, from (3.2),

o I o
[ aro=to= ( [ar+ ;dg(m)|)’”dz < oo,
0 0

Now, by Theorem 2, m“”é(m)aL”(O o). Thus Theorem 3 is proved.
4. Proofs of Theorems 4 and 5. In oxder to prove Theorem 4, we
need - the following two lemmas,

LMMA 2. Suppose that f(t) is non-negative and monotons in 0 <t é

Jor some & > 0, and that it is of bounded variation in 6 <t < oo, If f 1 |df (2)
< oo for B> 0, then

1
O -
jlls k) — (0] 1aF (t)) ___I (968) as ®—-+0,
° o(a”) as B—»o0;
r 0(1) as 240
ko (ast) T ( ar) = ’
lf e ROy {0(1) as B—>co

When f() increases in 0<¢< 4, Lemma 2 is trivial. Also, when
< 6, it Is due to K. Soni and R. P. Soni [6], Lemma 3,

Luwma 3. Let f> 0. Suppose that o(m) satisfies condition (i), and
that k*(y) is defined as in (2.4). Then

(@) k*(y) is uniformly bounded in 0 <y < oo,

(b) k* () —Ek*(0)~Dy® as y—-+0, where D + 0.

Lemmna 3 iy due to K. Soni and R. P. Soni [6], Lemma 6 and p. 407.

Proof of Theorem 4. By assumption, f(¢) is of bounded variation
in T<t< oo for every I > 0. Since w(#)eL(0, o), k*(y) is finite for
every 0 <y << oo. Let, for t> 0,

w(t) = t“"‘“]f ® (f;«) B(m)de = t""f ru(u Ydu f {k (tuy) — %(0)} df ()
by b b

repeated integral above converges absolutely.
of integration,

By Lemma 2, the
Interchanging the order

(4.1) w(t) =177 j {* (ty) — 1 (0)} df () -
0

By (i), we have #* ' e (m)eL(0, o), where 0< y—1/p < . Now, from
assumption and a wenerwlwed form of Mmkowskl s inequality [8], p. 19,
we get
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([ wowa)”< [ o (;-)FW)
] .

(f]w (u)t~ ”F(tu)ldu) dt}

<]

t (v+lw( f

0

» v
dw) dtl

e T

——

0
(f (o () t~7 F(tu Ipdt) du
]

o«

(f () ™" | B (b |”dt) du
0

= (f \w(u)\u””l/pdu) (f v [F(v)\”d’u)lm<
d o

Hence wu(t)eL”(0, o0). From (b) of Lemma 3, there exists a positive
number 6<C 1 such that

[¥*(y)—%*(0)| > $1D|y”  for any y, 0<y< 0.

Il
Og)g c%g o
<_a‘

Now, since f(?) is monotone, we have, by (4.1) and (ii),

(4.2) f Pt = f t”’(f B (ty) — (omd_f(yn)”m
0
o/t

> [ ([ 1 ()~ K O)1 1) |
) .

© ot
> DI [+ ([ P af (o)) d
0 0
= (}1D))? 0“”1’+”7’+1f'¢¢"7’"ﬁ"'2 (f(yﬂ |df(y)|)”du
0 0

=( f‘u”‘ﬁ‘zm jfyﬁdf(y) P o
8 b

Thus Theorem 4 is proved.

Proof of Theorem 5. By assumption, g(?) is of bounded variation
in T<t< oo for every T> 0, and &, (0) = &F(0) = 0 and ky (1) = B, "+
+0(¥*) as t—>-0, where B, # 0. Now, from (3.3),

é(m) = ——m-lf ky(wtydg (), > 0.
0

icm
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Since 777G (x) = —g~ '+ [k @t)dg (¢)eLP(0, o), we obtain, by The-
orem 4,

- .
g 12 A1 — py1)— -2
? ta nofm dg (@) = tr+0-(8+1) /pofmﬁ+ldg<m)€Lp(0, o).

Now, if we set

t
Ay = [allagla)l, m = —(y+1)p+(B+1)p+2, s =f+1

0

in Lemma 1, then
fwwm DOA == fttwl)wmnp«n ﬂll)p(f o~ P+ 4 (3 )[)”dt< o,

Thus Theorem 5 is proved.

5. Applications. In this section, we apply Theorems 1-5 to some
well-known integral transforms.

1. The Hankel transform. Let
(5.1) k(t) = 810,08, »= -3,
where J,(¢) is the Bessel function of the first kind [3], p. 4(2). Then, in

particular, we have
El ,
l/—wsmt for v =3,
T

2
l/—cost for v = — 3.
™

K. Soni and R. P. Soni [7] pointed out the following three properties.
1
2°I(v 1)
(H2) k(t) and oy () ave continuous and uniformly bounded in 0 i< 0.

(H3) Tt we put w(w) = a""¢ % then, for 0 <y << oo,

(5.2) I(t) =

(EL1) o(t) = U Lo (£412) a8t 0.

K () == f @ ey )T, (ay) do

< B (o L (L Ly TR > 0, [4],D.29(4).
From (5.2), (H1), (H2) and (H3), we get three properties as follows:
(H4) %(0) = 0 for »> —2, and %k(0) = V2/x for » = —4}.

21

(HB) &*(y)—K"(0) = &*(y) >0 for v> —}and 0<y< eo

4 — Btudia Mathematica LV.3
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(H6) Liet w, (%)= {—(v+1/2)2 g1 g7t} e~ ", Since fwl w)du = (@),
we have, for g =»+1/2,
fmf’“wl((x)dm = [ (— w(@))]5 +(r+5 j w"“/z () deo
[}
+3) [ e e dn#0
[
and ‘
X k4

== fwl w)dwf T(w)dw = yf wy (0 wﬂf k(yv)dv

=Jf oyk(yoyde = yk* () >0, 0<y< oo.

We seti = »+1/2. Then, from (H1)-(H6), we may state Theorems
1-5 for the Hankel transform as follows:

(I) Let v> —1/2 and 1[p<y< w+1/2+1/p If f(b) s defined in
0< t< oo and is of bounded variation in T < t<C oo for every I'> 0, if

f PV Af (1) < oo, and if
0
|2
ol f @t df (a)] L7 (0, o0),

then =" F(@)eL? (0, o) (Themem 1). Conwersely, if'f ) 48 monolone in
0< 1< oo and tends to a finite value as t-—>o00, if ft” W\ df ()] < oo, and
if @ " F(x)eL?(0, ), then
i
Rl [ g (g) e IP(0, 00)
A 0

(Theorem 4).
(IT) Let v —1/2 and —1/g<y<v+1[241[p. Suppose that [(t)
is defined in 0<t<< oo and is of bounded variation ia? T<t< oo for

every T > 0, that f(t) tends to zero as t-»oco, and that fl"'m [df ()] << oo,
Then P( 8 fzmte for every x>0, where it is of Lhe form (2.2), wnd
"’”l”(aﬂ)L’7 (0, oo) if
2
g2 Rl [t () € P (0, co)
.0

(Theorem 2). °
(III) Let » = —1/2 and -—-1/g<y<»+1/241/p. Suppose thﬁtt q(t)
decreases to zero in 0 < t < co, and that t"1%g(1)eL(0,1). Then G(w) is
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fiwite for every @ > 0, where it is of the form (2.3), and m"’G( a)e L*(0, o)
if omd only if '+ 2“’g(f )eL?(0, co) (Theorems 3 and 5).
2. The Y-transform. Let
B =PRY,0,  0<bl<i,

where Y, (%) is the Bessel function of the second kind or Neuman’s function
and

Y, (8) = (sinom)=t {7, (Heoswm—J_,(£)},  [3], D. 4(4).
Hence, from (IL1),
(Y1) E(8) = B o(8=1) ag 140, where

=2 {(sinwm) (1 —»)}™"  for 0<w< ¥,
27 (cotrm) { (L +9)}7 for —% <»<0.

K. Soni and R. P. Soni [7] pointed out a property as follows:
(Y2) & (¢) and k, (t) are continuous and uniformly botnded in 0 < ¢t < co.
From Erdélyi [4], p. 105(1),

(5.3) fm‘m T (ay)2 Y, (oy) do=y* P (y* 4+1)" V3 (sinwm) " x
X[y {9+ 1) comrm—y (g +1) 1 4117)), 0 <y < co.

Hence, by (Y1) and (Y2), we have the following property.

(Y3) Let w(m) = a7 For 0< »<<1/2, E*(y) —k*(0) = k*(y) < 0
in 0<y<< oo

But, for —1/2<v<0, 75"(7/)-«75*(0) = k*(y) has change of sign
in 0<y< . )

In the case of the Y-transform, it follows from (Y1)~(Y3) that The-
orems 1-3 hold for f =1/2—|»] and 0< |»| < 1/2, and that Theorem 4
holds for f = 1/2—» and 0 < »< 1/2.
llf w(t) = (327 4-27"%) ¢~ the function
wy (1) does not exist in L(0, 1), and %} (y) = yk*(y) in the same manner
as (H6) but k' (y) is not bounded ag y oo by (5.3). For the ¥-transform ,
it is doubtful whether Theorem 5 holds.

3. The K-transgform. Let

When we pubt wy(f) = —

k(t) =K, (#), 0<v<i¥,
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where K,(t) is the modified Bessel function of the third kind and

hiod (t/2)2n+v
K, (1) = g—(sxnm yHIL =L@, L) = Z;zll"(n—lw-f-l)’
n=0

[3], p. 5 (13).

In pa,rtleular, we have k(¢ I/~— ¢~ for » =} (the integral transform

is the Laplace transform). Now we get the following two properties.
2 1n

— as t—>0
(sinym) (1 —»)

]/m—:yéOfor'v—-l/

K. Soni and R. P. Soni [7] pointed out a property as follows:

(K3) (1) and k. (¢) are non-negative, continuous and uniformly
bounded in 0 << oo.

Since %(t) and %,(t) are non-negative in 0 << oo from (K3), the
considerations of w(x) and w,(z) are unnecessar y. We see eagily it from
the calculations similar to (4.2). From (X1)-(K3), we may now sum up
our results for the K-transform as follows.

Theorems 1 and 4 hold for § = 1/2—»and 0< v << 1/2, but Theorem
4 need not consider w(@). Theorems 2 and 3 hold for § =1/2—» and
0 < »<1/2. Theorem 5 holds for # =1/2—» and 0<<»< 1/2 without
the consideration of w,(«).

(K1) %(¢) = R

(K2) %(0) =0 for 0<»< 1/2, and k(0

6. An auswer of Boas’s conjecture. For Fourier sine or cosine trans-
forms, R. P. Boas [2] gave loosely a conjecture as follows:
(B1) If b and H, are a pair of Fourier sine or cosine transforms, and
if one of them is positive and decreasing in 0 << t < oo, then @~" Hy(») e LP (0, 00)
if and only i #YNPR(1) e L (0, co) provided that —1[q <y < 1/p.
Moreover, in [2], he proved a result for sine transform as follows:
(B2) If h(t) decreases to zero in 0 < t< o0, if 1Ph(t)eL?(0,1), and
if Hy(w) is the sine transform of h(t), then o' H,(2)eL?(0, oco) provided that
U () e IP (0, 00), where p > 1 and —1jg<y < 2/p—1/q.
From (5.2) and 1(III) of Section 5, we obtain the following two vesults.
(1XL,) Let —1/g<<y<1+1/p. Suppose that h(t) decreases to zero in
0<t< oo, and that th(t)eL(0,1). Then

00
Hya@) = [ ht)sinatds
J ‘

e ©

icm
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converges for every & > 0, and o~ H (%) eI (0, o) if and only if
PP R4y e TP (0, o).

(ITL,) TLet —1lg<<y<<1[p. Suppose that h(t) decreases to zero in
0<t< oo, and that h(t)eL(0,1). Then

—>00

H, (2) = f h(t) cos wt di

converges for every »> 0, and o7 "H, (%) eL”(0, co) if and oﬁly if
PR () e LP (0, o).

Now we see that (IIL,) and (II1,)) give an answer of (B1). Since

1
f thit ( f tht)? dt)"” ( f tar)" =278 ([ afe  (p>1)
0
by Hodlder’s inequality, it is clear that (IIL,) includes (B2).
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