

On the integrability of a class of integral transforms

by

YOSHIMITSU HASEGAWA (Hirosaki, Japan)

Abstract. In [6] and [7], K. Soni and R. P. Soni proved L-integrability theorems and integrability theorems of Tauberian character for a class of integral transforms, where it includes the Hankel transform and so on. We prove some L^p -integrability (1 theorems for the class of integral transforms, and further give an answer of Boas's conjecture (see [2]).

- 1. Basic assumptions and definitions. Throughout this paper, the function k(t) satisfies the following two assumptions.
- (A1) k(t) is real-valued, measurable and uniformly bounded in $0 \le t < \infty$.

(A2)

$$k(t) = egin{cases} k(0) + Bt^{eta} + o(t^{eta}) & ext{as } t
ightarrow + 0 ext{ for } oldsymbol{eta} > 0, ext{ where } B
eq 0, \ k(0) + o(1) & ext{as } t
ightarrow + 0 ext{ for } oldsymbol{eta} = 0. \end{cases}$$

First suppose that the function f(t) is real-valued in $0 < t < \infty$ and is of bounded variation in $T \le t < \infty$ for every T > 0. In particular, if f(+0) is not finite, then we define, for every measurable function $\eta(x)$.

$$\int_{0}^{a} \eta(x) df(x) = \lim_{\epsilon \to +0} \int_{\epsilon}^{a} \eta(x) df(x), \quad a > 0,$$

whenever the limit exists and is finite. Now we define an integral transform as follows:

If $\int_0^1 |k(t)-k(0)| |df(t)| < \infty$, then the function F(x) is defined by

$$F(x) = \int_{0}^{\infty} \left\{ k(xt) - k(0) \right\} df(t), \quad 0 < x < \infty,$$

and denotes the k-transform of f(t).

Remark 1. In the definition of the *k*-transform, if $\beta>0$, then the condition $\int\limits_{-1}^{1}|k(t)-k(0)|\,|df(t)|<\infty$ can be replaced by

$$\int\limits_0^1 t^{eta} |d{
m f}(t) < \infty$$

from (A2).

K. Soni and R. P. Soni [6] defined the k-transform in a slightly different form than in our definition.

Throughout this paper, we put

$$\frac{1}{p} + \frac{1}{q} = 1, \quad 1 \leqslant p < \infty, \quad 1 < q \leqslant \infty.$$

Also, the letter C, with or without a subscript, denotes a positive constant, not necessarily the same at each appearance.

2. Main results.

THEOREM 1. Let $\beta>0$ and $1/p<\gamma<\beta+1/p$. Suppose that f(t) is defined in $0< t<\infty$ and is of bounded variation in $T\leqslant t<\infty$ for every T>0, and that $\int\limits_{-1}^{1}t^{\beta}|df(t)|<\infty$. If

$$t^{\gamma-eta-2/p}\int\limits_0^t x^eta |df(x)|\,\epsilon\,L^p(0\,,\,\,\infty)\,,$$

then $x^{-\gamma}F(x) \in L^p(0, \infty)$.

As a corollary of Theorem 1, we have the following theorem.

THEOREM 2. Let $\beta \geqslant 0$ and $-1/q < \gamma < \beta + 1/p$. Let k(0) = 0 for $\beta > 0$, and $k(0) \neq 0$ for $\beta = 0$. Suppose that $k_1(t)$ is defined by

$$(2.1) k_1(t) = \int\limits_0^t k(u) du, \quad 0 \leqslant t < \infty,$$

and is uniformly bounded in $0 \le t < \infty$. Suppose that f(t) is defined in $0 < t < \infty$ and is of bounded variation in $T \le t < \infty$ for every T > 0, that f(t) tends to zero as $t \to \infty$, and that $\int\limits_0^1 t^{\beta+1} |df(t)| < \infty$. Then

(2.2.)
$$\tilde{F}(x) = \int_{0}^{\infty} k(xt)f(t) dt$$

converges for every x>0, and $x^{-\gamma}\tilde{F}(x) \in L^p(0,\infty)$ if

$$t^{\gamma-eta-2/p}\int\limits_0^t x^{eta+1}\,|df(x)|\,\epsilon L^p(0\,,\,\,\infty)\,.$$

As a collorary of Theorem 2, we have a theorem as follows:

THEOREM 3. Let $\beta \geqslant 0$ and $-1/q < \gamma < \beta + 1/p$. Let k(0) = 0 for $\beta > 0$, and $k(0) \neq 0$ for $\beta = 0$. Suppose that $k_1(t)$ is defined as in (2.1)

and is uniformly bounded in $0 \le t < \infty$. Suppose that g(t) decreases to zero in $0 < t < \infty$, and that $t^{\beta}g(t) \in L(0,1)$. Then

(2.3)
$$\tilde{G}(x) = \int_{0}^{\infty} k(xt)g(t)dt$$

converges for every x > 0, and $x^{-\gamma} \tilde{G}(x) \in L^p(0, \infty)$ if $t^{\gamma+1-2/p} g(t) \in L^p(0, \infty)$.

As the inverse case to Theorem 1, we have the following theorem.

THEOREM 4. Let $\beta>0$ and let $1/p<\gamma<\beta+1/p$. Suppose that f(t) is monotone in $0< t<\infty$ and tends to a finite value as $t\to\infty$, and that $\int\limits_0^1 t^{\beta}|df(t)|<\infty$. Suppose that there exists a function $\omega(x)$ such that

(i)
$$\omega(x) \in L(0, 1)$$
, $x^{\beta} \omega(x) \in L(1, \infty)$ and $\int_{-\infty}^{\infty} x^{\beta} \omega(x) dx \neq 0$,

(ii) $k^*(y) - k^*(0)$ has no change of sign in $0 < y < \infty$, where

$$(2.4) k^*(y) = \int_0^\infty \omega(x) k(xy) dx.$$

. If
$$x^{-\gamma}F(x) \in L^p(0, \infty)$$
, then $t^{\gamma-\beta-2/p} \int\limits_0^t x^\beta df(x) \in L^p(0, \infty)$.

As a corollary of Theorem 4, we have the following theorem inverse to Theorem 3.

THEOREM 5. Let $\beta \geqslant 0$ and $-1/q < \gamma < \beta + 1/p$. Let k(0) = 0 for $\beta > 0$, and $k(0) \neq 0$ for $\beta = 0$. Suppose that $k_1(t)$ is defined as in (2.1) and is uniformly bounded in $0 \leqslant t < \infty$. Suppose that g(t) decreases to zero in $0 < t < \infty$, and that $t^{\beta}g(t) \in L(0,1)$. Then $\tilde{G}(x)$ is finite for every x > 0, where it is of the form (2.3).

Moreover, if there exists a function $\omega_1(x)$ such that

$$\text{(i)' } \ \omega_{1}(x) \, \epsilon L(0, 1), \ x^{\beta+1} \, \omega_{1}(x) \, \epsilon L(1, \ \infty) \ \text{ and } \ \int\limits_{0}^{\infty} x^{\beta+1} \, \omega_{1}(x) \, dx \ \neq 0,$$

(ii)' $k_1^*(y)$ has no change of sign in $0 < y < \infty$, where

$$k_1^*(y) = \int_0^\infty \omega_1(x) k_1(xy) dx,$$

and if $w^{-\gamma}\tilde{G}(x) \in L^p(0, \infty)$, then $t^{\gamma+1-2/p}g(t) \in L^p(0, \infty)$.

Remark 2. In Theorems 1 and 4, we attend to the case p=1. K. Soni and R. P. Soni [6], Lemma 1, gave a result as follows: Let $\varphi(u)$ and $\psi(u)$ be two monotone functions $(\varphi \uparrow, \psi \downarrow)$ defined in $0 < u < \infty$, such that $\varphi(+0)$

 $=\psi(+\infty)=0$. If one of the integrals $\int\limits_0^\infty \varphi(u)d\psi(u)$ or $\int\limits_0^\infty \psi(u)d\varphi(u)$ is finite, then the other integral is finite and

$$\lim_{u \to +0} \varphi(u) \psi(u) = 0, \quad \lim_{u \to \infty} \varphi(u) \psi(u) = 0,$$
$$\int_{0}^{\infty} \varphi(u) d\psi(u) = -\int_{0}^{\infty} \psi(u) d\varphi(u).$$

Let $\varphi(t) = \int_{-\infty}^{t} w^{\beta} |df(x)|$ and $\psi(t) = t^{\gamma-\beta-1}$ (notice $\gamma-\beta-1<0$). Then

$$(1+\beta-\gamma)\int\limits_0^\infty t^{\gamma-\beta-2}\,dt\int\limits_0^t x^\beta\,|df(x)|\,=\int\limits_0^\infty t^{\gamma-\beta-1}t^\beta\,|df(t)|\,=\int\limits_0^\infty t^{\gamma-1}\,|df(t)|\,.$$

Thus we see that Theorems 1 and 4 for the case p = 1 were proved by K. Soni and R. P. Soni [6], Theorems 1 and 2, respectively.

In Section 6, we shall show that Theorems 3 and 5 include an answer of Boas's conjecture.

3. Proofs of Theorems 1, 2 and 3. In order to prove Theorem 1, we need a lemma as follows:

LEMMA 1. Let s > 0 and 1 < m < sp + 1. Suppose that $\lambda(u)$ increases in $0 \le u < \infty$, and that $\lambda(+0) = 0$. Then $u^{-m/p}\lambda(u) \in L^p(0, \infty)$ if and only if

$$u^{-m/p+s}\int_{u}^{\infty} w^{-s} d\lambda(x) \epsilon L^{p}(0, \infty).$$

Proof. It is sufficient for us to prove that $u^{-s}\lambda(u)\to 0$ as $u\to\infty$ if $u^{-m/p}\lambda(u)\in L^p(0,\infty)$. Since 1< m< sp+1, we get $0>(-m+1)p^{-1}>-s$. Since $\lambda(u)$ is non-negative and increasing in $0< u<\infty$, and since $u^{-m/p}\lambda(u)\in L^p(0,\infty)$,

$$\begin{aligned} u^{-s}\lambda(u) &\leqslant u^{(-m+1)/p}\lambda(u) & (u \geqslant 1) \\ &\leqslant \left(\frac{1}{m-1} \int_{u}^{\infty} u^{-m}\lambda(u)^{p} du\right)^{1/p} \\ &\to 0 \quad \text{as } u \to \infty. \end{aligned}$$

The rest of the proof is indeed similar to Askey and Boas [1], Lemma 1, and so we omit it. Thus Lemma 1 is proved.

Proof of Theorem 1. When we put

$$\lambda(t) = \int_0^t x^{\beta} |df(x)|, \quad s = \beta, \quad m = -\gamma p + \beta p + 2$$

in Lemma 1, we have

$$\begin{split} &\int\limits_0^\infty u^{\gamma p-2} \Big(\int\limits_u^\infty |df(t)|\Big)^p \, du < \infty \quad \text{because} \quad u^{\gamma-\beta-2/p} \int\limits_0^u t^\beta |df(t)| \, \epsilon L^p(\mathbf{0},\, \infty) \, . \\ &\text{Hence, by (A1) and (A2),} \\ &\int\limits_0^\infty w^{-\gamma p} |F(w)|^p \, dw \\ &\leqslant \int\limits_0^\infty w^{-\gamma p} \Big(\int\limits_0^\infty |k(wt)-k(0)| \, |df(t)|\Big)^p \, dw \\ &\leqslant 2^{p-1} \Big\{\int\limits_0^\infty w^{-\gamma p} \Big(\int\limits_0^\infty |k(wt)-k(0)| \, |df(t)|\Big)^p \, dw + \\ &\qquad \qquad + \int\limits_0^\infty w^{-\gamma p} \Big(\int\limits_{1/x}^\infty |k(wt)-k(0)| \, |df(t)|\Big)^p \, dw + \\ &\qquad \qquad + \int\limits_0^\infty w^{-\gamma p} \Big(\int\limits_{1/x}^\infty |k(wt)-k(0)| \, |df(t)|\Big)^p \, dw \Big\} \\ &\leqslant C_1 \int\limits_0^\infty w^{-\gamma p+\beta p} \Big(\int\limits_0^{1/x} t^\beta \, |df(t)|\Big)^p \, dw + C_2 \int\limits_0^\infty w^{-\gamma p} \Big(\int\limits_{1/x}^\infty |df(t)|\Big)^p \, dw \\ &= C_1 \int\limits_0^\infty u^{\gamma p-\beta p-2} \Big(\int\limits_0^u |df(t)|\Big)^p \, du + C_2 \int\limits_0^\infty u^{\gamma p-2} \Big(\int\limits_0^\infty |df(t)|\Big)^p \, du < \infty. \end{split}$$

Thus Theorem 1 is proved.

Proof of Theorem 2. Since $\int\limits_0^1 t^{\beta+1} |df(t)| < \infty$, $\lim_{u \to +0} \int\limits_0^u t^{\beta+1} |df(t)| = 0$ by the dominated convergence theorem. Since $\beta \geqslant 0$

$$\int\limits_0^\delta t^{\beta+1}\,|df(t)|\geqslant \int\limits_{\mathbf{s}}^\delta t^{\beta+1}\,|df(t)|\geqslant \varepsilon^{\beta+1}\int\limits_{\mathbf{s}}^\delta |df(t)|\geqslant \varepsilon^{\beta+1}|f(\delta)-f(\varepsilon)|$$

for $0 < \varepsilon < \delta < 1$. When ε tends to zero and then δ tends to zero, we get

$$\varepsilon^{\beta+1}f(\varepsilon) \to 0$$
 as $\varepsilon \to 0$.

Also, it is easily seen that $k_1(0)=0$ and $k_1(t)=B_1t^{\beta+1}+o(t^{\beta+1})$ as $t\to +0$, where $B_1\neq 0$. Since $k_1(t)$ is uniformly bounded in $0\leqslant t<\infty$, and since f(t) tends to zero as $t\to\infty$ and $\int\limits_0^1 t^{\beta+1}|df(t)|<\infty$, the integral transform

$$\int\limits_{-\infty}^{\infty}k_{1}\left(xt\right) df(t)$$

converges absolutely for every $x \ge 0$.

Thus, for x > 0,

$$(3.1) \qquad \int_{0}^{\infty} k_{1}(xt) df(t) = \lim_{N \to \infty} \int_{0}^{N} k_{1}(xt) df(t)$$

$$= \lim_{N \to \infty} \left\{ [k_{1}(xt)f(t)]_{0}^{N} - x \int_{0}^{N} k(xt)f(t) dt \right\}$$

$$= -x \int_{0}^{\infty} k(xt)f(t) dt = -x \tilde{F}(x).$$

Hence $\tilde{F}(x)$ is finite for x > 0. Since

$$t^{\gamma-\beta-2/p}\int\limits_0^t x^{\beta+1}|df(t)| \,=\, t^{(\gamma+1)-(\beta+1)-2/p}\int\limits_0^t t^{\beta+1}|df(t)|\,\epsilon\, L^p(0\,,\,\,\infty)\,,$$

we obtain, by Theorem 1,

$$x^{-\gamma} \tilde{F}(x) = x^{-(\gamma+1)} \int\limits_0^\infty k_1(xt) df(t) \, \epsilon L^p(0, \infty).$$

Thus Theorem 2 is proved.

Proof of Theorem 3. Since g(t) decreases to zero in $0 < t < \infty$, it is of bounded variation in $T \le t < \infty$ for each T > 0. We put

$$\varphi(u) = \begin{cases} g(u) & \text{for } 0 < u \le t \\ 0 & \text{for } t < u \end{cases} \quad (t > 0)$$

and $\psi(u)=u^{\beta+1}$ in Remark 2. Then, since $u^{\beta}g(u)\,\epsilon L(0,t)$, the integral $\int\limits_0^t u^{\beta+1}|dg(u)|=-\int\limits_0^t u^{\beta+1}\,dg(u)$ is finite for every t>0. Further we should notice that

$$(3.2) \quad \int\limits_0^t u^{\beta}g(u)du = \frac{1}{\beta+1} \left\{ t^{\beta+1}g(t) - \int\limits_0^t u^{\beta+1}dg(u) \right\} \geqslant \frac{1}{\beta+1} \int\limits_0^t u^{\beta+1}|dg(u)|.$$

Thus, using (3.1),

$$(3.3) \qquad \int\limits_0^\infty k_1(xt)\,dg(t) \,=\, -\,x\int\limits_0^{+\infty} k(xt)g(t)\,dt \,=\, -x\tilde{G}(x), \qquad x>0\,,$$

and so $\tilde{G}(x)$ is finite for every x>0. By Hardy, Littlewood and Pólya [5], Theorem 330, we get

$$\int\limits_0^\infty t^{\gamma p-\beta p-2} \left(\int\limits_0^t x^\beta g\left(x\right) dx\right)^p dt \leqslant C\int\limits_0^\infty t^{\gamma p-2+p} g(t)^p dt < \,\infty\,.$$

$$\int\limits_{0}^{\infty}t^{\gamma p-\beta p-2}\left(\int\limits_{0}^{t}x^{\beta+1}\left|dg\left(x\right)\right|\right)^{p}dt<\infty.$$

Now, by Theorem 2, $w^{-\gamma}\tilde{G}(x) \in L^p(0, \infty)$. Thus Theorem 3 is proved.

4. Proofs of Theorems 4 and 5. In order to prove Theorem 4, we need the following two lemmas.

LIEMMA 2. Suppose that f(t) is non-negative and monotone in $0 < t \le \delta$ for some $\delta > 0$, and that it is of bounded variation in $\delta \le t < \infty$. If $\int\limits_0^1 t^{\beta} |df(t)| < \infty$ for $\beta > 0$, then

$$\int_{0}^{1} |k(wt) - k(0)| |df(t)| = \begin{cases} O(x^{\beta}) & \text{as } \boldsymbol{x} \to +0, \\ o(x^{\beta}) & \text{as } \boldsymbol{x} \to \infty; \end{cases}$$

$$\int_{1}^{\infty} |k(wt) - k(0)| |df(t)| = \begin{cases} O(1) & \text{as } \boldsymbol{x} \to +0, \\ O(1) & \text{as } \boldsymbol{x} \to \infty. \end{cases}$$

When f(t) increases in $0 < t \le \delta$, Lemma 2 is trivial. Also, when f(t) decreases in $0 < t \le \delta$, it is due to K. Soni and R. P. Soni [6], Lemma 3

LEMMA 3. Let $\beta > 0$. Suppose that $\omega(x)$ satisfies condition (i), and that $k^*(y)$ is defined as in (2.4). Then

(a) $k^*(y)$ is uniformly bounded in $0 \le y < \infty$,

(b)
$$k^*(y) - k^*(0) \sim Dy^{\beta}$$
 as $y \to +0$, where $D \neq 0$.

Lemma 3 is due to K. Soni and R. P. Soni [6], Lemma 6 and p. 407.

Proof of Theorem 4. By assumption, f(t) is of bounded variation in $T \leq t < \infty$ for every T > 0. Since $\omega(x) \in L(0, \infty)$, $k^*(y)$ is finite for every $0 \leq y < \infty$. Let, for t > 0,

$$\mu(t) = t^{-\gamma - 1} \int_0^\infty \omega\left(\frac{x}{t}\right) F(x) dx = t^{-\gamma} \int_0^\infty \omega(u) du \int_0^\infty \left\{k(tuy) - k(0)\right\} df(y).$$

By Lemma 2, the repeated integral above converges absolutely. Interchanging the order of integration,

(4.1)
$$\mu(t) = t^{-\gamma} \int_{0}^{\infty} \{h^{*}(ty) - h^{*}(0)\} df(y).$$

By (i), we have $w^{\gamma-1/p}\omega(w) \epsilon L(0,\infty)$, where $0<\gamma-1/p<\beta$. Now, from assumption and a generalized form of Minkowski's inequality [8], p. 19, we get

$$\begin{split} \left(\int\limits_0^\infty |\mu(t)|^p dt\right)^{1/p} & \leqslant \left\{\int\limits_0^\infty t^{-(\gamma+1)p} \left(\int\limits_0^\infty \left|\omega\left(\frac{x}{t}\right)F(x)\right| dx\right)^p dt\right\}^{1/p} \\ & = \left\{\int\limits_0^\infty \left(\int\limits_0^\infty |\omega(u)t^{-\gamma}F(tu)| du\right)^p dt\right\}^{1/p} \\ & \leqslant \int\limits_0^\infty \left(\int\limits_0^\infty |\omega(u)t^{-\gamma}F(tu)|^p dt\right)^{1/p} du \\ & = \int\limits_0^\infty |\omega(u)| u^\gamma \left(\int\limits_0^\infty (tu)^{-\gamma p} |F(tu)|^p dt\right)^{1/p} du \\ & = \left(\int\limits_0^\infty |\omega(u)| u^{\gamma-1/p} du\right) \left(\int\limits_0^\infty v^{-\gamma p} |F(v)|^p dv\right)^{1/p} < \infty. \end{split}$$

Hence $\mu(t) \in L^p(0, \infty)$. From (b) of Lemma 3, there exists a positive number $\theta < 1$ such that

$$|k^*(y) - k^*(0)| \ge \frac{1}{2} |D| y^{\beta}$$
 for any $y, 0 < y \le \theta$.

Now, since f(t) is monotone, we have, by (4.1) and (ii),

$$\begin{split} (4.2) \qquad & \int\limits_{0}^{\infty} |\mu(t)|^{p} dt = \int\limits_{0}^{\infty} t^{-\gamma p} \Big(\int\limits_{0}^{\infty} |k^{*}(ty) - k^{*}(0)| \, |df(y)| \Big)^{p} dt \\ \\ & \geqslant \int\limits_{0}^{\infty} t^{-\gamma p} \Big(\int\limits_{0}^{\theta/l} |k^{*}(ty) - k^{*}(0)| \, |df(y)| \Big)^{p} dt \\ \\ & \geqslant (\frac{1}{2} \, |D|)^{p} \int\limits_{0}^{\infty} t^{-\gamma p + \beta p} \Big(\int\limits_{0}^{\theta/l} y^{\beta} \, |df(y)| \Big)^{p} dt \\ \\ & = (\frac{1}{2} \, |D|)^{p} \, \theta^{-\gamma p + \beta p + 1} \int\limits_{0}^{\infty} u^{\gamma p - \beta p - 2} \Big(\int\limits_{0}^{u} y^{\beta} \, |df(y)| \Big)^{p} du \\ \\ & = C \int\limits_{0}^{\infty} \Big| u^{\gamma - \beta - 2/p} \int\limits_{0}^{u} y^{\beta} \, df(y) \Big|^{p} du \, . \end{split}$$

Thus Theorem 4 is proved.

Proof of Theorem 5. By assumption, g(t) is of bounded variation in $T \leq t < \infty$ for every T > 0, and $k_1(0) = k_1^*(0) = 0$ and $k_1(t) = B_1 t^{\beta+1} + o(t^{\beta+1})$ as $t \to +0$, where $B_1 \neq 0$. Now, from (3.3),

$$\tilde{G}(x) = -x^{-1}\int_{0}^{\infty} k_{1}(xt) dg(t), \quad x > 0.$$

$$t^{\gamma-eta-2/p}\int\limits_0^t x^{eta+1}\,dg\,(x)\,=\,t^{(\gamma+1)-(eta+1)-2/p}\int\limits_0^t x^{eta+1}\,dg\,(x)\,\epsilon L^p(0\,,\,\,\infty)\,.$$

Now, if we set

$$\lambda(t) = \int_{0}^{t} w^{\beta+1} |dg(x)|, \quad m = -(\gamma+1)p + (\beta+1)p + 2, \quad s = \beta+1$$

in Lemma 1, then

$$\int\limits_{0}^{\infty}t^{\nu p+p-2}g(t)^{p}dt \, = \int\limits_{0}^{\infty}t^{(\nu+1)p-(\beta+1)p-2+(\beta+1)p}\Bigl(\int\limits_{t}^{\infty}w^{-(\beta+1)}w^{\beta+1}|dg(x)|\Bigr)^{p}dt \, < \, \infty.$$

Thus Theorem 5 is proved.

5. Applications. In this section, we apply Theorems 1-5 to some well-known integral transforms.

1. The Hankel transform. Let

(5.1)
$$k(t) = t^{1/2} J_{\nu}(t), \quad \nu \geqslant -\frac{1}{2},$$

where $J_r(t)$ is the Bessel function of the first kind [3], p. 4(2). Then, in particular, we have

(5.2)
$$k(t) = \begin{cases} \sqrt{\frac{2}{\pi}} \sin t & \text{for } \nu = \frac{1}{2}, \\ \sqrt{\frac{2}{\pi}} \cos t & \text{for } \nu = -\frac{1}{2}. \end{cases}$$

K. Soni and R. P. Soni [7] pointed out the following three properties.

(H1)
$$k(t) = \frac{1}{2^{\nu} \Gamma(\nu + 1)} t^{\nu + 1/2} + o(t^{\nu + 1/2})$$
 as $t \to +0$.

(H2) k(t) and $k_1(t)$ are continuous and uniformly bounded in $0 \le t < \infty$.

(H3) If we put $\omega(x) = x^{r+1/2}e^{-x}$, then, for $0 < y < \infty$,

$$\begin{split} k^*(y) &= \int\limits_0^\infty w^{\nu+1/2} e^{-x} (wy)^{1/2} J_{\nu}(wy) \, dw \\ &= \pi^{-1/2} 2^{\nu+1} \Gamma(\nu + \frac{3}{2}) y^{\nu+1/2} (1+y^2)^{-\nu-3/2} > 0 \,, \quad [4], \, \text{p. 29 (4)}. \end{split}$$

From (5.2), (H1), (H2) and (H3), we get three properties as follows:

(H4)
$$k(0) = 0$$
 for $\nu > -\frac{1}{2}$, and $k(0) = \sqrt{2/\pi}$ for $\nu = -\frac{1}{2}$.

(H5)
$$k^*(y) - k^*(0) = k^*(y) > 0$$
 for $v > -\frac{1}{2}$ and $0 < y < \infty$.

(H6) Let $\omega_1(x) = \{-(\nu+1/2)x^{\nu-1/2} + x^{\nu+1/2}\}e^{-x}$. Since $\int_x^\infty \omega_1(u) du = \omega(x)$, we have, for $\beta = \nu+1/2$,

$$\int_{0}^{\infty} x^{\beta+1} \omega_{1}(x) dx = \left[x^{\nu+3/2} \left(-\omega(x) \right) \right]_{0}^{\infty} + \left(\nu + \frac{3}{2} \right) \int_{0}^{\infty} x^{\nu+1/2} \omega(x) dx$$
$$= \left(\nu + \frac{3}{2} \right) \int_{0}^{\infty} x^{2\nu+1} e^{-x} dx \neq 0$$

and

$$\begin{split} k_1^*(y) &= \int\limits_0^\infty \omega_1(x) dx \int\limits_0^{yx} k(u) du = y \int\limits_0^\infty \omega_1(x) dx \int\limits_0^x k(yv) dv \\ &= y \int\limits_0^\infty \omega(v) k(yv) dv = y k^*(y) > 0, \quad 0 < y < \infty. \end{split}$$

We set $\beta=\nu+1/2$. Then, from (H1)–(H6), we may state Theorems 1–5 for the Hankel transform as follows:

(I) Let v > -1/2 and $1/p < \gamma < v + 1/2 + 1/p$. If f(t) is defined in $0 < t < \infty$ and is of bounded variation in $T \le t < \infty$ for every T > 0, if $\int\limits_0^1 t^{v+1/2} |df(t)| < \infty, \text{ and if }$

$$t^{\nu-\nu-1/2-2/p}\int\limits_0^t x^{\nu+1/2}\,|df(x)|\,\epsilon L^p(0\,,\,\infty)\,,$$

then $x^{-\gamma}F(x) \in L^p$ $(0, \infty)$ (Theorem 1). Conversely, if f(t) is monotone in $0 < t < \infty$ and tends to a finite value as $t \to \infty$, if $\int_0^1 t^{\nu+1/2} |df(t)| < \infty$, and if $x^{-\gamma}F(x) \in L^p(0, \infty)$, then

$$t^{\nu-\nu-1/2-2/p}\int\limits_0^t x^{\nu+1/2}\,df(x)\,\epsilon\,L^p(0\,,\,\,\infty)$$

(Theorem 4).

(II) Let $v \geqslant -1/2$ and $-1/q < \gamma < v + 1/2 + 1/p$. Suppose that f(t) is defined in $0 < t < \infty$ and is of bounded variation in $T \leqslant t < \infty$ for every T > 0, that f(t) tends to zero as $t \to \infty$, and that $\int\limits_0^1 t^{v+3/2} |df(t)| < \infty$. Then $\tilde{F}(x)$ is finite for every x > 0, where it is of the form (2.2), and $x^{-\gamma}\tilde{F}(x)L^p(0,\infty)$ if

$$t^{
u-
u-1/2-2/p}\int\limits_0^t x^{
u+3/2}\, |df(x)|\, \epsilon\, L^p(0\,,\,\,\infty)$$

(Theorem 2).

(III) Let $v \geqslant -1/2$ and $-1/q < \gamma < v + 1/2 + 1/p$. Suppose that g(t) decreases to zero in $0 < t < \infty$, and that $t^{r+1/2}g(t) \in L(0,1)$. Then $\tilde{G}(x)$ is

finite for every x > 0, where it is of the form (2.3), and $x^{-\tilde{\gamma}}G(x) \in L^p(0, \infty)$ if and only if $t^{\nu+1-2/p}g(t) \in L^p(0, \infty)$ (Theorems 3 and 5).

2. The Y-transform. Let

$$k(t) = t^{1/2} Y_{\nu}(t), \quad 0 < |\nu| < \frac{1}{2},$$

where $Y_r(t)$ is the Bessel function of the second kind or Neuman's function and

$$Y_{\nu}(t) = (\sin \nu \pi)^{-1} \{ J_{\nu}(t) \cos \nu \pi - J_{-\nu}(t) \}, \quad [3], \text{ p. } 4(4).$$

Hence, from (H1),

(Y1)
$$k(t) = Bt^{1/2-|\nu|} + o(t^{1/2-|\nu|})$$
 as $t \to +0$, where
$$(-2^{\nu}\{(\sin\nu\pi) P(1-\nu)\}^{-1} \quad \text{for } 0 < \nu < 1/2\}$$

$$B = \begin{cases} -2^{\nu} \{ (\sin \nu \pi) \ \Gamma(1-\nu) \}^{-1} & \text{for } 0 < \nu < \frac{1}{2}, \\ 2^{-\nu} (\cot \nu \pi) \{ \ \Gamma(1+\nu) \}^{-1} & \text{for } -\frac{1}{2} < \nu < 0. \end{cases}$$

K. Soni and R. P. Soni [7] pointed out a property as follows: (Y2) k(t) and $k_1(t)$ are continuous and uniformly bounded in $0 \le t < \infty$. From Erdélyi [4], p. 105(1),

(5.3)
$$\int_{0}^{\infty} x^{-1/2} e^{-x} (xy)^{1/2} Y_{\nu}(xy) dx = y^{1/2} (y^{2} + 1)^{-1/2} (\sin \nu \pi)^{-1} \times (y^{\nu} \{ (y^{2} + 1)^{1/2} + 1 \}^{-\nu} \cos \nu \pi - y^{-\nu} \{ (y^{2} + 1)^{1/2} + 1 \}^{\nu}), \ 0 < y < \infty.$$

Hence, by (Y1) and (Y2), we have the following property.

(Y3) Let $\omega(x) = x^{-1/2}e^{-x}$. For $0 < \nu < 1/2, \ k^*(y) - k^*(0) = k^*(y) < 0$ in $0 < y < \infty$.

But, for $-1/2 < \nu < 0, \ k^*(y) - k^*(0) = k^*(y)$ has change of sign in $0 < y < \infty$.

In the case of the Y-transform, it follows from (Y1)–(Y3) that Theorems 1–3 hold for $\beta=1/2-|\nu|$ and $0<|\nu|<1/2$, and that Theorem 4 holds for $\beta=1/2-\nu$ and $0<\nu<1/2$.

When we put $\omega_1(t) = -\frac{d}{dt} \omega(t) = (\frac{1}{2}x^{-3/2} + x^{-1/2})e^{-x}$, the function $\omega_1(t)$ does not exist in L(0,1), and $k_1^*(y) = yk^*(y)$ in the same manner as (H6) but $k_1^*(y)$ is not bounded as $y \to \infty$ by (5.3). For the Y-transform, it is doubtful whether Theorem 5 holds.

3. The K-transform. Let

$$k(t) = t^{1/2} K_{\nu}(t), \quad 0 < \nu \leqslant \frac{1}{2},$$

where $K_r(t)$ is the modified Bessel function of the third kind and

$$K_{\nu}(t) = \frac{\pi}{2} (\sin \nu \pi)^{-1} \{ I_{-\nu}(t) - I_{\nu}(t) \}, \quad I_{\nu}(t) = \sum_{n=0}^{\infty} \frac{(t/2)^{2n+\nu}}{n! \Gamma(n+\nu+1)},$$
[3], p. 5 (13).

In particular, we have $k(t) = \sqrt{\frac{\pi}{2}} e^{-t}$ for $v = \frac{1}{2}$ (the integral transform is the Laplace transform). Now we get the following two properties.

$$(K1) \ k(t) = \frac{2^{\nu-1}\pi}{(\sin\nu\pi)\Gamma(1-\nu)} \ t^{1/2-\nu} + o(t^{1/2-\nu}) \quad \text{as } t \to +0.$$

(K2)
$$k(0) = 0$$
 for $0 < \nu < 1/2$, and $k(0) = \sqrt{\frac{\pi}{2}} \neq 0$ for $\nu = 1/2$.

K. Soni and R. P. Soni [7] pointed out a property as follows:

(K3) k(t) and $k_1(t)$ are non-negative, continuous and uniformly bounded in $0 \le t < \infty$.

Since k(t) and $k_1(t)$ are non-negative in $0 \le t < \infty$ from (K3), the considerations of $\omega(x)$ and $\omega_1(x)$ are unnecessary. We see easily it from the calculations similar to (4.2). From (K1)–(K3), we may now sum up our results for the K-transform as follows.

Theorems 1 and 4 hold for $\beta=1/2-\nu$ and $0<\nu<1/2$, but Theorem 4 need not consider $\omega(x)$. Theorems 2 and 3 hold for $\beta=1/2-\nu$ and $0<\nu\leqslant1/2$. Theorem 5 holds for $\beta=1/2-\nu$ and $0<\nu\leqslant1/2$ without the consideration of $\omega_1(x)$.

- 6. An answer of Boas's conjecture. For Fourier sine or cosine transforms, R. P. Boas [2] gave loosely a conjecture as follows:
- (B1) If h and H_0 are a pair of Fourier sine or cosine transforms, and if one of them is positive and decreasing in $0 < t < \infty$, then $w^{-\gamma}H_0(w) \in L^p(0,\infty)$ if and only if $t^{\gamma+1-2/p}h(t) \in L^p(0,\infty)$ provided that $-1/q < \gamma < 1/p$.

Moreover, in [2], he proved a result for sine transform as follows:

(B2) If h(t) decreases to zero in $0 < t < \infty$, if $t^{l/p}h(t) \in L^p(0, 1)$, and if $H_s(x)$ is the sine transform of h(t), then $x^{-\gamma}H_s(x) \in L^p(0, \infty)$ provided that $t^{\gamma+1-2/p}h(t) \in L^p(0, \infty)$, where p > 1 and $-1/q < \gamma < 2/p - 1/q$.

From (5.2) and 1(III) of Section 5, we obtain the following two results.

(III_s) Let $-1/q < \gamma < 1+1/p$. Suppose that h(t) decreases to zero in $0 < t < \infty$, and that $th(t) \in L(0,1)$. Then

$$H_s(x) = \int\limits_0^\infty h(t) \sin xt \, dt$$

converges for every x > 0, and $x^{-\gamma}H_s(x) \in L^p(0, \infty)$ if and only if $t^{\gamma+1-2/p}h(t) \in L^p(0, \infty).$

(III_c) Let $-1/q < \gamma < 1/p$. Suppose that h(t) decreases to zero in $0 < t < \infty$, and that $h(t) \in L(0,1)$. Then

$$H_c(x) = \int_0^{+\infty} h(t) \cos xt dt$$

converges for every x>0, and $x^{-\gamma}H_c(x) \in L^p(0,\infty)$ if and only if $t^{\gamma+1-2/p}h(t) \in L^p(0,\infty)$.

Now we see that (\mathbf{III}_s) and (\mathbf{III}_c) give an answer of (B1). Since

$$\int_{0}^{1} th(t) dt \leqslant \left(\int_{0}^{1} th(t)^{p} dt \right)^{1/p} \left(\int_{0}^{1} t dt \right)^{1/q} = 2^{-1/q} \left(\int_{0}^{1} th(t)^{p} dt \right)^{1/p} \quad (p > 1)$$

by Hölder's inequality, it is clear that (III, includes (B2).

References

 R. Askey and R. P. Boas, Jr., Fourier coefficients of positive functions, Math Z. 100 (1967), pp. 373-379.

[2] R. P. Boas, Jr., The integrability class of the sine transform of a monotone function, Studia Math. 44 (1972), pp. 365-369.

[3] A. Erdélyi, Higher transcendental functions, Vol. 2, McGraw-Hill, New York 1953.

[4] - Tables of integral transforms, Vol. 2, McGraw-Hill, New York 1954.

[5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge 1952.

[6] K. Soni and R. P. Soni, Integrability theorems for a class of integral transforms, J. Math. Anal. Appl. 43 (1973), pp. 397-418.

[7] — Integrability theorems for a class of integral transforms II, J. Math. Anal. Appl. 44 (1973), pp. 553-580.

[8] A. Zygmund, Trigonometric series, Vol. 1, Cambridge 1959.

DEPARTMENT OF MATHEMATICS FACULTY OF GENERAL EDUCATION HIROSAKI UNIVERSITY, HIROSAKI, JAPAN